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Abstract. In this paper we focus on compacta K ⊆ R3 which possess a neighbourhood
basis that consists of nested solid tori Ti . We call these sets toroidal. Making use of
the classical notion of the geometric index of a curve inside a torus, we introduce the
self-geometric index of a toroidal set K, which roughly captures how each torus Ti+1 winds
inside the previous Ti as i → +∞. We then use this index to obtain some results about the
realizability of toroidal sets as attractors for homeomorphisms of R3.
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1. Introduction
This paper lies at the intersection of geometric topology and topological dynamics. We
focus on the class of toroidal sets, which are those compact subsets K ⊆ R3 that have
a neighbourhood basis of solid tori. They are a natural generalization of the well-known
cellular sets of geometric topology, which are those that have a neighbourhood basis of
cells. Toroidal sets encompass objects such as n-adic solenoids, generalized solenoids
(where the winding number n of each torus inside the previous need not be constant),
knotted solenoids (where the construction begins with a knotted torus), classical knots,
and some wild knots such as those constructed by taking an infinite connected sum of
tame knots.

We are interested in the problem of characterizing what toroidal sets K ⊆ R3 can be
realized as an attractor for a flow or a homeomorphism of R3 or, since this problem is
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much too difficult, at least of showing that certain toroidal sets cannot be so realized. By an
attractor we mean a compact invariant set K ⊆ R3 which is stable in the sense of Lyapunov
and attracts all points in some neighbourhood U of K. The latter condition means that the
forward orbit of any point in U eventually enters any prescribed neighbourhood of K, and
the stability condition then implies that this property actually holds for any compact subset
of U, rather than just points. Precise definitions and a detailed discussion are given at the
beginning of §7.

The motivation for this ‘realization problem’ is the well-known fact that attractors can
have a very complicated structure. Heuristically, obtaining topological obstructions which
prevent a compactum from being an attractor provides ‘upper bounds’ on the complexity of
attractors. Realizability problems of this sort have been studied in many different contexts
and accordingly with different techniques: attractors for topological flows [3, 11, 15,
28, 31], for analytic flows [18, 19], critical sets rather than attractors [12, 24, 33], attractors
for homeomorphisms [14, 20, 25, 29, 30], or iterated function systems instead of single
homeomorphisms [6, 8].

Perhaps we should mention that we always consider K as a given subset of R3 and not
in the abstract; that is, we do not consider whether there is an embedding of K in some
suitable Euclidean space where it can be realized as an attractor. These two problems
are very different in nature, since in the first the way K sits in R3 is crucial whereas
in the second only the topological properties of K may play a role. Thus, for example,
Williams, in his work on expanding attractors, obtains a very general realizability result for
solenoids [34, Theorem B, p. 171] which would appear to be in conflict with our Corollary
7.3; however, Williams’s results are concerned with the realizability problem in the
abstract.

A toroidal set K can be expressed as an intersection of nested solid tori. Since these tori
can be knotted and wind inside each other, it seems reasonable to think that K itself may
have some sort of knottedness and some amount of winding ‘in itself’. As it turns out, both
phenomena have implications for the realization problem and so we need to develop tools
to formalize and analyse them. The first one was already addressed in an earlier paper [2]
by defining the genus g(K) of a toroidal set K as a generalization of the classical genus of
a knot. Namely, g(K) is the smallest g = 0, 1, . . . , +∞ such that K has arbitrarily close
neighbourhoods which are solid tori whose core curves, thought of as classical knots, have
genus bounded above by g. A toroidal set which can be realized as an attractor must have
a finite genus, and so this provides a first obstruction for the realization problem.

In this paper we introduce the self-geometric index N (K) of a toroidal set K to describe
the winding of K in itself mentioned above. Since measuring winding algebraically would
essentially reproduce the Čech cohomology of the toroidal set we turn to another measure
of winding which was first introduced by Schubert [32, §9] under the name ‘order’.
Consider a simple closed curve γ contained in the interior of a solid torus T. The geometric
index of γ with respect to T is defined as the minimum number of points of intersection
of γ with any meridional disk D of T. Now, if T2 is a solid torus contained in the interior
of another solid torus T1, the geometric index of T2 with respect to T1 is defined as the
geometric index of any core curve of T2 with respect to T1. We denote this index by
N(T2, T1) following the notation used in [1]. Now let the toroidal set K be written as
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the intersection of a nested sequence {Tj } of solid tori. One may attempt to define the
self-geometric index of K as some sort of limit of the sequence N(Tj+1, Tj ). This runs
into difficulties since the limit depends on the sequence {Tj }, and so a subtler approach is
needed. The self-geometric index of a toroidal set K will turn out to be a subgroup N (K)

of the (additive) group of the real numbers. In certain cases N (K) behaves essentially
as an integer number n, and we will then say that N (K) is ‘number-like’ and write
N (K) ∼ n. For example, N (K) ∼ n for an n-adic solenoid, and N (K) ∼ 1 precisely
when N (K) = Z. All this is made precise in §4 after some preparatory work in §3.

With these definitions we can now state our main results about the realization problem
for toroidal sets. We start with the case of flows.

THEOREM A. A toroidal set K ⊆ R3 can be realized as an attractor for a flow if and only
if its genus is finite and N (K) ∼ 1.

The realization problem for homeomorphisms is much more complicated than that for
flows, and in fact to our knowledge it has only been completely solved when K is either a
cellular subset of Rn or a compact subset of a 2-manifold. The case of toroidal sets is no
exception, and in this paper we obtain the following partial result.

THEOREM B. Let K be a toroidal set that is an attractor for a homeomorphism f of R3.
Then N (K) is number-like. Moreover, N (K) ∼ 1 if and only if K can be realized as an
attractor for a flow.

The main application of this theorem is in showing that certain toroidal sets cannot
be realized as attractors for homeomorphisms. By combining some technical results in
§5 with Theorem B we obtain the following result (p. 7) which guarantees the existence
of many toroidal sets which are unknotted, have a prescribed cohomology, and cannot be
realized as attractors.

THEOREM C. Let H be a feasible group. There exists an uncountable family {Kα} of
toroidal sets such that:

(i) none of the Kα can be realized as an attractor for a homeomorphism of R3;
(ii) the Kα are pairwise different (that is, not ambient homeomorphic);
(iii) each Kα is unknotted;
(iv) each Kα has H as its first Čech cohomology group.

The feasibility condition on H is explained in §5 and is unrelated to dynamics: it just
ensures that H can be realized as the cohomology of some toroidal set.

As another illustration of Theorem B we consider the case of generalized knotted
solenoids. Such a solenoid K is the intersection of a nested sequence of solid tori {Tj }
such that each Tj+1 winds monotonically (that is, without turning back) nj times inside
the previous Tj and the thickness of the Tj tends to 0 as j increases. To avoid degenerate
cases we require nj > 1 for each j, and if all the nj = n then we say that K is an n-adic
solenoid. Notice that by choosing T1 to be knotted one obtains a knotted solenoid. Then
one can prove the following (Corollary 7.3).

https://doi.org/10.1017/etds.2021.105 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.105


The geometric index and attractors of homeomorphisms of R3 53

COROLLARY. If a generalized solenoid K ⊆ R3 can be realized as an attractor for a
homeomorphism of R3, then it must be an unknotted n-adic solenoid for some n.

The assumption that K be realized as an attractor for a homeomorphism defined on the
whole of R3 is crucial in our results. If homeomorphisms defined only on subsets of R3

are allowed, counterexamples to Theorem B can be found (see, for instance, the first stage
of the construction of the example in [13, §5]). If phase spaces other than R3 are allowed,
then the corollary above is false since knotted n-adic solenoids can indeed be realized
as attractors (see, for instance, [17]). Similarly, if the condition nj > 1 is omitted then
the corollary is again false: any polyhedral or smooth knot then qualifies as a generalized
knotted solenoid and can be easily realized as an attractor, even for a flow.

The paper is organized as follows. In §2 we recall some definitions and provide some
bibliographic references. Section 3 discusses some simple algebra needed for the definition
of the self-geometric index in §4. The contents of §§5 and 6 are of a more technical nature
and are required in the proof of the main results stated above. These are proved in §7.
Finally, §8 contains some concluding remarks and questions.

2. Background definitions
A toroidal set is a compact set K ⊆ R3 that is not cellular and has a neighbourhood basis
comprised of solid tori. In this paper we will always assume that sets other than toroidal
sets are polyhedral (toroidal sets, in general, can have a very complicated structure). For
maps we adopt the opposite convention: they will never be assumed to be piecewise linear
unless explicitly stated otherwise. A taming result of Moise ensures that a toroidal set has
a neighbourhood basis of polyhedral solid tori (see [2, p. 5]). We say that two solid tori
T1 and T2 are nested if T2 is contained in the interior of T1. Here the word ‘interior’ may
be taken in the topological sense or in the manifold sense: both agree by the invariance of
domain theorem. A standard basis for a toroidal set K is a sequence of (polyhedral) nested
solid tori {Tj } whose intersection is K.

A framing of a solid torus T ⊆ R3 is a particular piecewise linear homeomorphism
f : D2 × S1 −→ T , where D2 is a closed 2-disk. A core curve of T is a curve γ of the
form f (0 × S1) for some framing f. Notice that γ lies in the interior of T and T is a
regular neighbourhood of γ (recall our convention about the polyhedral nature of sets
unless otherwise explicitly stated). Core curves are not unique, but any two core curves
are related by an isotopy of T that is the identity on ∂T . A meridian of T is a curve of the
form f (∂D2 × ∗) for some framing of T (here ∗ denotes any point in S1). Alternatively,
meridians can be characterized as those simple closed curves in ∂T which bound a disk in
T but not in ∂T . A meridional disk of T is a disk D ⊆ T that is properly embedded (that
is, D ∩ ∂T = ∂D) and whose boundary ∂D is a meridian of T.

Consider a pair of nested solid tori T2 ⊆ T1. The geometric index of T2 in T1 is the
minimum number of points of intersection of a core curve γ of T2 with any meridional
disk D of T1. The minimum is taken over all meridional disks that intersect γ transversely,
so that D ∩ γ consists of finitely many points. Since any two core curves of T2 are
related by an isotopy of T2 that is the identity on ∂T2 and can therefore be extended to an
isotopy of T1, it follows that this definition is independent of the particular core curve γ .
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The geometric index is multiplicative: if T3 ⊆ T2 ⊆ T1 are three nested solid tori, then
N(T3, T1) = N(T3, T2) · N(T2, T1) (see [32, Satz 3, p. 175]). We will make extensive use
of this property.

Suppose T2 ⊆ T1 and T ′
2 ⊆ T ′

1 are two pairs of nested solid tori. It is clear from the
definition of the geometric index that if there exists a piecewise linear homeomorphism
between the pairs (T1, T2) and (T ′

1, T ′
2) then the geometric indices N(T2, T1) and

N(T ′
2, T ′

1) are equal. We will need a slightly stronger statement, however, which is given
in Lemma 2.1 below. We have opted for a quick, if not particularly neat, proof.

LEMMA 2.1. Suppose that f : (T1, T2) −→ (T ′
1, T ′

2) is a homeomorphism between two
pairs of nested polyhedral tori. Assume that f is piecewise linear on T1 − int T2. Then the
geometric indices of the two pairs are equal.

Proof. By an approximation theorem of Bing (see, for instance, [4, Theorem 4, p. 149])
there exists a piecewise linear homeomorphism f ′ : T1 −→ T ′

1 which coincides with f on
T1 − int T2. In particular, it sends T2 onto T ′

2 and therefore provides a piecewise linear
homeomorphism from (T1, T2) onto (T ′

1, T ′
2). The result follows.

A natural way of constructing toroidal sets is, of course, by taking a nested sequence
of tori {Tj } and letting K := ⋂

j≥0 Tj . Although such a K certainly has a neighbourhood
basis of solid tori, to guarantee that K is a toroidal set we must also make sure that it is not
cellular. The following proposition provides an easy criterion to check this in terms of the
geometric index.

PROPOSITION 2.2. Let K be defined as the intersection of a nested sequence of solid tori
{Tj }. Then K is cellular if and only if N(Tj+1, Tj ) = 0 for infinitely many j.

For the proof we make use of the following fact: if T2 ⊆ T1 is a nested pair of solid tori,
then N(T2, T1) = 0 if and only if T2 is contained in a 3-cell B inside T. This should be
intuitively clear, and a very sketchy argument will be given in the proof of the proposition.
A formal proof can be found in [32, Satz 1, p. 171].

Proof of Proposition 2.2. Assume first that K is cellular. Choose any Tj0 . Since K is
cellular, it has a neighbourhood B which is a 3-cell contained in int Tj0 . In turn, take
j1 such that Tj1 ⊆ int B. Shrink the cell B by an ambient isotopy of Tj0 (relative to ∂Tj0 )
until it becomes extremely small. It is then clear that there is a meridional disk D of Tj0 that
is disjoint from the shrunken cell. Carrying D along with the reverse isotopy, one obtains
a meridional disk of Tj0 that is disjoint from the original cell B, and consequently also
from Tj1 . Thus the geometric index of Tj1 in Tj0 is 0. The multiplicativity of the index then
implies that N(Tj+1, Tj ) = 0 for some j0 ≤ j < j1.

Conversely, assume that N(Tj+1, Tj ) = 0 for infinitely many j. Choose any Tj0 and
pick j ≥ j0 such that N(Tj+1, Tj ) = 0. Then N(Tj+1, Tj0) = 0 too by the multiplicative
property of the geometric index. This means that there exists a meridional disk D of Tj0

such that Tj+1 is disjoint from D. Thickening D to a regular neighbourhood (relative to
∂Tj0 ) small enough that it is still disjoint from Tj+1 and then removing its interior from
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Tj0 produces a polyhedral 3-cell B contained in Tj0 . Thus K has a neighbourhood basis of
3-cells and is therefore cellular.

Warning. Whenever we construct a toroidal set as an intersection of a sequence of nested
tori we will never check explicitly that it is not cellular, since this will always be a direct
consequence of the above proposition.

Consider once more a nested pair of solid tori T2 ⊆ T1. The inclusion induces a map
H 1(T1; Z) −→ H 1(T2; Z) which, after identifying each of the cohomology groups with Z

with an appropriate orientation, simply becomes multiplication by a non-negative integer
w ≥ 0. This is usually called the winding number of T2 inside T1. It is not difficult to see
that, if D is any meridional disk of T1 and γ is a core curve of T2 transverse to D, then
w is the (absolute value of the) number of intersections of γ with D counted with sign
according to the sense in which γ crosses D. In particular, choosing D to minimize the
number of points of intersection with γ , one has that w ≤ N(T2, T1) and also that w and
N(T2, T1) have the same parity.

The (Čech) cohomology of toroidal sets will play a role in this paper, so we now
devote a few lines to its description. Let {Tj } be a standard basis for a toroidal set K.
By the continuity property of Čech cohomology, Ȟ q(K; Z) is the direct limit of the direct
sequence Ȟ q(Tj ; Z) −→ Ȟ q(Tj+1; Z), where the arrows are induced by the inclusions
Tj+1 ⊆ Tj . In degrees q ≥ 2 clearly Ȟ q(K; Z) = 0. In degree q = 1, and according to the

discussion in the previous paragraph, each of these arrows can be identified with Z
·wj−→ Z,

where wj is the winding number of Tj+1 inside Tj . It is very easy to check (or see a proof
in [2, Proposition 1.6]) that there are three mutually exclusive possibilities for Ȟ 1(K; Z).

(i) If infinitely many of the wj vanish, then Ȟ 1(K; Z) = 0. We then say that K is
trivial.

(ii) If wj = 1 from some j onwards, then Ȟ 1(K; Z) = Z.
(iii) Otherwise Ȟ 1(K; Z) is not finitely generated.

3. Some algebraic preliminaries
We shall begin with some very simple algebra. Given a sequence of non-negative integers
{mj }j≥1, consider the direct sequence

Z
·m1 �� Z

·m2 ���� Z �� · · · , (1)

where each arrow is multiplication by mj . Denote by G the direct limit of this sequence.
The following mutually exclusive alternatives hold.

(i) G = 0 if and only if mj = 0 for infinitely many j.
(ii) G = Z if and only if mj = 1 from some j onwards.

(iii) Otherwise G is not finitely generated.
Let p be a prime number. If every element in G is divisible by p we then say that p

divides G, or that p is a prime factor of G, and write p|G. The following proposition
provides an alternative characterization of this notion. The proof is extremely simple but
we include it for completeness.

https://doi.org/10.1017/etds.2021.105 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.105


56 H. Barge and J. J. Sánchez-Gabites

PROPOSITION 3.1. With the above notation, p|G if and only if p divides infinitely many of
the mj .

Proof. It will be convenient to attach a subscript (j) to each copy of Z in (1) to distinguish

them. We choose the notation so that the arrows read Z(j)

·mj �� Z(j+1) . Any element
z ∈ G is represented by some z(j0) ∈ Z(j0). Of course, z is also represented by any of its
successive images z(j) ∈ Z(j) along the sequence. The relation between z(j0) and z(j) is
just

z(j) = z(j0) · mj0 · mj0+1 · · · · · mj−1. (2)

Suppose first that p divides infinitely many of the mj . Let z be represented by z(j0) ∈
Z(j0). Our assumption implies that there exists j ≥ j0 such that p|mj . From (2) we see
that p|z(j+1), and then z′

(j+1) := z(j+1)/p ∈ Z(j+1) represents an element z′ ∈ G such
that pz′ = z.

Conversely, assume every element in G is divisible by p. Fix j0 and consider the element
z ∈ G represented by z(j0) = 1 ∈ Z(j0). By assumption there exists z′ ∈ G such that
pz′ = z. Then for big enough j we must have pz′

(j) = z(j), so in particular p|z(j). But
then from (2) we see that p divides some mk with j0 ≤ k < j . Since j0 was arbitrary, it
follows that p divides infinitely many of the mj .

Using the proposition, one can easily see that G may not have any prime factors at all
or, at the other extreme, it may have infinitely many of them. In fact, it is easy to produce
groups G having any prescribed set P of prime numbers as prime divisors.

Example 3.2. Given any set P of prime numbers, there exists a group G whose prime
divisors are precisely the elements of P. For instance:

(i) when P = ∅ choose mj to be the jth prime number;
(ii) when P is finite choose all the mj to be equal to m, the product of all the elements

in P;
(iii) when P is infinite, let {pk} be an enumeration of its elements and choose mj :=

p1 · · · · · pj .

If all the mj are equal to some number m ≥ 1 for big enough j we will say that G is
number-like†. It is well known that G can then be identified with the m-adic rationals;
that is, the subgroup of Q that consists of numbers of the form z/mk with z ∈ Z and k a
non-negative integer. This subgroup is usually denoted by Z[1/m]. We will now show that
the prime divisors of a number-like G determine it completely.

PROPOSITION 3.3. Let G be number-like. Then it has finitely many prime divisors
p1, . . . , pr and G = Z[1/(p1 · · · · · pr)].

Proof. Since G is number-like, it is the direct limit of (1) with mj = m ≥ 1 for large
enough j. Then by Proposition 3.1 the prime divisors of G are exactly the prime divisors

† This terminology is slightly abusive, because as introduced it describes not an intrinsic property of G but rather
of the particular description of G afforded by the direct sequence (1) of G.
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of m (in the sense of ordinary arithmetic). In particular, G has finitely many prime divisors
(and it has none exactly when m = 1, or equivalently when G = Z). Write m = p

n1
1 · · · · ·

pr
nr for appropriate exponents ni ≥ 1. Also, set m0 := p1 · · · · · pr for brevity. Notice

that m0|m.
Now we prove that G = Z[1/m0]. Since G can be identified with the subgroup of m-adic

rationals, we only need to show that the m-adic rationals are the same as the m0-adic
rationals. First, every m0-adic rational can be written as an m-adic rational as follows:

z

mk
0

= z

mk
· mk

mk
0

= z · (m/m0)
k

mk
∈ Z[1/m]

because m0|m. To prove that every m-adic rational is an m0-adic rational we first perform
the following computation. Letting n = max ni , we can write m as follows:

m = p
n1
1 · · · · · pr

nr = (p1 · · · · · pr)
n

p
n−n1
1 · · · · · p

n−nr
r

= mn
0

m′

where m′ = p
n−n1
1 · · · · · p

n−nr
r ∈ Z because of the definition of n. Then any m-adic

rational can be expressed as

z

mk
= z

(mn
0/m′)k

= z · m′k

mnk
0

∈ Z[1/m0].

We thus see that when G is number-like it conveys exactly the same information as the
number p1 · · · · · pr . Hopefully this justifies our terminology. We shall sometimes write
G ∼ p1 · · · · · pr . As mentioned in the proof of the proposition, a somewhat degenerate
case is G = Z, which is indeed number-like but has no prime factors. We shall then
write G ∼ 1. Notice that Z is the only number-like G that does not have any prime factors.

We conclude this section with a very simple observation. There are two manipulations
that can be performed on (1) which clearly do not alter its limit G. The first is just
removing a finite number of terms from the beginning of the sequence. The second involves
organizing the arrows in (1) into groups of k1, k2, . . . consecutive arrows and replacing
each group with a single arrow which is the composition of all the arrows in the group,
obtaining the direct sequence

Z
·m1· ··· ·mk1 �� Z

·mk1+1· ··· ·mk1+k2 �� Z �� · · ·

These two operations allow the sequence (1) to be put in a somewhat canonical form that
is sometimes convenient.

LEMMA 3.4. Given any group G represented as the direct limit of (1) we may assume that
the {mj } are in one of the mutually exclusive forms.

(i) All the mj = 0, in which case G = 0.
(ii) All the mj = 1, in which case G = Z.

(iii) All the mj ≥ 2, in which case G is not finitely generated.
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Proof. (i) If infinitely many of the mj are zero, then by grouping the arrows in such a
way that each group contains at least one zero arrow we may assume that mj = 0 for all j.
Clearly then G = 0.

(ii) If (i) does not hold, then only finitely many of the mj are zero. We may discard
them and assume directly that mj ≥ 1 for every j. If only finitely many of the mj satisfy
mj ≥ 2 then we may also discard them and obtain mj = 1 for every j. Clearly then
G = Z.

(iii) If (i) and (ii) do not hold, then infinitely many of the mj satisfy mj ≥ 2 (and mj ≥ 1
for every j). Then by grouping the arrows in (1) in such a way that each group contains at
least one element equal to or greater than 2 we may assume that mj ≥ 2 for every j. It is
then very easy to see that G is not finitely generated (the argument is essentially the same
as in [2, Proposition 1.6]).

4. The self-index of a toroidal set
Let K be a toroidal set and let {Tj } be a standard basis for K. Denote by Nj the geometric
index of Tj+1 inside Tj and consider the direct sequence

N {Tj } : Z
·N1 �� Z �� · · · �� Z

·Nj �� Z �� · · · .

PROPOSITION 4.1. The direct limit of N {Tj } is independent of the basis {Tj } chosen to
compute it.

Proof. First let us show that replacing {Tj } with a subsequence {Tjk
} leaves the direct limit

of N {Tj } unchanged. The multiplicativity of the geometric index ensures that

N(Tj2 , Tj1) = N(Tj2 , Tj2−1) · · · · · N(Tj1+1, Tj1) = Nj2−1 · · · · · Nj1

and similarly for the following jk . Thus the sequence N {Tjk
} associated to {Tjk

} is
precisely

N {Tjk
} : Z

·Nj1 · ··· ·Nj2−1 �� Z
·Nj2 · ··· ·Nj3−1 �� Z �� · · · .

This can be obtained from the original N {Tj } by removing the first j1 − 1 terms and
then grouping the remaining arrows into the blocks Njk

· · · · · Njk+1−1. These two
manipulations do not alter the direct limit of the original sequence, and so N {Tj } and
N {Tjk

} have the same direct limit, as claimed above.
Now let {T ′

j } be another standard basis for K. We want to show that the direct limits
of N {Tj } and N {T ′

j } coincide. After passing to suitable subsequences of {Tj } and {T ′
j }

we may assume that Tj ⊇ T ′
j ⊇ Tj+1 for every j. By the previous paragraph there is no

loss of generality in doing this. As before, we use the notation Nj = N(Tj+1, Tj ) and
N ′

j = N(T ′
j+1, T ′

j ). Also, set

Mj = N(T ′
j , Tj ) and M ′

j = N(Tj+1, T ′
j ).
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The multiplicative property of the geometric index ensures that Nj = MjM
′
j and

N ′
j = M ′

jMj+1. Consider the direct sequence

Z
·M1 �� Z

·M ′
1 �� Z �� · · · �� Z

·Mj �� Z
·M ′

j �� Z �� · · · .

Grouping the arrows in pairs yields the sequence

Z
·N1 �� Z �� · · · �� Z

·Nj �� Z �� · · ·
which is precisely N {Tj }, whereas discarding the first arrow and grouping the remaining
ones in pairs yields the sequence

Z
·N ′

1 �� Z �� · · · �� Z
·N ′

j �� Z �� · · ·
which is precisely N {T ′

j }. It follows that the direct limit of all three sequences is the same,
and so in particular N {Tj } and N {T ′

j } have the same direct limit, as was to be shown.

The proposition justifies the correctness of the following definition.

Definition 4.2. Given a toroidal set K, its self-geometric index (or self-index for brevity) is
the direct limit of the direct sequence N {Tj } for any standard basis {Tj } of K. We denote
the self-index by N (K).

Since a toroidal set is not cellular by definition, it follows from Proposition 2.2 that
Nj ≥ 1 for sufficiently large j. Thus N (K) �= 0 and N (K) is either Z or not finitely
generated. The case N (K) = Z, or N (K) ∼ 1 in our notational convention, is interesting
enough to single out.

PROPOSITION 4.3. Let K ⊆ R3 be a toroidal set. The following three statements are
equivalent.

(i) N (K) ∼ 1.
(ii) N(Tj+1, Tj ) = 1 for large enough j for some standard basis {Tj } for K.

(iii) N(Tj+1, Tj ) = 1 for large enough j for any standard basis {Tj } for K.
Moreover, if any of these conditions holds then Ȟ 1(K; Z) = Z.

Proof. Notice that N (K) = Z occurs precisely when Nj = N(Tj+1, Tj ) = 1 for large j,
so this condition must be independent of the basis {Tj } since the same is true of N (K)

by Proposition 4.1. This establishes the equivalence of (i), (ii) and (iii). Denote by wj

the winding number of Tj+1 inside Tj . Recall that wj and Nj have the same parity
and also wj ≤ Nj . These two conditions (together with Nj = 1) force wj = 1, and so
Ȟ 1(K; Z) = Z.

Mimicking the definitions of the previous section, we say that a prime p divides N (K)

if every element in N (K) is divisible by p or, more operationally and as a consequence of
Proposition 3.1, if p|N(Tj+1, Tj ) for infinitely many j.
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Example 4.4. Recall from the Introduction that a (possibly knotted) generalized solenoid
is a toroidal set K defined as the intersection of nested solid tori {Tj } such that each Tj+1

winds monotonically nj times inside the previous Tj and the thickness of the Tj tends to
0 as j increases. We require nj > 1 for each j. The monotonicity condition implies that
N(Tj+1, Tj ) = nj for every j, and so N (K) �∼ 1 and p|N (K) if and only if p is a prime
factor of infinitely many of the nj . Depending on our choice of the nj we may find several
scenarios.

(i) If K is an n-adic solenoid (nj = n for every j) then N (K) is number-like and the
prime divisors of N (K) are precisely the prime divisors of n (in the ordinary sense
of elementary arithmetic).

(ii) One may pick the nj in such a way that each prime p appears as a factor of infinitely
many of them (for instance, by taking nj = j !). Then every prime divides N (K).

(iii) At the other extreme, one may choose the nj in such a way that no prime p is a
factor of infinitely many of them, for instance by letting all the nj be pairwise prime
to each other. Then N (K) has no prime divisors.

We conclude this section with a very simple remark concerning generalized solenoids.
The monotonicity condition on the tori {Tj } implies that the geometric index and the
winding number of each pair of consecutive tori both coincide. In particular, the direct
sequences that arise when computing the self-index of a generalized solenoid and its
Čech cohomology in degree 1 are the same and so their direct limits coincide; that is,
N = Ȟ 1. Moreover, since generalized solenoids are topologically characterized by their
Čech cohomology (see, for instance, the argument in [22, p. 198]), we have the following
remark.

Remark 4.5. Let K and K ′ be two generalized solenoids. Then K is homeomorphic to K ′
if and only if their self-indices N (K) and N (K ′) are isomorphic (as groups).

5. Elementary properties of the self-index
In this section we discuss some elementary properties of the self-index. We begin by
considering the status of the prime p = 2 as a factor of N (K), which turns out to be
somewhat special.

PROPOSITION 5.1. The prime p = 2 is a factor of N (K) if and only if every element in
Ȟ 1(K; Z) is divisible by 2. In particular, having p = 2 as a prime factor of N (K) is a
topological property of toroidal sets.

Proof. Let {Tj } be a standard basis for K and denote by wj and Nj the winding number
and the geometric index of each Tj+1 inside Tj , respectively. By the continuity property
of Čech cohomology Ȟ 1(K; Z) is the direct limit of the direct sequence

Z
·w1 �� Z

·w2 �� · · · �� Z
·wj �� Z �� · · ·

whereas N (K) is by definition the direct limit of

Z
·N1 �� Z

·N2 �� · · · �� Z
·Nj �� Z �� · · · .
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Since the geometric index and the winding number both have the same parity, p = 2
divides infinitely many of the wj if and only if it divides infinitely many of the Nj . The
result follows from the characterization of Proposition 3.1.

The next property we consider is the invariance of the self-index under (local) ambient
homeomorphisms. It seems reasonable to expect it to hold, but there is a slight technical
subtlety: since Definition 4.2 involves neighbourhood bases that consist of polyhedral tori
(for the geometric index to be defined), it is clear that the self-index is invariant under
piecewise linear homeomorphisms, but not necessarily under arbitrary ones. To prove this
in general we will need to make use of the deep result that any homeomorphism of a
3-manifold can be approximated arbitrarily closely by a piecewise linear one.

PROPOSITION 5.2. Let K and K ′ be toroidal sets in R3. Suppose that f : O −→ f (O)

is a homeomorphism defined on an open neighbourhood O of K and f (K) = K ′. Then
N (K) and N (K ′) are equal.

Proof. By the invariance of domain theorem f is an open map and O ′ := f (O) is a
neighbourhood of K ′. Consider the open 3-manifolds O − K and O ′ − K ′. These are
homeomorphic via f. Let φ : O − K −→ (0, +∞) be defined by φ(p) := d(p, K), where
d denotes the usual distance. Clearly φ is bounded away from 0 on every compact subset
of O − K , and then [23, Theorem 1, p. 253] guarantees that there exists a piecewise linear
homeomorphism g : O − K −→ O ′ − K ′ such that d(f (p), g(p)) < φ(p) for every
p ∈ O − K . Extend g to all of O by defining g(p) := f (p) for p ∈ K . It is straightforward
to check that this extension provides a continuous bijection from O to O ′, which is therefore
a homeomorphism by the invariance of domain theorem.

Now let {Tj } be a standard basis for K with all Tj contained in O. Define T ′
j := g(Tj ).

These clearly form a standard basis for K ′ because g is a homeomorphism. Moreover, by
construction g provides homeomorphisms of pairs g : (Tj , Tj+1) −→ (T ′

j , T ′
j+1) which

are piecewise linear on Tj − int Tj+1. Thus by Lemma 2.1 the geometric indices
N(Tj+1, Tj ) and N(T ′

j+1, T ′
j ) are equal. The equality N (K) = N (K ′) then follows from

Proposition 4.1.

We conclude this section by investigating the relation between the cohomology of a
toroidal set and its self-index. Essentially we shall see that, besides the relation between
these two magnitudes afforded by Propositions 4.3 and 5.1, they are independent variables.
This we do by showing how to construct toroidal sets K that have a prescribed cohomology
group H (in degree 1) and whose self-index is some prescribed group N. Of course H and
N cannot be entirely arbitrary since they must be the direct limit of a direct sequence of the
form (1). Let us say that a group is feasible if it has this form. Also, the fact that toroidal sets
cannot be cellular requires that N �= 0 by Proposition 2.2. Finally, and as a consequence of
Propositions 4.3 and 5.1, if the variables H and N are to be realized as the cohomology and
self-index of a toroidal set they must satisfy the following two compatibility conditions.
(C1) 2|H if and only if 2|N .
(C2) If N ∼ 1 then H ∼ 1.
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V0

(1)(2)

(a) Initial set-up

V0

(b) Final set-up

FIGURE 1. The construction for Lemma 5.4.

THEOREM 5.3. Let H and N be feasible groups. Suppose that N �= 0, and H and N
satisfy the above compatibility conditions. Then there exists a toroidal set K such that
Ȟ 1(K; Z) = H and N (K) = N . Moreover, K is unknotted.

We recall that a toroidal set is unknotted if it has a neighbourhood basis of unknotted
solid tori. A consequence of Theorem 5.3 and Example 3.2 is that if P is any set of
prime numbers that satisfies the consistency condition 2 ∈ P ⇔ 2|Ȟ 1(K; Z), there exists
a toroidal set K such that the prime divisors of N (K) are precisely the elements of P.

To prove the theorem we need an auxiliary lemma which provides the key to the
construction.

LEMMA 5.4. Let w and k be a pair of non-negative integers. Denote by V0 ⊆ R3 the
standard unknotted solid torus. Then there exists an unknotted solid torus V1 ⊆ int V0 such
that the winding number of V1 inside V0 is w and the geometric index N(V1, V0) = w + 2k.

Proof. To prove the lemma it suffices to find an unknotted simple closed curve γ in
int V0 such that its winding number and geometric index in V0 are w and w + 2k

respectively, since then any regular neighbourhood V1 of γ contained in int V0 will fulfil
our requirements.

Figure 1(a) shows a view of V0 from the top and, contained in its interior, two groups
of oriented simple closed curves. The outermost group, labeled (1), consists of w curves
γ1, . . . , γw that wind monotonically once around V0. The innermost group (2) consists
of k curves γw+1, . . . , γw+k which we call Whitehead curves because they are patterned
after one of the components of the Whitehead link. All the curves in the first group have
the same orientation. The Whitehead curves have alternating orientations, chosen in such
a way that the outermost strand of the outermost Whitehead curve runs parallel to the
innermost curve of group (1).
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Let γ be the result of taking the (oriented) connected sum of all the γj arranged as
shown in Figure 1(b). The choice of orientations ensures that in performing the connected
sum of each curve with the adjacent one we include a twist rather than having a turning
point where γ would double back over.

Since each γj is the unknot, the same is true of γ . It is also clear from the construction
that each γj with j ≤ w has winding number 1 in V0 while each γj with j > w has
winding number 0, so that γ has winding number w in V0. It only remains to check that the
geometric index of γ in V0 is precisely 2k + w. To see this we apply a technique of Andrist
et al. [1]. The dotted radial lines in Figure 1(b) represent two meridional disks which
decompose the solid torus V0 into two sectors C1 and C2, where C1 is shaded light grey.
Sectors of this form are called chambers in [1]. For 1 ≤ j ≤ w the intersection γj ∩ C1

just consists of an arc that runs from one of the meridional disks to the other without
turning back over. Arcs of this form are called spanning arcs. For w + 1 ≤ j ≤ w + k the
intersection γj ∩ C1 consists of a pair of linked arcs; these are called Whitehead clasps
(see [1, Figure 5(b), p. 9]). The intersection of every γj with the chamber C2 just consists
of one or two spanning arcs. In this situation [1, Corollary 4.6, p. 237] ensures that the
geometric index N(γ , V0) = w + 2k.

Proof of Theorem 5.3. Since H and N are feasible, both can be written as direct limits of
the form

H = lim−→ { Z wj �� Z } and N = lim−→ { Z nj �� Z }
where the {wj } and {nj } are as described in Lemma 3.4. Of the cases considered there we
must have nj ≥ 1 for all j because N �= 0 by assumption.

CLAIM. We can assume that all the wj and nj have the same parity.

To check this suppose first that 2|H . By Proposition 3.1 we see that wj must be even
for infinitely many j, and by grouping the wj into blocks each of which contains at least
an even arrow we may assume that all the wj are even. By the consistency condition of
the theorem 2|N too, and by the same argument we may take nj to be even for all j. A
similar reasoning applies when 2 � |H (this time discarding a finite number of the wj and
nj instead of grouping arrows as before), and in that case we may take all the wj and nj

to be odd. Summing up, we can assume without loss of generality that all the wj and nj

have the same parity.

CLAIM. We can assume that wj ≤ nj for every j.

In the case N ∼ 1 the compatibility condition (C2) requires H ∼ 1 and so wj = nj = 1
for large enough j. Let us assume then that N �∼ 1. Then according to Lemma 3.4 we must
have nj ≥ 2 for every j. Now consider w1. Since nj ≥ 2 for every j, by taking a product
n1· · · · · nk1 for sufficiently large k1 we can achieve w1 ≤ n1 · · · · · nk1 . Similarly, taking
k2 > k1 big enough we can achieve w2 ≤ nk1+1 · · · · · nk2 , and so on. That is, by grouping
the arrows in the defining sequence for N we can certainly assume that wj ≤ nj for every j.
Notice that this does not change the parity of the nj .

Our choice of the wj and nj ensures that the equation 2kj + wj = nj has an integer
solution kj ≥ 1 for each j. Then by Lemma 5.4 we may construct a nested sequence of
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unknotted solid tori {Tj } such that the winding number and the geometric index of Tj+1

inside Tj are precisely wj and nj , respectively. Let K := ⋂
j≥0 Tj . Proposition 2.2 shows

that K is not cellular; hence, it is a toroidal set. It is clear that K is unknotted and has
Ȟ 1(K; Z) = H and N (K) = N as required.

6. Weak tameness of toroidal sets
In this section we characterize weakly tame toroidal sets. A compact set K ⊆ R3 is called
weakly tame if there exists a compact polyhedron P ⊆ R3 such that R3 − K and R3 − P

are homeomorphic. For example, cellular sets are weakly tame because they are point-like:
their complement is homeomorphic to the complement of a point. Every tame set (that is,
a set that can be carried onto a polyhedron by an ambient homeomorphism) is also weakly
tame, but the converse is not generally true. For example, there is an arc in R3 (see [23, pp.
137–138]) which is not tame but is weakly tame because its complement is homeomorphic
to the complement of a point.

To formulate our results we need to recall a definition (see [2]) which generalizes the
classical notion of the genus of a knot to toroidal sets. First define the genus g(T ) of a
solid torus T as the genus of a core curve of T (this definition is correct because core
curves are unique up to isotopy). Then for a toroidal set K ⊆ R3 define its genus g(K)

as the minimum g = 0, 1, . . . , +∞ such that K has arbitrarily small neighbourhoods that
are solid tori of genus less than or equal to g. Notice that if K has finite genus then it has
a standard basis {Tj } such that g(Tj ) = g(K) for every j. By contrast, if K has infinite
genus then limj→+∞ g(Tj ) = +∞ for any such basis. Also, a toroidal set K has genus 0
if and only if it has a neighbourhood basis of solid tori {Tj } of genus 0, which means that
they are all unknotted. This is precisely what we called unknotted toroidal sets earlier. For
information about knot theory we refer the reader to the books by Burde and Zieschang
[5], Lickorish [21] or Rolfsen [26].

The main theorem in this section is as follows.

THEOREM 6.1. Let K ⊆ R3 be a toroidal set. Then K is weakly tame if and only if the
genus of K is finite and N (K) ∼ 1.

In fact, when the genus of K is strictly positive, the condition N (K) ∼ 1 can be replaced
with a weaker one.

THEOREM 6.2. Let K ⊆ R3 be a toroidal set with positive genus. Then K is weakly tame
if and only if the genus of K is finite and K is non-trivial.

Example 6.3. None of the (unknotted) generalized solenoids of Example 4.4 satisfies
N ∼ 1; thus, none of them is weakly tame.

We devote the rest of this section to proving Theorems 6.1 and 6.2. This requires some
work. We begin with a criterion that allows one to recognize when a toroidal set is weakly
tame in terms of any one of its standard neighbourhood bases. We recall that two nested
tori T2 ⊆ T1 are concentric if there exists a homeomorphism g : T1 − int T2 −→ (∂T1) ×
[0, 1] such that for every p ∈ ∂T1 one has g(p) = (p, 0) ∈ (∂T1) × [0, 1].
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PROPOSITION 6.4. Let K ⊆ R3 be a toroidal set. Then the following assertions are
equivalent.

(i) K is weakly tame.
(ii) There exists a standard basis {Tj } for K such that Tj+1 and Tj are concentric for

all j.
(iii) For any standard basis {Tj } for K there exists j0 such that Tj+1 and Tj are

concentric for all j ≥ j0.

Proof. (i) ⇒ (ii) By assumption there exists a homeomorphism h : R3 − P −→ R3 −
K for some compact polyhedron P. We may assume without loss of generality that h is
piecewise linear [23, Theorem 2, p. 253]. Notice that

Hq(P ; Z) = H̃2−q(R3 − P ; Z) = H̃2−q(R3 − K; Z) = Ȟ q(K; Z)

where the first and last equalities follow from Alexander duality. This shows (setting q = 0)
that P must be connected and Ȟ q(P ; Z) = 0 for q ≥ 2. For q = 1 we argue as follows. The
only possibilities for Ȟ 1(K; Z) are either 0, Z, or a non-finitely generated group. Since
compact polyhedra have finitely generated cohomology, it follows that H 1(P ; Z) is either
0 or Z.

CLAIM. h admits an extension to a homeomorphism ĥ : S3 − P −→ S3 − K .

Proof of claim. Let B ⊆ R3 be a closed 3-ball so big that it contains P in its interior
and denote by S its boundary 2-sphere. Clearly R3 − S has two connected components: an
unbounded one U (which is the complement of B) and a bounded one int B. Let us examine
the connected components of (R3 − P) − S. Since P has zero cohomology in degree 2, it
does not disconnect any connected open set that contains it (this follows from Alexander’s
duality). Writing (R3 − P) − S = U ∪ ((int B) − P) thus exhibits (R3 − P) − S as the
disjoint union of two connected sets, which are therefore its connected components.
Notice that both have non-zero homology in dimension 2: the first one because it is
just homeomorphic to S2 × R by construction; the second one because it is the result of
removing a non-empty compact set from the interior of an open set with trivial homology
(formally, this follows again from an application of Alexander’s duality).

Since the 2-sphere S is contained in R3 − P we may transform it via h to obtain another
2-sphere S′ := h(S). By the polyhedral Schönflies theorem [23, Theorem 12, p. 122], S′
bounds a closed 3-ball B ′ in R3. Notice that we do not know a priori whether K is contained
in this ball; this is precisely what we want to prove now. Denote U ′ := R3 − B ′. The same
reasoning as used in the previous paragraph, but now taking into account that K may
be contained in U ′ or in B ′, leads to the conclusion that the connected components of
(R3 − K) − S′ are either

U ′ − K and int B ′ (if K ⊆ U ′)

or

U ′ and (int B ′) − K (if K ⊆ B ′).
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We mentioned earlier that both components of (R3 − P) − S have non-zero homology in
dimension 2, so the same must be true of the components of (R3 − K) − S′ because the
two spaces are homeomorphic under h. This rules out the first alternative above, because
int B ′ has trivial homology. Thus it must be the case that K ⊆ int B ′ and the components
of (R3 − K) − S′ are precisely U ′ and (int B ′) − K . Now, there are two possibilities for
how h matches the components of (R3 − P) − S and (R3 − K) − S′. Either we have

h(U) = U ′ and h((int B) − P) = (int B ′) − K

or we have

h(U) = (int B ′) − K and h((int B) − P) = U ′.

However, the second alternative is not possible. From h(U) = (int B ′) − K we would get
h(U ∪ S) = B ′ − K , and this would extend to a homeomorphism between the one-point
compactifications of U ∪ S and B ′ − K . That of U ∪ S is just a 3-ball, whereas the
one-point compactification of B ′ − K can be thought of as B ′/K with [K] acting as
the point at infinity. But then B ′/K is a 3-ball, which implies that K is pointlike and
by [7, Proposition 2.4.5, p. 61] that K is actually cellular, contradicting the definition of
a toroidal set. We are left with h(U) = U ′. Then h(U ∪ S) = U ′ ∪ S and this can be
extended to the point at infinity to yield the required ĥ. This concludes the proof of the
claim.

Let N be a regular neighbourhood of P and define T := ĥ(N − P) ∪ K . Clearly T
contains K. In fact, the following claim holds.

CLAIM. T is a compact manifold that is a neighbourhood of K. Moreover, T is connected
and ∂T is either a 2-sphere or a 2-torus.

Proof of claim. Begin by writing S3 = (S3 − N) � (N − P) � P , where � means a union
of disjoint sets. Then we see that S3 = ĥ(S3 − N) � ĥ(N − P) � K = ĥ(S3 − N) � T ,
and this gives the convenient relation S3 − T = ĥ(S3 − N).

To prove that T is a neighbourhood of K, suppose the contrary. Then there exists a
sequence {qn} in S3 − T that converges to some point in K. The sequence {pn := ĥ−1(qn)}
is then contained in ĥ−1(S3 − T ) = S3 − N , and so after passing to a subsequence we
may assume that it converges to some point p ∈ S3 − N = S3 − int N . But this set is still
contained in the domain of ĥ, and so qn = ĥ(pn) would converge to ĥ(p), which is not
possible because {qn} does not converge in S3 − K .

Writing T = (T − K) ∪ int T exhibits it as the union of two open (in T) sets. The first is
a 3-manifold with boundary because it is homeomorphic to N − P via ĥ−1 by definition,
whereas the second is a 3-manifold without boundary because it is open in S3. Thus T is a
compact 3-manifold with boundary. Resorting again to Alexander’s duality and bearing in
mind that S3 − T and S3 − N are homeomorphic via ĥ, we have

Hq(T ; Z) = H3−q(S3 − T ; Z) = H3−q(S3 − N ; Z) = Hq(N ; Z) = Hq(P ; Z),

where in the last step we have used that N is a regular neighbourhood of P and so
collapses onto it. Recalling the computation of the cohomology of P at the beginning of
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this proof, we conclude that T is connected, has vanishing cohomology in degrees q ≥ 2,
and has cohomology either 0 or Z in dimension q = 1. A routine argument using the
Poincaré–Lefschetz duality then shows that ∂T is either a 2-sphere or a 2-torus.

Now we repeat the same construction not just for a single N, but for a neighbourhood
basis of P comprised of nested regular neighbourhoods Nj . As before, denote by Tj =
ĥ(Nj − P) ∪ K the corresponding neighbourhoods of K. Since the sets S3 − Nj clearly
form an ascending sequence whose union is S3 − P , the sets ĥ(S3 − Nj) also form
an ascending sequence whose union is ĥ(S3 − P) = S3 − K . It then follows from the
expression S3 − Tj = ĥ(S3 − Nj) obtained above that the Tj form a decreasing sequence
whose intersection is K. Thus {Tj } is a nested neighbourhood basis of K comprised of
compact, connected manifolds.

We established earlier that ∂Tj is either a 2-sphere or a 2-torus. In the first case, the
Schönflies theorem for polyhedral spheres implies that Tj is a 3-ball. If this occurs for
infinitely many indices j then K would be cellular, which contradicts the definition of a
toroidal set. Thus we may assume without loss of generality that all the ∂Tj are 2-tori.
Consider any one Tj0 . Since K is toroidal, it has a neighbourhood T which is a solid
torus contained in the interior of Tj0 . Choose j1 > j0 so that Tj1 ⊆ int T . Observe that
Tj0 − int Tj1 is homeomorphic via h to Nj0 − int Nj1 , which is in turn homeomorphic
to (∂Nj0) × [0, 1] by the annulus theorem for regular neighbourhoods [27, Corollary
3.18, p. 35]. Pulling back this homeomorphism via h shows that Tj0 − int Tj1 is also
homeomorphic to (∂Tj0) × [0, 1]. A direct application of a concentricity theorem of
Edwards [9, Theorem 2, p. 419] then ensures that T is concentric with both Tj0 and Tj1 ,
so in particular all three of them are homeomorphic; hence, they are all (concentric) solid
tori. Thus {Tj } is the required neighbourhood basis of K.

(ii) ⇒ (iii) Let {Tj } and {T ′
k} be two neighbourhood bases of K comprised of nested solid

tori. Assume that the Tj are all concentric. Choose k0 big enough so that T ′
k0

⊆ int T1. Pick
any k1 > k0 and finally let j be big enough so that Tj ⊆ int T ′

k1
. Thus we have the nested

tori Tj ⊆ T ′
k1

⊆ T ′
k0

⊆ T1. Since T1 and Tj are concentric by assumption, the concentricity
theorem of Edwards mentioned in the previous paragraph ensures that T ′

k0
is concentric

with both T1 and Tj . Then again the same theorem, this time applied to Tj ⊆ T ′
k1

⊆ T ′
k0

,
ensures that T ′

k1
is concentric with T ′

k0
. Thus the {T ′

k} are all concentric for k ≥ k0.
(iii) ⇒ (i) Let {Tj } be a standard basis for K comprised of concentric tori. Denote by

Rj each region Tj − int Tj+1, so that T1 − K = ⋃
Rj . Since the {Tj } are concentric,

each Rj is homeomorphic to (∂Tj ) × [j , j + 1] via some homeomorphism hj such that
hj (p, j) = p for every p ∈ ∂Tj . It is then easy to modify the hj in such a way that they
can all be pasted together to yield a homeomorphism from

⋃
Rj onto (∂T1) × [1, +∞).

(See the proof of implication (ii) ⇒ (i) in [2, Theorem 3.11, p. 18] for more details.) The
latter is, in turn, homeomorphic to T1 − γ , where γ is a core curve of T1. Thus we have
obtained a homeomorphism T1 − K ∼= T1 − γ that is the identity on ∂T1. Extending this
by the identity to all of R3 yields a homeomorphism between R3 − K and R3 − γ , where
γ is a polyhedral simple closed curve. This shows that K is weakly tame.

Remark 6.5. Since a polyhedral simple closed curve is perhaps the simplest example of
a toroidal set, it would also seem reasonable to define a toroidal set to be weakly tame if
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its complement is homeomorphic to the complement of such a curve, rather than to the
complement of an arbitrary polyhedron P. It follows from the proof of (iii) ⇒ (i) in the
preceding proposition that both definitions are equivalent.

The proof of Theorem 6.1 is now very simple.

Proof of Theorem 6.1. Suppose first K is weakly tame. Then it has a standard basis of
concentric tori {Tj } by Proposition 6.4. Clearly concentric tori have the same genus and
the geometric index N(Tj+1, Tj ) is 1. It follows that g(K) < +∞ (by definition) and
N (K) ∼ 1 by Proposition 4.1.

Now suppose g(K) < +∞ and N (K) ∼ 1. By the definition of the genus of a toroidal
set there exists a standard basis {Tj } for K such that g(Tj ) = g(K) for every j. Also, the
assumption that N (K) ∼ 1 implies, by Proposition 4.3, that N(Tj+1, Tj ) = 1 for large
enough j. This condition on the geometric index entails (see [32, Satz 2, p. 171]) that the
core curve of Tj+1 is the connected sum of the core curve of Tj with some other knot
γj . But, since the genera of Tj and Tj+1 are equal and genus is additive under connected
sums, it follows that the genus of γj must be 0. Therefore the core curves of Tj and Tj+1

are equivalently knotted. A result of Edwards [10, Theorem 3, p. 4] then implies that Tj

and Tj+1 are concentric. Hence K is weakly tame by Proposition 6.4.

As for Theorem 6.2, we require still another previous lemma.

LEMMA 6.6. Let T2 ⊆ T1 be a nested pair of solid tori. Assume that:
(i) the winding number w of T2 inside T1 is positive;

(ii) the genera g of T1 and T2 are equal and positive.
Then T1 and T2 are concentric.

Before proving the lemma, recall that a spine of a polyhedral manifold N is a polyhedron
P ⊆ int N such that N collapses onto P, which we denote by N ↘ P as customary. We will
need the following result of Hudson and Zeeman (see [16, Corollary 5, p. 727]): if P and
P ′ are two polyhedra in int N that are related by a sequence of collapses and expansions
in N (but not necessarily in int N) then P is a spine of N if and only if P ′ is a spine of
N. In our case N will always be a neighbourhood of P in the ambient 3-manifold (so in
particular its interior as a manifold coincides with its topological interior), and then saying
that P is a spine of N is equivalent to saying that N is a regular neighbourhood of P (see
[27, Corollary 3.30, p. 41]).

Proof of Lemma 6.6. Let γ1 and γ2 be core curves for T1 and T2, respectively. Let also
λ1 ⊆ ∂T1 be a longitude of T1.

CLAIM. It suffices to show that γ2 and λ1 cobound an annulus in T1.

Proof of claim. Let A′ be the annulus cobounded by γ2 and λ1 in T1, and denote by A
an annulus cobounded by γ1 and λ1 in T1 (this always exists). Any annulus collapses onto
each one of its boundary curves. Thus we may write γ1 ↗ A ↘ λ1 ↗ A′ ↘ γ2 within
T1, and since γ1 is a spine of T1, the result of Hudson and Zeeman mentioned earlier
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implies that γ2 is a spine of T1. This means that T1 is a regular neighbourhood of γ2 in
R3 and, since T2 is also a regular neighbourhood of γ2 (the latter being a core for T2), the
regular neighbourhood annulus theorem (see, for instance, [16, Corollary 1, p. 725] or [27,
Corollary 3.18, p. 36]) guarantees that T2 and T1 are concentric. This proves the claim.

Now we shall show γ2 and λ1 indeed cobound an annulus in T1. This follows from an
examination of the proof of Schubert’s relation between the genus of a satellite knot and its
companion as given, for example, in the book by Burde and Zieschang [5]. In our setting
γ2 is a satellite of γ1 and the relation just mentioned reads g(T2) ≥ w · g(T1) + g′, where
g′ is the genus of the pattern of T2 inside T1. By assumption g(T1) = g(T2) = g > 0 and
(since g′ ≥ 0 and w ≥ 1), this inequality implies w = 1.

Let S be a Seifert surface of minimal genus that spans γ2. Without loss of generality
we may assume that S is transversal to ∂T1. Let Si and So be the parts of S that lie inside
and outside T1, respectively; that is, Si := S ∩ T1 and So := S ∩ (R3 − T1). Both of these
are (a priori, possibly non-connected) orientable surfaces with boundary. We may choose
(see [5, Lemma 2.11, p. 21]) S so that: (i) it intersects ∂T1 transversally in a longitude
λ1; and (ii) So consists of a single connected component (whose boundary is, therefore,
precisely λ1).

Since λ1 is a longitude of T1, it cobounds an annulus in T1 with its core curve γ1. The
union of this annulus and So produces a Seifert surface for γ1 whose genus is the same as
that of So. Thus the genus of So is greater than or equal to the genus of γ1, namely g. In
terms of the Euler characteristic, χ(So) ≤ 1 − 2g.

Recall that S was a minimal Seifert surface for γ2, which also has genus g by assumption.
Thus we have χ(S) = 1 − 2g. Then from χ(S) = χ(Si) + χ(So) and the inequality of the
previous paragraph we get χ(Si) ≥ 0. Since Si arose by cutting the connected surface S
along ∂T1, the boundary of each component of Si must have a non-empty intersection
with ∂T1. But, since S ∩ ∂T1 consists of the single curve λ1, it follows that Si is actually
connected and its boundary has precisely two components; namely γ2 and λ1. The only
connected, orientable surface with two boundary components and non-negative Euler
characteristic is the annulus. Thus Si is the required annulus that cobounds γ2 and the
longitude λ1 in T1.

Proof of Theorem 6.2. It follows from the definition of the genus that K has a standard
basis {Tj } such that g(Tj ) = g(K) for all j. Denote by wj the winding number of Tj+1

inside Tj . Since Ȟ 1(K; Z) �= 0 by assumption, we must have wj > 0 for big enough j.
It then follows from Lemma 6.6 that all the pairs (Tj , Tj+1) are concentric from some j
onwards. Finally, Proposition 6.4 implies that K is weakly tame.

Conversely, if K is weakly tame then by Theorem 6.1 its genus is finite. Also, it has a
neighbourhood basis of concentric tori by Proposition 6.4 and therefore clearly N (K) ∼ 1
(or use Proposition 4.3).

7. Applications to the realizability problem
We finally turn to the realizability problem for toroidal sets, and we begin by recalling
some definitions from topological dynamics. We state them for the discrete case, but the
case of flows is completely analogous. Let f be a homeomorphism of R3. An attractor
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(sometimes called asymptotically stable) for f is a compact invariant set K ⊆ R3 which
is stable in the sense of Lyapunov and attracts all points in some neighbourhood U of K.
Explicitly, these conditions have the following meanings.

(i) K is invariant: f (K) = K .
(ii) K attracts points in U: for every neighbourhood V of K and every p ∈ U there exists

n0 ∈ N such that f n(p) ∈ V for every n ≥ n0.
(iii) K is Lyapunov stable: for every neighbourhood V of K there exists another

neighbourhood V0 of K such that f n(V0) ⊆ V for every n ≥ 0.
The maximal neighbourhood U with property (ii) is called the basin of attraction of K and
is an open invariant subset of R3. We denote it by A(K).

The conjunction of (ii) and (iii) implies that K not only attracts points in A(K) but also
neighbourhoods of points and in fact compacta P of the basin of attraction. This is fairly
easy to check. Consider first a point p ∈ A(K). Given a neighbourhood V of K, by (iii) we
may find another neighbourhood V0 of K such that f n(V0) ⊆ V for every n ≥ 0. In turn by
(ii) there exists n0 ∈ N such that f n0(p) ∈ int V0 and, since f n0 is continuous, there exists
a neighbourhood Wp of p such that f n0(Wp) ⊆ V0. Then f n(Wp) ⊆ f n−n0(V0) ⊆ V for
every n ≥ n0, which is a condition analogous to (ii) but now for the neighbourhood Wp

of p instead of p alone. Now let P be a compact subset of A(K). Covering it with a finite
number of the Wp and choosing n0 to be the maximum of the n0s associated to these Wp,
one sees that f n(P ) ⊆ V for n ≥ n0. Thus K attracts compact subsets of A(K). (Actually
in our case, where the phase space is locally compact, attracting compact subsets of A(K)

is equivalent to the attractor being stable in the sense of Lyapunov.) It is this geometric
property of f that we will make essential use of. For attractors that are not stable our
results do not hold true in general.

The realization problems for flows and homeomorphisms are not equivalent, with the
former being much easier than the latter. The reason is that the flow near an attractor is
parallelizable, which entails that if U is an appropriate neighbourhood of the attractor K
then U − K has the structure of a Cartesian product � × R where � arises dynamically as
a section of the flow in A(K) − K . The converse is also true: if K is a compactum having
a neighbourhood U such that U − K has such a product structure, then it can be realized
as an attractor for a flow. In 3-manifolds this can be exploited to show that a compactum K
can be realized as an attractor for a flow if and only if it is weakly tame [28, Theorem 11,
p. 6169], which combined with Theorem 6.1 leads to our first result in §1.

THEOREM A. A toroidal set K ⊆ R3 can be realized as an attractor for a flow if and only
if its genus is finite and N (K) ∼ 1.

Using this we may be more explicit about the claim made above that the realization
problems for flows and homeomorphisms are not equivalent, since we can easily exhibit
examples of toroidal sets that are attractors for homeomorphisms but cannot be realized
as attractors for flows. For example, an n-adic solenoid K is one of the most paradigmatic
attractors for a homeomorphism but it cannot be realized as an attractor for a flow since
N (K) �∼ 1 (the prime divisors of N (K) are the prime divisors of n by Example 4.4).
As another example, consider an unknotted solid torus V0 ⊆ R3 and let f : R3 −→ R3
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be a homeomorphism such that the solid torus f (V0) lies inside the interior of V0 in the
pattern of a Whitehead curve (the innermost curve in Figure 1(a)). The positively invariant
set V0 contains the attractor K := ⋂

j≥0 f j (V0), which is a classical object in geometric
topology called the Whitehead continuum. The tori Tj := f j (T ) form a neighbourhood
basis for K and, since N(Tj+1, Tj ) = 2 for each j, one has that 2|N (K). Thus N (K) �∼ 1
and therefore K cannot be realized as an attractor for a flow.

For the rest of this section we concentrate on the realizability of toroidal sets as attractors
for homeomorphisms. The usefulness of the self-index in this problem stems from the
following theorem.

THEOREM B. Let K be a toroidal set that is an attractor for a homeomorphism f of R3.
Then N (K) is number-like. Moreover, N (K) ∼ 1 if and only if K can be realized as an
attractor for a flow.

Before proving the theorem we include some corollaries. The following two characterize
what toroidal sets can be realized as attractors for two wide families of sets: (i) non-trivial
toroidal sets with positive genus; and (ii) toroidal sets with no prime factors in N (K). Both
corollaries combine Theorem B with the result that an attracting toroidal set must have a
finite genus (see [2, Theorem 3.1, p. 13]).

COROLLARY 7.1. Let K ⊆ R3 be a non-trivial toroidal set with positive genus. Then K
can be realized as an attractor for a homeomorphism if and only if its genus is finite.

Proof. As just mentioned, it is known that toroidal attractors have finite genus; therefore,
only (⇐) needs proof. By Theorem 6.2 the condition that K is non-trivial and has a positive
and finite genus implies that it is weakly tame. Then it can be realized as an attractor for a
flow and also for a homeomorphism (namely, the time-1 map of the flow).

COROLLARY 7.2. Let K ⊆ R3 be a toroidal set such that N (K) has no prime factors.
Then K can be realized as an attractor for a homeomorphism if and only if its genus is
finite and N (K) ∼ 1.

Proof. If K is an attractor for a homeomorphism, then N (K) is number-like. Since it
does not have prime divisors, it must be N (K) ∼ 1. Conversely, if the genus of K is finite
and N (K) ∼ 1 then K is weakly tame by Theorem 6.2. Therefore it can be realized as an
attractor for a flow and hence also for a homeomorphism.

A result of Günther [14, Theorem 1, p. 653] shows that a generalized solenoid
constructed in the manner described in Example 4.4(iii) cannot be realized as an attractor
of a homeomorphism (in fact, of an arbitrary continuous map) of R3. Our next corollary
sharpens this.

COROLLARY 7.3. If a generalized solenoid can be realized as an attractor for a
homeomorphism, then it must be an unknotted n-adic solenoid for some n.

Proof. Let K be a generalized solenoid that is an attractor for a homeomorphism. The
fact that K is unknotted is a consequence of [2, Theorem 2.9(ii)]. Also, by Theorem
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B the self-index of K is number-like; say N (K) ∼ n for some n. The self-index of an
n-adic solenoid K ′ also satisfies N (K ′) ∼ n, so by Proposition 3.3 the groups N (K) and
N (K ′) are isomorphic. Then Remark 4.5 implies that K and the n-adic solenoid K ′ are
homeomorphic.

Now suppose K ⊆ R3 is a non-trivial toroidal set. Let T be a neighbourhood of K that
is a solid torus and such that the inclusion K ⊆ T induces a non-zero map in cohomology
(this happens as soon as T is sufficiently close to K). Let e : T −→ R3 be an embedding
such that e(T ) is non-trivially knotted. Then we say that K ′ := e(K) is the result of
knotting K via the embedding e. Informally speaking, the following corollary shows that
the chances of a set being realizable as an attractor only decrease under this knotting
construction, and in fact only attractors for flows survive it.

COROLLARY 7.4. Let K ⊆ R3 be a non-trivial toroidal set and let K ′ be the result of
knotting it as just described. Then the following assertions are equivalent.

(i) K can be realized as an attractor for a flow.
(ii) K ′ can be realized as an attractor for a flow.

(iii) K ′ can be realized as an attractor for a homeomorphism.

Proof. (i) ⇒ (ii) Suppose K can be realized as an attractor for a flow. Then it is weakly
tame, and so it has a neighbourhood basis of concentric tori. Since the knotting embedding
e can be used to copy this basis (perhaps after discarding a finite number of initial
neighbourhoods) onto a neighbourhood basis of K ′ and concentricity is clearly preserved
by such copying, it follows that K ′ is also weakly tame. Thus it can be realized as an
attractor for a flow.

(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i) Suppose that K ′ is realizable as an attractor for a homeomorphism. Then

we have that N (K ′) is number-like by Theorem B. The genus of K ′ is positive: if K ′
were unknotted, then e(T ) should also be unknotted [2, Proposition 2.10, p. 10], but it is
not by construction. It is also finite because K ′ can be realized as an attractor. Since the
cohomology of K and K ′ is the same (non-trivial) it follows from Theorem 6.2 that K ′ is
weakly tame. Then the argument of the previous paragraph run in the reverse shows that K
is also weakly tame and therefore realizable as an attractor for a flow.

As the last result we prove Theorem C from §1, which shows that there exist plenty of
unknotted toroidal sets that cannot be realized as attractors. We will discuss briefly in the
next section whether this can be extended to toroidal sets with positive genus.

THEOREM C. Let H be a feasible group. There exists an uncountable family {Kα} of
toroidal sets such that:

(i) none of the Kα can be realized as an attractor for a homeomorphism of R3;
(ii) the Kα are pairwise different (that is, not ambient homeomorphic);
(iii) each Kα is unknotted;
(iv) each Kα has H as its first Čech cohomology group.
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Proof. We prove the result in the case when no element in H is divisible by 2. The other
case (when every element in H is divisible by 2) is completely analogous. Let the family
{Pα} run over all infinite sets Pα of prime numbers such that 2 �∈ Pα . Evidently {Pα} is an
uncountable family. By Theorem 5.3 for each α there exists an unknotted toroidal set Kα

such that Ȟ 1(Kα; Z) = H and the prime divisors of N (Kα) are precisely the elements
of Pα . Since each Pα is infinite, it follows that N (Kα) is not number-like and then from
Theorem B we conclude that no Kα can be realized as an attractor for a homeomorphism
of R3. Finally, since Pα �= Pβ for α �= β, by Proposition 5.2 the toroidal sets Kα and Kβ

cannot be ambient homeomorphic (not even locally ambient homeomorphic).

We turn to the proof of Theorem B. Since the self-index is defined in terms of polyhedral
solid tori, it is convenient to be able to replace the purely topological situation of the
theorem with a piecewise linear one. This is accomplished by the following lemma.

LEMMA 7.5. Let K ⊆ R3 be an attractor for a homeomorphism f of R3. Then K can be
realized as an attractor for a homeomorphism of R3 that is piecewise linear on R3 − K .

In the proof of the lemma we will use the following notation: if A ⊆ R3 is a compact set
and φ > 0 is a positive number, we write A + φ to denote the set of points whose distance
to A is less than or equal to φ. Obviously A + φ is also a compact set.

Proof of Lemma 7.5. Since K is a stable attractor, it has a compact neighbourhood P
contained in its basin of attraction and such that f (P ) is contained in the interior of P.
Define Pk := f k(P ) for k ≥ 0. These sets form a decreasing neighbourhood basis for K.
Also, since each Pk+1 is contained in the interior of Pk , there exists a positive number
φk > 0 such that Pk+1 + φk ⊆ Pk . Clearly the φk can be chosen so that the sequence {φk}
is strictly decreasing and converges to 0.

Let U := R3 − K . Notice that U is the union of the sets (Pk − Pk+1) together with
R3 − P0. Define a (non-continuous) mapping φ on U by

φ(p) :=
{
φ1 if p ∈ R3 − P0,
φk+1 if p ∈ Pk − Pk+1 (k ≥ 0).

It is easy to check (using that {φk} is a decreasing sequence) that φ|R3−Pk
is bounded

below by φk+1. Since every compact subset of U is contained in a set of the form R3 − Pk ,
it follows that φ is bounded away from 0 on every compact subset of U. Thus φ is strictly
positive in the sense of Moise [23, p. 46]. The map f 2 is a homeomorphism of U, and by
the same approximation theorem that we invoked in the proof of Proposition 5.2 (namely
[23, Theorem 1, p. 253]) there exists a piecewise linear homeomorphism g of U that is a
φ-approximation of f 2; that is, such that d(f 2(p), g(p)) < φ(p) for every p ∈ U .

Extend g to a map ĝ on all of R3 by defining ĝ = f 2 on K (and of course ĝ = g on U).
Clearly ĝ is a bijection of R3 and it is continuous on U. We claim that ĝ is also continuous
on each p ∈ K . To check this pick p ∈ K and a sequence {pn} in U converging to p. By
definition ĝ(p) = f 2(p) and ĝ(pn) = g(pn), so we may write
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d(ĝ(p), ĝ(pn)) = d(f 2(p), g(pn)) ≤ d(f 2(p), f 2(pn))

+ d(f 2(pn), g(pn)) < d(f 2(p), f 2(pn)) + φ(pn)

where in the last step we have used that g is a φ-approximation to f 2 on U. Now notice
that {pn} eventually enters every Pk and so φ(pn) eventually becomes less than or equal
to φk+1 (we are again using the fact that {φk} is decreasing). Thus {φ(pn)} converges to 0
because the {φk} were chosen to converge to 0. Similarly d(f 2(p), f 2(pn)) converges to
0 because f 2 is continuous. Hence the distance between ĝ(p) and ĝ(pn) converges to 0
and so ĝ is continuous at p. In sum, ĝ is a continuous bijection of R3 and therefore (by the
invariance of domain theorem) it is a homeomorphism. Evidently it is piecewise linear on
R3 − K by construction.

To prove the lemma it only remains to show that K is an attractor for ĝ. Since g is a
φ-approximation to f 2 and φ|Pk−K ≤ φk+1, we have g(Pk − K) ⊆ f 2(Pk − K) + φk+1.
Using f 2(Pk) = Pk+2, we may then write

g(Pk − K) ⊆ f 2(Pk − K) + φk+1 ⊆ Pk+2 + φk+1 ⊆ Pk+1.

Consequently ĝ(Pk), which is the union of g(Pk − K) and ĝ(K) = f 2(K) = K , is also
contained in Pk+1. It follows that K is an attractor for ĝ.

Proof of Theorem B. By Lemma 7.5 we may assume that the homeomorphism f which
realizes K as an attractor is piecewise linear on R3 − K . Denote by A(K) the basin of
attraction of K. Since K is toroidal, it has a neighbourhood T that is a polyhedral solid torus
contained in A(K). Let n be a sufficiently high iterate of f so that f n(T ) is contained in
the interior of T and define Tj := f nj (T ) for j ≥ 0. These {Tj } form a nested family of
polyhedral solid tori that provide a neighbourhood basis for K.

Now consider any pair Tj+1 ⊆ Tj . The map f nj provides a homeomorphism from the
pair (T0, T1) onto the pair (Tj , Tj+1) which is piecewise linear on T0 − int T1. Thus by
Lemma 2.1 we have that N(Tj+1, Tj ) = N(T1, T0). It then follows from Proposition 4.1
that N (K) is number-like.

To conclude the proof observe that K has finite genus because all the Tj are ambient
homeomorphic to each other and therefore have the same genus, and then Theorem 6.1
shows that N (K) ∼ 1 if and only if K is weakly tame. But the latter is equivalent to K
being realizable as an attractor for a flow.

An alternative (and somewhat more elementary) argument for the last paragraph of the
proof above can be obtained by resorting to [2, Theorem 3.11, p.19], where it is shown that
a toroidal set can be realized as an attractor for a flow if and only if it has a neighbourhood
basis of concentric solid tori. This is equivalent to requiring that K be weakly tame by
Proposition 6.4.

8. Concluding remarks
In this final section we briefly discuss some loose ends.
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8.1. Topological invariance of the self-index. One of the properties of the self-index is
its invariance under ambient homeomorphisms (or in fact, under homeomorphisms of a
neighbourhood of the toroidal set). There is no reason to expect that two homeomorphic
but not ambient homeomorphic toroidal sets should have the same self-index; that is, that
the self-index should be a topological invariant of toroidal sets. However, we do not know
how to construct an example that illustrates this. Also, Proposition 5.1 does show that
having 2 as a prime factor of the self-index is indeed a topological invariant. This prompts
the question of whether the self-index enjoys some subtler sort of topological invariance
property, perhaps involving only its prime factors or its number-like nature.

8.2. Dependence relations between Čech cohomology, the self-index and the genus. We
now have three magnitudes associated to a toroidal set K: its Čech cohomology Ȟ ,
its self-index N , and its genus g. We already showed that Ȟ and N are essentially
independent magnitudes beyond the elementary constraints between them discussed before
Theorem 5.3. Something similar occurs for Ȟ and g. Theorems 6.1 and 6.2 entail that
if a toroidal set has cohomology Ȟ �= 0 and genus 0 < g < +∞, then its self-index
must be N ∼ 1 and therefore Ȟ ∼ 1 by Proposition 4.3. Beyond this condition, they
are independent: ordinary knots provide examples of a toroidal set having Ȟ ∼ 1 and a
prescribed positive and finite genus, and solenoids provide examples of toroidal sets having
a prescribed cohomology and 0 (if unknotted) or infinite (if knotted) genus. However,
the interaction between g and N is much more complicated, and in fact we do not know
whether there exist toroidal sets with a prescribed genus 0 < g < +∞ and a prescribed
self-index N.

A partial result in this direction is afforded by the following theorem, which uses a
variation on the technique of Theorem 5.3.

THEOREM 8.1. Let N �= 0 be a feasible group such that 2|N . Then there exists a toroidal
set K such that N (K) = N and g(K) = 1.

The requirement that 2|N is necessary, otherwise Ȟ �= 0 and by Theorems 6.1 and 6.2
we would have that N ∼ 1, while in general N is arbitrary.

Proof of Theorem 8.1. Write N in the form

N = lim−→ { Z ·nj �� Z }.
Since 2|N , arguing as in the proof of Theorem 5.3, we may assume that all the nj are even;
moreover, since N �= 0 we may also assume nj ≥ 2 for every j (see Lemma 3.4).

We construct the required toroidal set as the intersection of a nested family of tori {Tj }
as follows. Let V be the standard unknotted torus in R3 and let W ⊆ int V be another
solid torus arranged as a Whitehead curve (that is, as the innermost curve in Figure 1(a)).
Now start with a torus T1 ⊆ R3 knotted in a non-trivial way. Let W1 ⊆ int T1 be another
solid torus which lies inside T1 according to the pattern (V , W). Now let T2 ⊆ int W1 be a
third solid torus that winds monotonically n1/2 times inside W1 (as in the generalized
solenoids). Let again W2 ⊆ int T2 be a solid torus which lies inside T2 in the pattern
(V , W) and then let T3 ⊆ int W2 wind monotonically n2/2 times inside W2. Continue
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in this fashion and define K := ⋂
j Tj . Notice that both {Tj } and {Wj } are standard bases

for K.
Since the winding number of W inside V is 0, the same is true of every pair Wj ⊆ Tj .

Thus Ȟ 1(K; Z) = 0. Notice that N(Tj+1, Tj ) = N(Tj+1, Wj) · N(Wj , Tj ) = (nj /2) ·
2 = nj by construction. This implies that K is indeed a toroidal set (because it is not
cellular by Proposition 4.1) and also that N (K) = N by Proposition 4.1.

Finally, we show that g(K) = 1. This is very similar to the proof that the Whitehead
double of a knot has genus 1. First, since the core curve of W bounds a Seifert surface of
genus 1 inside the torus V, each Wj also bounds a Seifert surface of genus 1 and therefore
g(K) ≤ 1 because the Wj form a neighbourhood basis of K. To prove that g(K) > 0,
suppose to the contrary that K were unknotted. Then K would have a neighbourhood basis
of unknotted tori, and in particular we could interpolate an unknotted torus U between
T1 and Tj for some big enough j. Then N(Tj , T1) = N(Tj , U) · N(U , T1) and, since
N(Tj , T1) = N(Tj , Tj−1) · · · · · N(T2, T1) = nj−1 · · · · · n1 �= 0 by the computations
of the previous paragraph, N(U , T1) is also non-zero. In particular, U is a satellite of T1,
but this is impossible: the unknot cannot be a satellite of a non-trivial knot (see [5, Remark
before Proposition 3.12, p. 39] or [26, Corollary 10, p. 113]).

8.3. A remark about the construction of homeomorphisms with a prescribed attractor.
The self-index (and the genus) are very useful as obstructions for the realizability of a
toroidal set as an attractor, but no so much as complete characterizations. This is due to
the fact that even in the presence of the most convenient geometric hypotheses, defining a
homeomorphism that realizes a given set K as an attractor is very difficult. Very roughly
speaking, the main difference between the case of flows and homeomorphisms stems from
the fact that a flow can be ‘slowed down’ near any prescribed set. Thus, if one has already
defined a flow near K in such a way that it carries points towards K (using whatever
geometric assumptions are available), then one can gradually slow it down and make
it stationary on K. For homeomorphisms there is no possibility of doing this last step
and therefore even if the homeomorphism behaves in a promising manner near K (again,
moving points towards K), it is very difficult to ensure that it does not ‘overshoot’ K. This,
for instance, explains that the proof of Corollaries 7.1 and 7.2 proceeds by showing that the
toroidal sets are actually attractors for a flow. It is an open problem to find constructions of
homeomorphisms that realize sets as attractors without proceeding through flows.
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