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ABSTRACT

The purpose of this paper is to obtain approximations to the transition inten-
sities defined for a multiple state model for Permanent Health Insurance (PHI)
which enables us to analyse PHI claims by cause of disability.

The approximations to the transition intensities are obtained using a set
of PHI data classified by 18 sickness categories and the graduations of the
transition intensities defined for a simpler model proposed in Continuous
Mortality Investigation Reports, 12 (1991).

In order to derive the approximations to the recovery and mortality of
the sick intensities for our model, we carry out tests of hypotheses based on
the distributions of average sickness durations. The approximations to the
sickness intensities are obtained by estimating a statistical model for the
number of claim inceptions, which can be formulated as a generalized linear
model.
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1. PRESENTATION OF THE PROBLEM

Permanent Health Insurance (PHI for brevity) is a class of long-term sickness
insurance which provides cover against the risk of loss of income due to dis-
ability. In general terms, a PHI policy entitles the policyholder to an income
during periods of disability longer than the deferred period of the policy.
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Each PHI policy has a deferred period, which is chosen by the policyholder
when the policy is effected. Benefits only start to be paid after the end of the
deferred period.

There are several types of PHI policy. However, in this paper we are only
interested in individual conventional policies with level benefits. For a precise
description of this type of policy see Cordeiro (1998).

We will assume throughout this paper that a policy expires when the poli-
cyholder reaches age 65 or dies, whichever occurs first. We will also assume
that each policy has one of the following deferred periods: 1 week, 4 weeks,
13 weeks or 26 weeks (for brevity, throughout the paper we will refer to these
deferred periods as Dl, D4, D13 and D26, respectively).

Cordeiro (1998) has introduced a new multiple state model for PHI which
enables us to analyse claims by cause of disability. This model is very useful
in the underwriting and claims control stages of PHI business since it allows
the calculation of quantities such as the average duration of a claim and claim
inception rates by cause of disability.

This new model, which can be described intuitively by the diagram in Fig-
ure 1, has (« + 2) states (n> 1): Healthy (denoted by H), Dead (denoted by
D), Sick with a Sickness from Class 1 (denoted by S{), Sick with a Sickness
from Class 2 (denoted by S2), ..., Sick with a Sickness from Class n (denoted
by Sn). Each state St represents a different class of causes of disability. These
n states, considered together, group all possible causes of disability.

The important quantities for the model are the transition intensities (a(i)x,
p(i)x,z> v(i)x,z 0 = 1> 2,..., n) and jux), since their action governs the movements
of a policyholder between the (n + 2) states. The movements which the model
assumes to be possible are represented by arrows in the diagram.

The transition intensities a(i)x (for a fixed i) and fix, which can be desig-
nated as sickness intensity for class / and mortality of the healthy intensity,
respectively, depend only on x, the policyholder's attained age. The transition
intensities p(i)x,z and v{i)xz (for a fixed i), which can be designated as recov-
ery intensity and mortality of the sick intensity for class i, respectively,
depend on x and on z, the duration of the policyholder's current sickness.
The model assumes that all the transition intensities are continuous functions of
either x or (x, z). As a consequence of this assumption, the transition intensi-
ties are bounded on any bounded set of values of x or (x, z).

The model mentioned in the previous paragraphs can be considered as a
generalization of the multiple state model for PHI proposed in Continuous
Mortality Investigation Reports, 12 (1991) (for brevity we will refer to this
Report as CMIR 12 (1991) throughout the paper). In fact, it is easy to see
this, if we compare the diagram in Figure 1 with the corresponding diagram
for the latter model (see Figure Al in CMIR 12 (1991)). The two diagrams
are similar, the only difference being that the model in CMIR 12 (1991) has
only three states: Healthy, Sick and Dead, and, therefore, in the latter diagram
the n boxes, which represent the different classes of causes of disability, are
replaced by only one box, which represents all possible causes of disability
considered together. Consequently, in the model proposed in CMIR 12 (1991)
only 4 transition intensities are defined: ox, /ux, pxz and vxz.
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FIGURE 1: A multiple state model for the analysis of PHI claims by cause of disability.

All the important theoretical aspects of this new model have already been
presented exhaustively elsewhere and, therefore, here we limit ourselves to
mention those aspects which are concerned directly with the work in this
paper. Cordeiro (1998, 2002) has: presented the mathematical basis of the
model and defined the basic probabilities which are required for the calcula-
tion of more complex quantities concerning PHI business; presented formu-
lae for the basic probabilities; derived numerical algorithms which make pos-
sible an efficient evaluation of some of the basic probabilities; and talked
about the importance of the model for PHI business.

In order to make this new model operational, in the sense that it can be
used to calculate quantities relevant to PHI business, we need to estimate the
transition intensities. The purpose of this paper is to estimate the p(i)XiZ, the
v(i)x z and the a(i)x, i.e. the recovery intensities, the mortality of the sick
intensities and the sickness intensities, respectively. We should note that the
estimation of /ux is not carried out in this paper. We will return to this matter
in a later section.
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In CMIR 12 (1991, Parts A, B and C) the transition intensities ox, pxz and
vxz, defined for the simpler model mentioned above, were estimated and, sub-
sequently, graduated by mathematical formulae, using a set of data from UK
insurance companies, concerning individual PHI policies: the Standard Male
Experience, 1975-78. In order to obtain graduations of the p(i)XzZ, v(i)x z and
a(i)x the ideal situation would be to have available a set of data similar to the
one used in CMIR 12 (1991), but classified into classes of causes of disability.
Unfortunately, such a detailed set of data is not available (see Cordeiro (1998)
for more details).

However, we have found a way of deriving continuous functions, which
can be taken as approximations to the p(i)x,z, v(i)xz and a(i)x, from a set of
PHI data, which is much less detailed than the one just mentioned, and the
graduations of pxz, vxz and ax obtained in CMIR 12 (1991). This set of data
is presented in the next section.

In order to explain the basic idea behind the process by which we are
going to obtain the approximations to the p(i)xz and v(i)x ., let us consider, as
an example, the case of the p(i)XiZ. Although p(i)x,z for a given / (/ =1,2,..., n)
is a recovery intensity associated with a particular class of causes of disabil-
ity whereas pxz is a recovery intensity associated with the different classes of
causes of disability taken as a whole, it is possible that they have common fea-
tures. Since they are both recovery intensities, it is reasonable to expect that,
for at least some classes, p(i)x,z has roughly the same shape as px..

Based on this idea, we are going to define and test a set of statistical
hypotheses, using both the set of PHI data and the graduation of pxz men-
tioned above. The results of these tests will enable us to derive the required
approximations to the p(i)x,z for the different classes of causes of disability.

For obtaining the approximation to each u{i)x we are going to estimate a
model for the number of claim inceptions which assumes that a(i)x is a func-
tion of ax. This model can be formulated as a generalized linear model.

2. PHI DATA BY CAUSE OF DISABILITY

Almost all the data which will be used to estimate the p(i)XiZ, the v(i)x z and the
a(i)x are part of the following set of PHI data from UK insurance companies:
the Cause of Disability Experience, Individual Standard Experience, 1979-82.
This set of data was produced by the Continuous Mortality Investigation
Bureau of the Institute of Actuaries and the Faculty of Actuaries (CMIB)
and its main feature is that the claims, from which the information is
extracted, are classified according to cause of disability. From this set of data
only part of the male experience for deferred periods Dl, D4, D13 and D26
will be used in this paper.

Due to limitations of space, it is not possible to present here all the
data which will be used in the next sections. The full set of data can be
found in Cordeiro (1998). Table 1 shows only a summary of part of these
data. These data, in most cases, are classified by sickness category and age
group.
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TABLE 1

NUMBER OF CLAIMS WHICH ENDED IN RECOVERY AND IN DEATH

Sickness Category

1. Other Infective
2. Malignant Neoplasms
3. Benign Neoplasms
4. Endocrine and Metabolic
5. Mental Illness
6. Nervous Disease
7. Heart/Circulating System
8. Ischaemic Heart Disease
9. Cerebro Vascular Disease

10. Acute Respiratory
11. Bronchitis Respiratory
12. Digestive
13. Genito-Urinary
14. Arthritis/Spondylitis
15. Other Musculoskeletal
16. R.T.A. Injuries
17. Other Injuries
18. All Others
All Sickness Categories

Number of Claims which
Ended in

Dl

631
67
44
30

218
122
224
168
21

953
396
481
211
97

565
128
598
469

5423

D4

68
27
18
7

108
37
54

115
14
30
28

202
43
24

159
53

183
85

1255

Recovery

D13

16
13
5
6

50
17
29
74
8
2
9

62
5

16
70
33
59
51

525

D26

2
8
3
2

24
10
8

23
3
3
2
6
2

10
15
14
18
11

164

Number of Claims which

Dl

1
25

1
1
4
4
5
6
5
1
1
8
3
2
4
1
1
0

73

Ended in Death

D4

3
20
3
1
4
6
1
5
0
0
4
6
2
0
0
1
0
3

59

D13

0
36
2
5
4
4
4
5
2
1
2
2
2
1
0
0
0
2

72

D26

0
19
2
0
4
6
4
9
2
1
1
5
2
0
1
1
0
2

59

Almost all the data used in this paper are classified into 18 sickness cate-
gories, each of which corresponds to a specific group of diseases and injuries
(see Table 1). These 18 sickness categories were obtained by amalgamating the
70 'causes for tabulation of morbidity' which form the following classification
of causes of disability: List C; Manual of the International Statistical Classifi-
cation of Diseases, Injuries, and Causes of Death; Eighth Revision; World
Health Organization; 1967 (this classification can be found in CMIR 8 (1986)).

Most data are also classified into 4 age groups: 18-39, 40-49, 50-59 and 60-
64. For convenience, and because the sickness categories are also numbered
from 1 to 18 (see Table 1), from now on we will designate these age groups: age
group 1, age group 2, age group 3 and age group 4, respectively.

The data which will be used to estimate the p{i)xz concern PHI claims which
ended in recovery during the period of investigation (1979-82). Some of these
claims were already in force at the beginning of the period of investigation.

For each combination of deferred period and sickness category considered
in Table 1 we will use the following data: the number of claims for each age
group, the total number of claims (i.e. the number of claims for all age groups)
and the average duration (in weeks) of a sickness (i.e. the average duration of
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a claim plus the deferred period). Table 1 shows only the total number of
claims for each combination of deferred period and sickness category.

The policyholder's age corresponding to each claim which ended in recov-
ery, needed to make the classification by age group, has been calculated as the
age nearest birthday at the date of falling sick.

The set of data which will be used to estimate the v(i)xz is of the same
type of the one just described but, in this case, for claims which ended in
death during the period of investigation. In Table 1 we present also only the
total number of claims for each combination of deferred period and sickness
category.

From the set of data by cause of disability the data which will be used in
the estimation of the a(i)x concern claims which started during the period of
investigation, i.e. claim inceptions during the period of investigation. Some of
these claims did not end during the period of investigation. For each combi-
nation of deferred period and sickness category considered in Table 1 we will
use the following data: the number of claim inceptions for each age group and
the total number of claim inceptions (i.e. the number of claim inceptions for
all age groups).

The claim inceptions are classified into the 4 age groups we consider by
age nearest birthday at the 1st January immediately preceding the date when
claim payments started (which is broadly equivalent to age last birthday when
claim payments started). For Dl it was assumed that claim payments started
at the beginning of the sickness rather than at the end of the deferred period
as for the other deferred periods.

Claims arising from duplicate policies were removed from the set of data
presented above.

Since almost all the data which will be used in this paper are classified into
18 sickness categories, we have decided that the number of states which repre-
sent classes of causes of disability to be defined in our model is n - 18. There-
fore, from now on, we will designate by p(i)xz, v(i)xz and a{i)x the recovery
intensity, the mortality of the sick intensity and the sickness intensity (respec-
tively) for sickness category i, where /= 1,2,..., 18. For a given deferred period,
we will derive approximations to p{i)x,z, v{i)xz and a(i)x for each of these 18
sickness categories.

3. OBTAINING APPROXIMATIONS TO THE RECOVERY AND
MORTALITY OF THE SICK INTENSITIES

3.1. Modeling the Average Duration of a Sickness

In the following paragraphs we present the notation and assumptions neces-
sary to define the quantities and random variables which describe the set of
PHI data presented in Section 2.

All the quantities and random variables we define in this section depend on
the deferred period we are considering: Dl, D4, D13 or D26. We decided to omit
the deferred period in the notation in order not to make it too cumbersome.
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We will denote the deferred period by d when it appears in formulae and, in
those situations, it will be measured in years.

The sickness categories and age groups to which we refer throughout
this section (and the remaining sections of this paper) are those defined in
Section 2.

The notation we introduce in the following paragraphs concerns claims
which ended in recovery. This is the reason why we use the superscript r in
this notation.

We define n\ (i= 1,..., 18) to be the total number of claims for sickness cat-
egory / and n'j (i= 1,..., 18;y= 1,2,3,4) to be the number of claims for sickness
category / and age group/ Thus, we can write n\= 2 4 «».

Assuming we can number the n[ claims for sickness category i and age
group/ we denote by T'jk (i - 1,..., 18; j = 1,2,3,4; k = 1,..., «p the random vari-
able that represents the duration of the sickness corresponding to claim k in
this category and age group. This random variable only takes on values
greater than or equal to d, since to make a claim a policyholder must stay sick
for at least the deferred period of his policy. On the other hand, since it is
unlikely that an insurance company will continue to record the duration of a
sickness after the policy expires, we assume that the variable T[jk only takes on
values less than or equal to the difference between 65 and the policyholder's
age at the beginning of the sickness.

We assume, for obvious reasons, that the variables T[jk for different sickness
categories are independent.

We assume also that, for a given sickness category i, the variables T[jk for
different age groups are independent. This is a reasonable assumption to make
considering, as we have seen in Section 2, that claims arising from duplicate
policies were removed from the set of data we are going to use.

We have seen in Section 2 that in the set of data we are going to work with
we only have available, for each category i, the number of claims for each age
group / We do not know, for each claim in an age group, the policyholder's
precise age at the beginning of the corresponding sickness. As the distribution
of any Tyk depends on this precise age, we assume that the variables T'n, T

r
vl,

..., T.rnr for a given category i and a given age group/ are i.i.d. with the same

distribution as the duration of a sickness in category i for a claimant aged Xj
at the beginning of the sickness, where Xj is the midpoint of the age interval
associated with age group /

Considering the assumption just introduced, we can write the distribution
function of any Tyk, for sickness category / and age group/ in terms of p(i)XiZ
and v(i)xz:

0 for t < d

V*
ret: Jss for d<t< 65-Xj (1)

Jd sF-sPXj

fort>65-Xj
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where

- ^ (p (% + „, „ + v (i)Xj + „, „) du j

is the probability of a policyholder staying sick, with a sickness from category i,
from age Xj to at least age (x,- + s), given that he fell sick at age x,-. sp^s' is a basic
probability for our model and the derivation of its formula can be found in
Cordeiro (1998, 2002). For a more detailed explanation of the expression of
FTr (t) see also Cordeiro (1998).

' • * — r

Denoting by T( the average of the durations of the sicknesses correspond-
ing to all the claims for category i, i.e. the claims for category i and all the age
groups, we have:

Recall from Section 2 that this random variable represents the average duration
of a sickness for category i. From now on, we will use this simpler designation
for Tj. T\ only takes on values in the interval [d, 65 -x{\ since Xj = min{Xj,j =
1,2,3,4}.

Now, for each random variable introduced so far, let us define a similar
one but for claims which ended in death. We use a similar notation to denote
these new variables, the only difference being the superscript r, which now is
replaced by the superscript m. We make also the same assumptions about
these new variables as those we have made about the variables for claims
which ended in recovery.

As far as the variables for claims which ended in death are concerned, the
only significant difference we should note is the distribution function of T™k,
the duration of the sickness (which ended in death) corresponding to claim k
in category i and age group j , which is given by formula (1) with p(i)x.+StS

replaced by v(i)x.+StS.
As we have mentioned above, we assume that the variables T'ijk for a given

sickness category i are independent (either when they are associated with claims
in the same age group or with claims in different age groups). On the other
hand, it is easy to see that the variances of these variables are finite. Despite
the fact that these variables are only identically distributed within each age
group, we can apply the central limit theorem to obtain an approximation to the
distribution of their mean, i.e. the distribution of T\. Hence, considering (2),
we can state that, provided n\ is large, the variable T\ has approximately the
following normal distribution:

N (3)

https://doi.org/10.2143/AST.32.2.1033 Published online by Cambridge University Press

https://doi.org/10.2143/AST.32.2.1033


TRANSITION INTENSITIES FOR A MODEL FOR PERMANENT HEALTH INSURANCE 3 2 7

where ETy = E(Tyk) and VTy = V(TL) (the reason for using these notations is
that E(Tyk) and V(Tyk) do not depend on k). For more details about this
approximate distribution see Cordeiro (1998)^

Similarly, an approximate distribution for T™ is the distribution (3) with the
superscript r replaced by the superscript m.

3.2. Tests of Hypotheses to Decide on the Shapes and Levels of the Recovery
Intensities

In the present section we propose tests of hypotheses to investigate, for each
sickness category, whether the recovery intensities p{i)x,z for the 4 deferred
periods we consider have the same shapes as the corresponding recovery inten-
sities pxz.

More formally, for each sickness category i and each of the 4 deferred peri-
ods we consider, we want to test the null hypothesis

H0:p(i)x: = kiPxz (4)

against the alternative

Ha:p(i)xz^kiPx: for any*, (5)

where kt is a positive constant factor which allows for the possibility of p(i)xz

having a different level than pxz. We should note that in (4) and (5) we assume
that the factor kt is the same for the 4 deferred periods we consider. This
assumption has to do with the points in the following paragraphs.

In order to describe some of the features of the graduations of the pxz

which are relevant to this paper, it is convenient to consider them as functions
of the policyholder's age at the date of falling sick, y, and of the duration of
sickness, z, instead of functions of x and of z. We should point out that in
CMIR 12 (1991) both pxz and vx z are regarded as py+z<z and vy+2>2 respectively.
Note that the two different notations are consistent. From CMIR 12 (1991)
we can also see that the graduation of py+z>2 is different according to the deferred
period we consider. For a fixed y, the graduations of ^+ 2 j 2 for D4, D13 and
D26, when compared with the one for Dl, have 4 week 'run-in' periods of
lower recovery intensities, immediately after the end of their respective
deferred periods, due to the fact that some sicknesses which do not last much
longer than the deferred period are not reported. After the first 4 weeks of
sickness that follow their respective deferred periods, the graduations for D4,
D13 and D26 are equal to the graduation for Dl. For more details about
these features see CMIR 12 (1991) or Cordeiro (1998).

We assume that the approximations to the p(i)y+ZtZ have 'run-in' patterns
similar to those in the graduations of the corresponding py+ZtZ. This assump-
tion is a consequence of another assumption we make: the 'non-reported'
claims are distributed more or less uniformly among the different sickness cat-
egories we consider.
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Note that, since the approximate distribution of T-, given by (3), depends
only on the n\j and on p(i)XtZ and v(i)xz, in the cases where n\ is large, this dis-
tribution can be used to define a two-tailed test to test Ho against Ha.

However, if we analyse Table 1, we can see that, in many cases, n\ is not
large. In fact, for D13 and D26, the n\ for the vast majority of the categories
are less than 30. This also happens for a few categories in the cases of Dl and
D4. Furthermore, as we will see below, we can conclude that the test pro-
posed in the previous paragraph is not adequate even for some categories
with n\ much higher than 30.

It_is possible to obtain very close approximations to the distributions of
the T\ using simulation. In fact, since we know, for a given category i and a
given deferred period d, the distributions of the durations of individual sick-
nesses in the 4 age groups we consider (see Section 3.1), we can_simulate a
very large number of observations of the corresponding variable T- and then
use these simulated observations, as we would use actual observations, to estimate
the distribution function or the density of T- by some appropriate method.
A full description of the process used to simulate an observation of a given T-
can be found in Cordeiro (1998).

Using simulation, we have produced graphs showing the densities of some
variables T^ and also of some T\ (both with n\ < 30 and with n\ much higher
than 30). From these graphs we have concluded that: in general, the densities
of the T[jk are heavily skewed to the right; the distributions of_the T\ for many
categories with n\ < 30 are quite skewed and even some T\ with n\ much
higher than 30 have distributions which are also quite skewed. Some of the
graphs just mentioned are shown in Cordeiro (1998).

After concluding that we need to propose more adequate tests than those
based on the central limit theorem, we are going to show below how these
new tests can be defined using the distributions of the T- obtained by simula-
tion. More precisely, these tests are based on the empirical_cumulative distri-
bution functions (e.c.d.f.) of the simulated samples of the T-. _

Assume we have simulated n observations (n being large) of the variable T\
for a given category i and a given deferred period d, when Ho is true, and let us
denote the e.c.d.f. of the simulated sample by Ffr(i). Assuming we are going to

use a significance level a = 0.05, as above, we think that also in this case the most
adequate test is a two-tailed test, with 2.5% of the total probability located in
each of the tails of the distribution. Then, we can propose the following test: we
reject Ho in favour of Ha at the significance level a = 0.05 if the observed value
of T\, denoted by t\, lies in the rejection region given by the interval:

with tx and t2 satisfying the equations:

Fy,^) = 0.025 (6)

FT[(t2) = 0.975 (7)
respectively.
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Let us denote the values of the n simulated observations of T\ arranged in
increasing order by Vi({), Vi(1),..., V,.. Note that, as the estimate of the distribu-
tion function of T-, for a given t, obtained using the e.c.d.f. of the simulated
sample can be defined by:

max I '(0

it is obvious that neither tx nor t2, satisfying equations (6) and (7) respectively,
are unique. Therefore, assuming that we choose n such that (0.025«) and
(0.975«) are integers, one of the rejection regions that can be proposed is:

Considering that, with only a few exceptions, the n] for Dl are large (see
Table 1) and also that the test proposed in the previous paragraph is very heavy
in computational terms when the corresponding n\ is large, we have decided to
use this test only for deferred periods D4, D13 and D26. For testing the hypothe-
ses for Dl we will use the test based on distribution (3), mentioned above.

In order to test the hypotheses concerning the p(i)xz for a given sickness
category i, the value of k( has to be chosen in some way. The most adequate
value of kj to test these hypotheses is not known in advance.

The method we propose to choose the value of kt which best represents
the level of the p(i)x^z is to choose, from among the values of kt for which
none of the null hypotheses for the 4 deferred periods is rejected in favour of
the respective alternative, the one which maximizes the likelihood function for
the value t' observed for Dl. ThisJikelihood function, which we denote by
£*(&,), is defined as the density of T- for Dl, where it is assumed that Ho is
true, the density is evaluated at the corresponding t\ and the parameter kt is
considered as a variable. The reasons for proposing this method can be found
in Cordeiro (1998).

The reason for not proposing a method similar to this one but which uses
the likelihood function for the values V observed for thejl deferred periods we
consider is that, since the exact density functions of the T\ are not known and
the corresponding approximate distributions (3) are not valid for many sick-
ness categories in the cases of deferred periods D4, D13 and D26 (as we have
seen above), it is not possible to obtain a valid likelihood function for the
majority of the categories.

We apply the method proposed above in the following way: for each cate-
gory i, firstly we find the value of kt which maximizes L*(k,) (we are referring
here to a maximization without any constraints) and, then, for that value of kb
we test Ho against Ha for the 4 deferred periods we consider. In the case of none
of the 4 null hypotheses being rejected, we can propose the functions (k{ pxz),
with that value of kh as the approximations to the p(i)xz. Otherwise, we
should search for other values of kt for which none of the 4 null hypotheses is
rejected and, in the case of their existence, we then have to apply the method
exactly as it is described above.
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After carrying out some calculations, we found out that, in general, a
good approximation to the value of kt which maximizes L*(kj) (without any
constraints) is the value of kt which satisfies the following equation for Dl:

(9)

where the right-hand side of the equation is the expected value_of both the
actual distribution and the approximate normal distribution of T-, when Ho
is true (ETfj is ETfj with p(i)XtZ replaced by (kt px,). Note that this approxi-
mation is the method-of-moments estimate of kt. We have decided to use this
approximation in our work because it implies simpler calculations.

3.3. Results of the Tests for the Recovery Intensities

From Section 3.2 we can see that, apart from the values of the kh the only ele-
ments missing to carry out the tests concerning the p(i)Xt2 are the graduations
of the v(i)x z. As we have seen in Section 1, in order to obtain the approximations
to the v(i)xz, we are also going to carry out tests, using the data concerning
claims which ended in death, presented in Section 2, and the graduation of vxz
proposed in CMIR 12 (1991). From now on, when we refer to the graduation
of ^>z, we mean this particular graduation. This graduation is the same for all 4
deferred periods we consider.

Since to carry out the tests to obtain the approximations to the v(i)x z, we
need to have the graduations of the p(i)x,z, as we will see in the next section,
we are facing here a vicious circle. Therefore, at this stage, to carry out the tests
concerning the p{i)xz, the only solution is to propose temporary approximations
to the v{i)x z.

We have decided to propose the graduation of vxz as the temporary approx-
imation to v(0x,z required for all the deferred periods and sickness categories
we consider. The reasons for this decision and other details concerning the
tests for the p(i)XtZ, which are not given here, can be found in Cordeiro (1998).

As far as the tests for Dl are concerned it is important to note that, for
any category / and the value of kt which satisfies equation (9), Ho for Dl is
automatically not rejected in favour of Ha (see the rejection region associated
with the test based on distribution (3)). Therefore, in the cases where we use
the value of kt just mentioned, we do not need to present the result of the test
forDl.

Consideringjejection region (8) and that, in order to obtain the distribu-
tion of a given T\, we simulate 10000 observations of this variable, when test-
ing the corresponding Ho, if we find that V is located among the 250 smallest
values of the simulated observations or among the 250 greatest values of the
simulated observations, we should reject this hypothesis in favour of the cor-
responding Ha.

After having carried out all the tests concerning the p(i)xz, we have con-
cluded that, except for sickness categories 12 and 17, for each category / we
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consider and the value of kt which satisfies equation (9) for Dl, none of the
null hypotheses for the 4 deferred periods is rejected in favour of the respec-
tive alternative. Since, for each of the categories 12 and 17 and the value of kt
just mentioned, Ho for D4 is rejected in favour of Ha, in these cases we had to
search for other values of kt for which none of the null hypotheses for the 4
deferred periods is rejected. In both cases these values of k{ exist and, there-
fore, for each of the two categories, we had to choose, from among these val-
ues, the one at which the corresponding L*(kj) takes on the highest value.

The results of the tests for D4, D13 and D26 are displayed in Table 2. This
table shows, for each of the 18 categories we consider, (a close approximation
to) the value of kt which maximizes L*(k,) from among those for which none
of the null hypotheses for the 4 deferred periods is rejected and the position
of i' among the values of the 10000 simulated observations of T\ arranged in
increasing order for D4, D13 and D26. In this table, when we say that the
position of t\ is s, we mean that tr

t lies between the (s)th and the {s+ l)th
smallest values of the simulated observations.

Analysing Table 2, we can see that, in fact, for D4, D13 and D26, all the
V are located between the 250th and the_9750th smallest values of the simu-
lated observations of the corresponding T\.

TABLE 2

RESULTS OF THE TESTS CONCERNING THE p(i)xz FOR D4, D13 AND D26. p(i)x.z ~ kt pXy

"(').v... = vx,z

Sickness Category

1. Other Infective
2. Malignant Neoplasms
3. Benign Neoplasms
4. Endocrine and Metabolic
5. Mental Illness
6. Nervous Disease
7. Heart/Circulating System
8. Ischaemic Heart Disease
9. Cerebro Vascular Disease

10. Acute Respiratory
11. Bronchitis Respiratory
12. Digestive
13. Genito-Urinary
14. Arthritis/Spondylitis
15. Other Musculoskeletal
16. R.T.A. Injuries
17. Other Injuries
18. All Others

1.45
0.6
1.45
0.4
0.35
0.9
0.85
0.4
0.65
2.25
1.65
1.2
1.35
0.5
1.0
0.8
1.05
1.0

Position oft .' Among the10000
Simulated Observations

D4

5309
5108
7280
1463
1274
5461
4345
1551
8691
7936
8603
312

5499
476
274

5746
339

1415

D13

5822
2252
470

4489
2359
7068
3711
670

8622
5001
8872
2823
5104
5306
4043
5707
1252
3949

D26

3779
312

9455
7638
1155
6227
7149
819

7446
9672
4770
2621
7102
3677
3022
1496
2334
4705
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TABLE 3

RESULTS OF THE TESTS CONCERNING p(12)x z AND p(\l)xz FOR Dl. p(i)x,: = k, pxz.

Sickness Category

12. Digestive
17. Other Injuries

*,

1.2
1.05

t'.

5.5
4.9

E(TJ)

4.546
4.573

0.635
0.745

/»-value

0.134
0.66

Since, for each of the categories 12 and 17, the value of kt chosen is not
the one which satisfies equation (9) for Dl, in both cases we should also
present the result of the test (based on the central limit theorem) jor Dl.
The results of these tests are presented in Table 3. In this table V, E(T^) and
JV(Tj) are expressed in weeks.

From the results of the tests concerning the p(i)XiZ, we can conclude that,
for each category i (i = 1,..., 18), we can propose the functions (kt px z) for the
4 deferred periods we consider as the required approximations to the corres-
ponding p(i)xz, where the values of the kt which specify these approxima-
tions are presented in Table 2. However, we will only be able to propose these
functions as the definitive approximations to the p(i)XyZ, after carrying out the
necessary tests and concluding that the graduation of vxz is a reasonable approx-
imation to the v(i)x z for the different categories.

4. CHECKING THE APPROXIMATIONS TO THE MORTALITY
OF THE SICK INTENSITIES

In the present section we check if we can propose definitively the graduation
of vxz as the approximation to v(i)xz for all the deferred periods and sickness
categories we consider.

We want to test, for each sickness category i, the null hypothesis

Ho : v(i)x.z = vx,z

against the alternative

Ha : v{i)xz # vx<z

for each of the 4 deferred periods we consider. Note that, since the gradua-
tion of vxz is the same for all 4 deferred periods we consider, for a given cat-
egory /, Ho and Ha are also the same for the 4 deferred periods.

Although, in general, the distributions of the 7 $ (the durations of indi-
vidual sicknesses which ended in death) are less heavily skewed to the right
than those of the T[jk, since most of the nf (all, except those for sickness cat-
egory 2) are much smaller than 30 (see Table 1), the distributions of most of
the jT,m are still quite skewed (see Cordeiro (1998) for more details about this
matter).
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Taking into consideration the points discussed_in the previous paragraph,
we are going to obtain the distributions of the 7",m using simulation and to
base the tests, to test the hypotheses concerning the v(i)x z, on these distribu-
tions. The rejection region which specifies the test concerning each v(i)xz is
(8) with the superscript r replaced by the superscript m and n = 10000.

We present the results of the tests concerning the v(i)X! for all the deferred
periods and sickness categories we consider in Table 4, which is similar to
Table 2.

Analysing Table 4, we can see that, for sickness category 2, the null hypothe-
ses associated with the 4 deferred periods are all rejected and that the results
strongly indicate that v(2)x, (regardless of its shape) has a higher level than
vx z. We were expecting this, since, as we have mentioned above, the «,m for cat-
egory 2 are much higher than the «,m for the other categories (see Table 1).
Therefore, we cannot consider the graduation of vx z as the definitive approxi-
mation to v(2)xz. We will return to this matter at the end of this section.

From this table we can also see that there are three more cases where Ho is
rejected. For Dl, the cases of categories 1 and 13. For D13, the case of cate-
gory 5. There is also a case where, despite Ho not being rejected, I™ is very
close to the rejection region: the case of Dl and category 8.

TABLE 4

RESULTS OF THE TESTS CONCERNING THE v(i)x2 FOR ALL SICKNESS CATEGORIES WITH n™ > 0 AND ALL
DEFERRED PERIODS. p(l)x2 = k, pXI (THE VALUES OF THE A:, ARE SHOWN IN TABLE 2) . v(i)xz = vxs

Sickness Category

1. Other Infective
2. Malignant Neoplasms

3. Benign Neoplasms
4. Endocrine and Metabolic
5. Mental Illness
6. Nervous Disease
7. Heart/Circulating System
8. Ischaemic Heart Disease
9. Cerebro Vascular Disease

10. Acute Respiratory
11. Bronchitis Respiratory
12. Digestive
13. Genito-Urinary
14. Arthritis/Spondylitis
15. Other Musculoskeletal
16. R.T.A. Injuries
17. Other Injuries
18. All Others

Dl

9888
tm <tm

2 '2(1)
8298
7809
7136
6623
4074
252
8852
4847
8933
1840
9840
3475
5281
8516
6380

-

Position oft™
Simulated

D4

2249
1

5888
4579
2990
8033
6846
1633

-
-

7717
5954
4069

-

1992
-

1547

Among the 10000
Observations

D13

-
1

3789
2097
9958
3289
1249
4076
3112
8312
8749
6214
557

2487
-
-
-

3656

D26

-
1 m <£ 7 m

l2 '2(1)

7761
-

5668
1541
3300
2961
3246
4525
8310
2809
5488

7896
5695

-
4455
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Despite these results, we decided that it is reasonable to still propose the
graduation of vxz as the definitive approximation to v(\)xz, v(5)xz and v(13)JC,.
The reasons for our decision are twofold. Firstly, we should consider the fact
that the three null hypotheses rejected are associated with three different sick-
ness categories. If two (or all) of the null hypotheses rejected were associated
with the same category we should have not considered the graduation of vx.
as an adequate approximation to v (i)x>z for this category. Secondly, we should
bear in mind that, as we are using a significance level a = 0.05, it is possible
that we are rejecting Ho, when it is true, in 5% of the cases. This means that,
since we have carried out 54 independent tests (without considering the tests
for category 2), it is quite reasonable to expect having approximately three
null hypotheses rejected, despite their being true.

In conclusion, we propose the graduation of vxz as the definitive approxi-
mation to the v{i)xz for all sickness categories, except for category 2.

As far as sickness category 2 is concerned, the results of the tests indicate
that we should try to find an approximation to v{2)xz with the same shape as
the graduation of vXiZ but a higher level or one with a different shape from the
graduation of vx z that satisfies: v(2)x>z > vx_z for all (x, z).

We have chosen to obtain the former approximation to v(2)xz just men-
tioned. Only in the case of this approximation being rejected, would we then
try to obtain the latter approximation. This approximation and new approxi-
mations to the p(2)xz for the 4 deferred periods we consider have been
obtained by an iterative process of hypotheses testing. The reason for having
to carry out this process is the fact that, as we have seen in Section 3.3, to
carry out the tests concerning the v(i)xz, we need to have the graduations of
thep(i)xz and, conversely, to carry out the tests concerning the p(i)xz, we need
to have the graduations of the v(i)xz.

Again, due to limitations of space, it is not possible to present here
the details and the intermediate results of the iterative process just men-
tioned. See Cordeiro (1998) for a fuller description of this process. At the
end of the process we have obtained the following definitive approximations
for each of the 4 deferred periods we consider: the function (0.01 px .) as the
approximation to p{2)xz and the function (13.55 vx_) as the approximation
tov(2)Jt,,.

5. OBTAINING APPROXIMATIONS TO THE SICKNESS INTENSITIES

5.1. Modeling the Number of Claim Inceptions

In this section we present the statistical model for the number of claim incep-
tions which is going to be used in a later section to obtain the approximations
to the o(i)x.

Although all the new random variables and other quantities which are
introduced in this section depend also on the deferred period, we omit it in
the corresponding notation.
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Before presenting the model mentioned above we should explain how we
can obtain, for a given deferred period, the probability that a sickness from a
given category leads to a claim.

Recall from Section 3.2 that the approximations to the p(i)y+z,2 for the 4
deferred periods we consider and each category / have the same shapes as the
graduations of the corresponding py + z z. This means that the approximations
to the p(i)y + z , for D4, D13 and D26, when compared with the approximation
to p(i)y + : , for Dl, have 4 week 'run-in' periods of lower recovery intensites,
immediately after the end of their respective deferred periods, due to a pheno-
menon of 'non-reported claims'.

As we have seen in Section 3.1, for a policyholder aged x at the beginning
of a sickness from category /, the probability that the sickness lasts for at least
the deferred period, d, is dpx' '. For Dl, where all potential claims are assumed
to be reported, this is the probability that the sickness results in a claim. For
D4, D13 and D26, where not all potential claims are reported, the probabil-
ity that the sickness leads to a claim is

where r(i)x is the probability that a sickness from category i, beginning at age
x and lasting to at least the end of deferred period, d, is reported and hence
becomes a claim. From CMIR 13 (1993), where a probability similar to r(j)x

has originally been presented, we can deduce that (see also Cordeiro (1998)
for this result)

Dl ^

= exp

where

is the probability of a policyholder remaining sick until at least age (x + t)
given that he is sick at age x with a sickness from category / and with duration
of sickness z (note that tpx

iS' is the particular case of this basic probability
where z=_0), Ds is the notation we usejn_the text to denote deferred period d,

W52.\&)Px'?d,d i s t h e probability {4l52.mPx+d,d calculated with p(i)xz for Ds and
P(0x+z,zis PiOx+z,; for Ds (Ds = Dl, D4, D13, D26). Note that r(i)x can also
be defined for Dl but, in this case, r(i)x= 1.

For a given observation period and a given deferred period d, let us denote by

IiM i = l , . . . . 1 8 ; * =18, ...,64
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the number of sicknesses from category / which start in the observation period,
for which the policyholder is aged between x and (x + 1) at the start of the
sickness, which last beyond the deferred period and become claims.

Using a theorem presented in Hoem (1987), we propose the following sta-
tistical model for Ii(x):

(f*+l EWoW^pfS'rVydy) (10)Im~Po

(i.e. asymptotically, 7,w has a Poisson distribution with the parameter given
within parentheses), where E(y) is the total time spent in the observation period
by policyholders who are healthy and aged y (this quantity is more commonly
designated by exposure at age y). Ii(x) has not an exact Poisson distribution
due to the fact that E(y) ( x < ^ < x + l ) i s a random variable and not pre-deter-
mined. For more details concerning the distribution of 7,w see CMIR 12 (1991),
Hoem (1987), Macdonald (1996) and Sverdrup (1965).

In CMIR 12 (1991) the transition intensities ax were estimated using a
model for the number of claim inceptions similar to the one proposed in the
previous paragraph. The main difference is that^the former model assumes
that ax and the probability corresponding to dpx'

s' are piece-wise constant, i.e.
that these functions are constant over a range of values of x with a certain
length, and, therefore, in this model the Poisson parameter does not have to
be stated as an integral. In our case we do not need to make this assumption
since our purpose is not to obtain a sequence of point estimates of each o(i)x.

Thus, assuming that, for a given sickness category /, variables / , w for dif-
ferent integer ages are independent and considering the 4 age groups defined
in Section 2, the number of claim inceptions for sickness category / concern-
ing sicknesses for which the policyholder is in age group j at the beginning of
the sickness, which we denote by Iy (z = 1, ...,18; j= 1, 2, 3,4), has the follow-
ing distribution:

E{y)a(i)ydp
s
y'

s-r(i)ydy^ (11)

where [a,-,bj + l) is the age interval associated with age groups (recall from
Section 2 that ax - 18 and bx = 39, a2 = 40 and b2 = 49, a3 = 50 and b3 = 59 and
aA = 60 and b4 = 64).

Note that distribution (11) can also be written as follows:

(12)

where Xj is a certain age in the interval [a,, ̂  +1) which is given by the mean

value theorem for integrals and where E, = f i+ E{y)dy. We are going to esti-
j

mate the a(i)x for the different sickness categories using this equivalent model
fOr Iy.
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Note that if E(Iy) is large we can use the normal approximation to the
Poisson distribution and assume that

f ^ (13)

As we will see in a later section, we need this assumption for the purpose of
hypothesis testing. Investigations carried out with this kind of model have sug-
gested that a value for E{Itj) greater than 10 is large enough for this assumption
to hold (see Schou and Vaeth (1980)).

5.2. Estimating the Sickness Intensities

Since the set of data we have available for estimating the o(i)x is not as
detailed as we would like (see Section 1), it is more appropriate to use the
model (12) together with the assumption that, for a given deferred period,
each <x (Ox is a function of ax.

Some preliminary investigations have indicated that in the cases of many
sickness categories we should not assume that a{i)x is a multiple of ax. Hence,
based on the functional form used in CMIR 12 (1991, Part C) to obtain the
graduation of ax, we make the following assumption for a given deferred period
d and a given category /:

a(i)x = exp{ai + pix}<jx i = l,...,18 (14)

where a, and /?, are unknown parameters which can vary according to the
deferred period and the category being considered. Therefore, we have decided
that all the approximations to the o{i)x will have the functional form (14) with
ax replaced by the corresponding graduation obtained in CMIR 12 (1991).
This graduation is different according to the deferred period we consider. We
consider possible the situation where /?, = 0, in which case the approximation
to o(i)x will be a multiple of the graduation of ox.

As we can see from the model (12), when an observation period is fixed,
the data we need to estimate a{i)x for a given deferred period d and a given
sickness category i are the number of claim inceptions for this deferred period
and category and for the 4 age groups we consider and also the exposure (i.e.
the observed value of EJ) for this deferred period and the same 4 age groups.

As far as the claim inceptions are concerned and considering the observa-
tion period 1979-82, we are going to use the claim inceptions data described
in Section 2, which are taken to be the observed values of the Iy.

As far as the exposures are concerned the only data available are the expo-
sures for single ages for the Standard Male Experience for 1979-82 (SME 79-
82 for brevity). These exposures, which are available for each of the 4 deferred
periods we consider, are also presented in Cordeiro (1998). In this set of data
the exposure for age x is the total time spent in the period 1979-82 as healthy
by policyholders aged x last birthday.
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For several reasons the exposures just mentioned are not appropriate for
being used together with the claim inceptions data presented in Section 2. The
main reason is the fact that the data presented in Section 2, which are classi-
fied by cause of disability, represent only part of the SME 79-82 to which the
exposures refer. For the other reasons see Cordeiro (1998).

Since the number of claim inceptions by single ages concerning the SME
79-82 are available (they can also be found in Cordeiro (1998)), in order to
overcome the problem mentioned in the previous paragraph, we have decided
to obtain an approximation to the observed value of Ej for a given deferred
period by assuming that the proportion of this value to the exposure for age
group j concerning the SME 79-82 is the same as the proportion of the number
of claim inceptions for age group j concerning the Cause of Disability Male
Experience for 1979-82 to the number of claim inceptions for age group j con-
cerning the SME 79-82.

As we have stated above, we are going to obtain the approximation to a
given o(i)x using the model (12) together with assumption (14). Thus, in this
model we assume that

logi< (/,) = \og{Ej aXj dPf'r(i)x) + a,. + /?,.*, (15)

From (15) we conclude that this model can be formulated as a generalized
linear model (GLM) with a response variable Iy which has a Poisson distri-
bution, a log link function, a linear preditor 77, = a, + /?,x. and an offset term

[ / s~s \1

loglEjGxdpx' 'r(i)x)\. For an extended exposition of the GLMs theory see
Dobson (1990) and McCullagh and Nelder (1989).

In practice we are going to estimate the parameters a, and /?, in the GLM
just presented by maximum likelihood using the statistical package GLIM
(for the details about the estimation of GLMs using GLIM see Francis et al.
(1993)).

In order to estimate the parameters a, and /?, for a given deferred period d
and a given sickness category i, we have to evaluate the functions ax, dpj ', r(i)x

and the preditor tjy at some appropriate age in each of the intervals [ap bj+l)
associated with the 4 age groups we consider. We have decided that this age
should be (xj + l/2) in the case of deferred period Dl and (xj + l/2-d) in the
cases of deferred periods D4, D13 and D26, where the age Jc, is obtained as
the following weighted average:

j E . 7 = 1,2,3,4
X=dj j

where

E(x,x + \)= [X+]E(y)dy
J x

is the exposure for (integer) age x. The reasons for this decision can be found
in Cordeiro (1998).
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In the estimation process for obtaining the approximations to the o(i)x we
are going to evaluate the functions dpj ' and r(i)x using the approximations to
the p(i)XiZ and v(i)x z obtained in Sections 3.3 and 4.

We are aware that the quality of the approximations to the o(i)x we are
going to obtain is probably not very good. However, we also believe that
these approximations are the best that can be obtained with the data we have
available.

The main reasons for not expecting to obtain approximations to the a{i)x
of good quality are the following: for a given deferred period d and a given
category /, we are going to estimate 2 parameters (a, and /?,) with only 4
observations; the data we have available is not enough to ensure that the esti-
mated value of each E(Iy) is greater than or equal to 10 and, therefore, there
are combinations of deferred period, sickness category and age group for
which the model (13) might not be valid. A fuller account of the limitations
of the data available and of their possible consequences can be found in
Cordeiro (1998).

5.3. Analysis of the Results

The purpose of this section is to present and analyse the results of the esti-
mation process for obtaining the approximations to the a(i)x.

From the outputs of the GLIM programs we have run, we found out that,
for a given deferred period d and a given category /, 24

=1^- - 24
= 1 •£(/(,•)> where

E(Iy) is the estimated value of E{Iy). It can be easily shown that this is a math-
ematical consequence of having used the model (12) and the assumption (14).

The main purpose of the GLIM program we have run for each combination
of deferred period d and sickness category / was to estimate the parameters a,
and /?,-. From the output of this program we can compute the value

which, taking into account assumption (13), can be regarded as the observed
value of a chi-square goodness of fit statistic with a y}(T-) distribution (a chi-
square distribution with 2 degrees of freedom) and, therefore, we can carry
out a goodness of fit test. The adequacy of the functional form (14) can be
checked by comparing the /rvalue associated with the test with the significance
level a = 0.05.

As explained in Section 5.2, we consider the possibility of having /?, = 0 in
(14) for some cases. We have decided to set /?, = 0 in (14) and use this new
assumption to estimate again the a(i)x in the cases where the estimate of /?, is
not significantly different from zero. We consider that the estimate of a para-
meter Pi is not significantly different from zero when the absolute value of this
estimate is less than twice its standard error.
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The results of all the GLIM programs we have run are summarized in
Tables 5 to 8. Each of these tables shows the results for a given deferred period.
Each table shows the following results for each category /: the estimates of a,
and Pi (or only the estimate of a,, when we assume /?, = 0), the standard error
of the estimate of /?, (or the standard error of the estimate of a,, when we
assume /?, = 0), the /rvalue associated with the corresponding goodness of fit test
and the number of E{Itj) greater than or equal to 10. When we assume /?, / 0,
the table does not show the standard error of the estimate of a, because the
parameterisation used by GLIM makes this standard error irrelevant.

Analysing Tables 5 to 8, we can see that, for any of the 4 deferred periods
we consider, there are categories for which the approximations to the a{i)x are
multiples of the graduations of the corresponding ax. In all there are 22 of
these cases.

From Tables 5 to 8 we can also see that, for deferred periods Dl, D4 and
D13, there are categories for which the corresponding /rvalue is smaller than
0.05. The total number of these cases is 14 and the deferred period for which
there are most cases is Dl (there are 7 cases for Dl).

Fortunately, for 6 of these cases the /rvalue is not much smaller than 0.05
and, therefore, it is not unreasonable to still consider the functional form (14)
as adequate in these cases. These cases are: for Dl, categories 4, 10 and 11; for
D4, category 4; and for D13, categories 5 and 8.

In the cases where the/?-value is much smaller than 0.05 we know that the
functional form (14) is not adequate with a high probability and, therefore,
that we should use a new functional form to obtain the approximations to the
corresponding a(i)x. However, the new functional form we would propose for
these cases is similar to (14) but with a polynomial of a higher degree as the
power of the exponential, which would imply the estimation of 3 or more
parameters for each case. Under the circumstances, this is not advisable or
even possible (see Section 5.2).

Considering the points in the previous paragraph, we have decided to pro-
pose as the approximations to the a(i)x the functions whose estimated para-
meters are presented in Tables 5 to 8, although we are aware that for a small
number of cases these approximations are not adequate. These cases are: for
Dl, categories 2, 7, 8 and 15; for D4, categories 8 and 15; and for D13, cate-
gories 12 and 14.

Finally, from Tables 5 to 8 we can also confirm the existence of cases where
E(Ijj) is less than 10 (see Section 5.2). In fact, for any of the 4 deferred peri-
ods we consider, there are combinations of sickness category and age group
for which E(IV) is less than 10. For deferred periods D13 and D26 there are
even more cases where E{Itj) is less than 10 than cases where the reverse hap-
pens.

Since the estimates in Tables 5 to 8 give only a very vague idea of the rel-
ative and absolute importance of each sickness category at each attained age
as far as the sickness intensity is concerned, we have decided to present graphs
of the approximations to the a(i)x for the 18 categories we consider. Due to
limitations of space we only present these graphs for deferred period Dl.
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TABLE 5

RESULTS CONCERNING THE ESTIMATION OF THE a(i)x FOR Dl

Sickness Category

1. Other Infective
2. Malignant Neoplasms
3. Benign Neoplasms
4. Endocrine and Metabolic
5. Mental Illness
6. Nervous Disease
7. Heart/Circulating System
8. Ischaemic Heart Disease
9. Cerebro Vascular Disease

10. Acute Respiratory
11. Bronchitis Respiratory
12. Digestive
13. Genito-Urinary
14. Arthritis/Spondylitis
15. Other Musculoskeletal
16. R.T.A. Injuries
17. Other Injuries
18. All Others

0.4062
-9.033
-A.129
-7.593
-3.963
-5.549
-6.111
-9.067
-9.795

1.428
-1.789
-3.457
-4.716
-8.504
-2.492
-A.U5

-0.9051
-1.957

Pi

-0.05716
0.08126

-
0.03609

0.03307
0.05402
0.1004

0.08003
-0.05711
-0.0131
0.01997
0.03108
0.08079

-
-

-0.03509
-0.01662

se Pi (se St)

0.00422
0.0122
0.1529
0.0184
0.0704

0.00849
0.00695
0.00932

0.023
0.0033
0.0048

0.00445
0.00689
0.0112
0.0427
0.0903
0.0042

0.00452

/7-value #

0.928
0.004
0.156
0.041
0.348
0.324

= 0
= 0

0.068
0.038
0.035
0.117

0.5
0.203

= 0
0.225
0.403
0.549

{*(£)* 10}

4
4
3
1
4
4
4
4
1
4
4
4
4
4
4
4
4
4

TABLE 6

RESULTS CONCERNING THE ESTIMATION OF THE a(i)x FOR D4

Sickness Category

1. Other Infective
2. Malignant Neoplasms
3. Benign Neoplasms
4. Endocrine and Metabolic
5. Mental Illness
6. Nervous Disease
7. Heart/Circulating System
8. Ischaemic Heart Disease
9. Cerebro Vascular Disease

10. Acute Respiratory
11. Bronchitis Respiratory
12. Digestive
13. Genito-Urinary
14. Arthritis/Spondylitis
15. Other Musculoskeletal
16. R.T.A. Injuries
17. Other Injuries
18. All Others

0.958
-9.632

-0.8802
-10.106
-4.306
-3.887
-3.794
-8.309
-9.947

2.735
-2.703
-1.723
-2.884

-11.433
-1.231
-3.932

-0.1392
-2.983

Pi

-0.07193
0.08141

-0.05857
0.07474

-
-
-

0.09
0.09477

-0.08656
-
-
-

0.1239
-0.02556

-
-0.04544

-

0.0133
0.0164
0.0244
0.0365
0.0976
0.1507
0.1359
0.0106
0.0286
0.0185
0.1856
0.0711
0.149

0.0262
0.00824
0.1374

0.00801
0.1072

/(-value #

0.652
0.175
0.215
0.035
0.084
0.924
0.234
0.003

0.6
0.543
0.527
0.287
0.315
0.686

= 0
0.174
0.387
3.802

{Efy) > 10}

3
2
0
0
3
3
3
4
0
1
1
4
3
1
4
3
3
3
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TABLE 7

RESULTS CONCERNING THE ESTIMATION OF THE a(i)x FOR D13

Sickness Category

1. Other Infective
2. Malignant Neoplasms
3. Benign Neoplasms
4. Endocrine and Metabolic
5. Mental Illness
6. Nervous Disease
7. Heart/Circulating System
8. Ischaemic Heart Disease
9. Cerebro Vascular Disease

10. Acute Respiratory
11. Bronchitis Respiratory
12. Digestive
13. Genito-Urinary
14. Arthritis/Spondylitis
15. Other Musculoskeletal
16. R.T.A. Injuries
17. Other Injuries
18. All Others

ai

2.78
-11.625
-2.946
-6.648
-6.005
-3.247
-6.054
-9.426
-9.165

9.028
-1.745
-2.013
-3.179

-13.481
0.07251
0.2045
0.2256
-1.383

Pi

-0.1163
0.1249

-
-

0.02827
-

0.05624
0.1083

0.08748
-0.2502

-
-
-

0.1631
-0.05264
-0.09588
-0.05638
-0.03234

se fli (se a))

0.0298
0.0155
0.3148
0.3338
0.0129
0.1489
0.0164
0.0124
0.0269
0.118

0.2338
0.1326
0.3015
0.0308
0.0122
0.0228
0.0134
0.0157

/>-value

0.333
0.87

0.213
0.266
0.023
0.623
0.649
0.035
0.917
0.892
0.601
0.002
0.123
0.001
0.27

0.747
0.079
0.377

#{£(/,.,)> 10}

0
2
0
0
3
3
2
3
0
0
0
3
0
1
3
1
3
3

TABLE 8

RESULTS CONCERNING THE ESTIMATION OF THE CT(I), FOR D26

Sickness Category

1. Other Infective
2. Malignant Neoplasms
3. Benign Neoplasms
4. Endocrine and Metabolic
5. Mental Illness
6. Nervous Disease
7. Heart/Circulating System
8. Ischaemic Heart Disease
9. Cerebro Vascular Disease

10. Acute Respiratory
11. Bronchitis Respiratory
12. Digestive
13. Genito-Urinary
14. Arthritis/Spondylitis
15. Other Musculoskeletal
16. R.T.A. Injuries
17. Other Injuries
18. All Others

5.842
-9.832
3.358

-13.752
-6.445
-2.721
-7.626

-11.537
-8.648
6.108

-1.959
0.1318

5.127
-8.602
-3.323

-0.9203
-0.5076
-2.976

Pi

-0.1953
0.08095
-0.1297
0.1355

0.03715
-

0.07889
0.1393

0.08906
-0.1309

-
-0.05621
-0.1903
0.07581

_
-0.06889
-0.04782

-

se Pi (se S^

0.0678
0.022
0.05

0.0648
0.0148
0.1493
0.0281
0.0195
0.0248
0.0651
0.3782
0.0271
0.0703
0.0243
0.2426
0.0274
0.0226
0.2038

p-value

0.505
0.828
0.253
0.837
0.586
0.905
0.449
0.44

0.476
0.153
0.491
0.259
0.337
0.432

0.6
0.439
0.981
0.365

#{£(/.)> 10}

0
0
0
0
3
2
1
2
2
0
0
0
0
1
0
0
0
1
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We present the graphs in 4 different figures: Figures 2 to 5. The scales used
in Figures 2 to 4 are more or less similar whereas the scale used in Figure 5 is
completely different from the others.

As we can see from Figures 2 to 5, the approximations to the <?(i)x have
various shapes. The approximations whose graphs are shown in Figures 2 and
3 (i.e. the approximations for categories 2, 4, 6, 7, 8, 9, 13 and 14) and the
approximation for category 12 (whose graph is shown in Figure 4) are clearly
increasing functions of x. The approximations for categories 1, 10, 11, 17
and 18, whose graphs are shown in Figure 5, are decreasing functions of the
attained age. Finally, the approximations for categories 3, 5, 15 and 16, whose
graphs are shown in Figure 4, have the same (more or less 'flat') shape as the
graduation of ax for Dl (see Figure Cl in CMIR 12 (1991)). Note that, for
most of the sickness categories, the shapes of the corresponding approxima-
tions to the a(i)x are those we would expect.

As far as the levels of the approximations to the a{i)x are concerned we
can see that, apart from the approximations for categories 1,10 and 17, all the
approximations take on values less than 0.05. Note that we would expect the
approximations for categories 1 and 10 (Other Infective and Acute Respiratory,
respectively) to be among those which take on the highest values. On the other
hand, we can see that the approximations for categories 2 and 9 (Malignant
Neoplasms and Cerebro Vascular Disease, respectively) are among those which
take on the smallest values (see Figure 2). We would also expect this to happen.

6. FINAL CONSIDERATIONS

In CMIR 12 (1991) the transition intensity /ux has not been estimated because
the data required to do so were not available. The reason for this is that the
CMIB has no direct information about the mortality rates experienced by
policyholders who are not making a claim.

Exactly for the same reason, we also do not estimate the mortality of the
healthy intensity defined for our model. For obvious reasons, for a given deferred
period d, we can propose as the approximation to this transition intensity the
graduation of fix proposed in CMIR 12 (1991): the graduation of the force of
mortality for the Male Permanent Assurances 1979-82, duration 0. We should
note that this graduation is the same for the 4 deferred periods we consider.

Now, that we have proposed approximations to all the transition intensities,
we have made our model fully operational. In fact, using these approxima-
tions, the formulae for basic probabilities and the numerical algorithms for
the evaluation of some of the basic probabilities (derived in Cordeiro (1998,
2002)), we can calculate any quantities relevant to the study of PHI claims by
cause of disability.

Tables showing the average duration of a claim and claim inception rates
for the different sickness categories can help the underwriters whenever they
have to make underwriting decisions concerning proposals for new entries.
With the information in these tables the underwriters can make decisions
which are much more well grounded.
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FIGURE 2: Approximations to the sickness intensities a(i)x for Dl
and sickness categories 2, 8, 9 and 14.

20 30 40 50
attained age

60

FIGURE 3: Approximations to the sickness intensities o(i)x for Dl
and sickness categories 4, 6, 7 and 13.

On the other hand, tables showing the average duration of a claim for the
different sickness categories, for the different deferred periods and for differ-
ent ages at the beginning of sickness can help the people responsible for the
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FIGURE 4: Approximations to the sickness intensities a(i)x for Dl
and sickness categories 3, 5, 12, 15 and 16.

FIGURE 5: Approximations to the sickness intensities a(i)x for Dl
and sickness categories 1, 10, 11, 17 and 18.

claims control process in keeping a tighter control over the claims which are
being paid and, therefore, in reducing claim recovery time.

Examples of the tables mentioned above can be found in Cordeiro (2002).
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