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We consider the existence and stability of constrained solitary wave solutions to the
generalized Ostrovsky equation

∂x
(
∂tu+ α∂xu+ ∂x(f(u)) + β∂3

xu
)
= γu, ‖u‖2

L2 = λ > 0,

where the homogeneous nonlinearities f(s) = α0|s|p + α1|s|p−1s, with p> 1. If
α0, α1 > 0, α ∈ R, and γ < 0 satisfying βγ = −1, we show that for 1 < p < 5, there
exists a constrained ground state traveling wave solution with travelling velocity
ω > α− 2. Furthermore, we obtain the exponential decay estimates and the weak
non-degeneracy of the solution. Finally, we show that the solution is spectrally
stable. This is a continuation of recent work [1] on existence and stability for a water
wave model with non-homogeneous nonlinearities.
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1. Introduction

In this paper, we consider the existence and stability of solitary wave solutions of
the generalized Ostrovsky equation

∂x
(
∂tu+ α∂xu+ ∂x(f(u)) + β∂3xu

)
= γu, (1.1)

where u = u(t, x) : R+ × R → R is the wave shape distribution; the homogeneous
nonlinearities f(u) = α0|u|p +α1|u|p−1u, with degree p> 1; and α, α0, α1, β, and γ
are some parameters that arise during the derivation of the evolution equation. This
study was inspired by the work of Levandosky [8] on the existence and stability of
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2 F. Han and Y. Gao

solitary waves of (1.1) with Lp-norm constraints, and in this paper, we consider the
case of solutions with L2-norm constraints. This is a continuation of recent work
of Chen, Gao, and Han [1] for existence and stability for a water wave model with
non-homogeneous nonlinearities.

If f(u) = u2, α=0, and β = γ = 1, (1.1) is the classical Ostrovsky equation (see
[18]):

∂x
(
∂tu− ∂3xu− ∂x(u

2)
)
= u,

which describes the unidirectional propagation of weakly nonlinear long surface and
internal waves with small amplitude in rotating fluids. The spectral, orbital, and
weak orbital stabilities of the solitary wave solutions have been proved in [14, 15,
17]. If f(u) = |u|2u, α=0, and β = γ = 1, (1.1) is the Ostrovsky–Vakhnenko model
or the short pulse model:

∂x
(
∂tu− ∂3xu− ∂x(u

3)
)
= u,

which appears in the studies of water waves with Coriolis forces and the amplitude
of short pulses in optical fibres, see, e.g., [2, 18, 19, 24]. If f(u) = up or |u|p−1u,
then letting u = vx, where v satisfies v, vx → 0, |x| → +∞, we get

∂x
(
∂tv − ∂3xv − (|vx|p)

)
= v or ∂x

(
∂tv − ∂3xv − (|vx|p−1vx)

)
= v.

Their local and global well-posedness (see, e.g., [3, 12, 21, 24–26]) and blowup
solutions [16] have been established. Considering the solitary wave of form v(t, x) =
φ(x− ωt) yields the profile equation

φ′′′′ + ωφ′′ + φ+ (|φ′|p)′ = 0 or φ′′′′ + ωφ′′ + φ+ (|φ′|p−1φ′)′ = 0.

The existence of variational solutions can be found in [8–10], etc. When p=2, the
solution is unique (see [27]). Recently, Posukhovskyi and Stefanov [22, 23] consid-
ered the existence of solitary waves, with the L2-norm constraint. In detail, they
proved the existence and spectral stability for (1.1) with f(u) = |u|p (1 < p < 3)
or f(u) = |u|p−1u (1 < p < 5), which satisfy ‖u‖2

L2 = λ > 0. These results are

different from those of Levandosky and Liu [9, 10] who considered the existence
of solitary waves with Lp+1-norm constraints; meanwhile, they proved that the
solitary waves are unstable when p is sufficiently large.

In this paper, we consider that f (u) is the homogeneous nonlinearity with degree
p> 1:

f(u) = |u|p + |u|p−1u.

Levandosky [8] proved that for 2 ≤ p < 5, there exists an Lp-norm constrained soli-
tary wave and it is stable. The purpose of this paper is to prove the existence and
stability of L2-norm constrained solitary waves. This is based on the recent work of
Chen, Gao, and Han [1] on the existence and stability of L2-norm constrained soli-
tary waves in the intracoastal zone, which has a non-homogeneous nonlinearity. We
consider the existence and stability of solitary waves with the L2-norm constraint
for (1.1). Let u = ∂xv, then (1.1) becomes

∂x
(
∂t∂xv + ∂x

(
α∂xv + α0|∂xv|p + α1|∂xv|p−1∂xv

)
+ β∂4xv

)
= γ∂xv,
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Spectral stability of constrained solitary waves 3

where

lim
|x|→+∞

v = lim
|x|→+∞

∂xv = 0. (1.2)

Integrating the above equation with respect to x, we get

∂x
(
∂tv + α∂xv + α0|∂xv|p + α1|∂xv|p−1∂xv + β∂3xv

)
= γv. (1.3)

The purpose of this paper is to construct stable solitary wave solutions of (1.3) of
the form

v(t, x) = φ(x− ωt). (1.4)

1.1. Problem setting

Substituting (1.4) into (1.3), we get φ that satisfies the profile equation

(α− ω)φ′′ + α0 (|φ′|p)
′
+ α1

(
|φ′|p−1φ′

)′
+ βφ′′′′ − γφ = 0. (1.5)

To state our problem, we introduce some notations. Denote ‖ · ‖Lp by the usual
norm of Lebesgue spaces Lp = Lp(R), with p ≥ 1. For u(x) ∈ L1, define the Fourier
transform and its Fourier inverse transform as

û(ξ) =
1√
2π

∫
R
u(x)e−ixξdx, u(x) =

1√
2π

∫
R
û(ξ)eixξdx.

Define the norms in the Sobolev spaces Hk :=W k,2(R) with k ∈ N and k ∈ R by

‖u‖Hk =
k∑

α=0

‖∂αx u‖L2 , ‖u‖Hk =

(∫
R

(
1 + |ξ|2

)k |û(ξ)|2dξ) 1
2

,

respectively. Define the semi-morn on the homogeneous Sobolev space Ḣk as

‖u‖Ḣk =

(∫
R
|ξ|2k|û(ξ)|2dξ

) 1
2

.

The dual space Ḣ−k with k ∈ N is defined by

Ḣ−k =
{
f ∈ S ′(R) : f = ∂kxg, ‖f‖Ḣ−k = ‖g‖L2

}
,

where S ′(R) is the dual of the Schwartz space S(R).
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4 F. Han and Y. Gao

We consider the solutions of the minimization problem with respect to (1.3):
E[u] = − α0

p+1

∫
R |u′|pu′dx

− α1
p+1

∫
R |u′|p+1dx+ β

2

∫
R |u′′|2dx− γ

2

∫
R |u|2dx→ min,∫

R |u′(x)|2dx = λ > 0,

(1.6)

and
E [u] = − α0

p+1

∫
R |u|pudx

− α1
p+1

∫
R |u|p+1dx+ β

2

∫
R |u′|2dx− γ

2

∫
R |∂−1

x u|2dx→ min,∫
R |u(x)|2dx = λ > 0, u ∈ Ḣ−1.

(1.7)

Here, ′ = ∂x. Notice that E[u] = E [u′]. The Euler–Lagrange equations corre-
sponding to the constrained functionals E[u] and E [u] are derived in appendix
A.

To study the stability of solutions, we linearize the solution v(t, x) of (1.3) near
φ(x− ωt), where φ is the minimizer of (1.6). Then, we get the linearized equation

∂t∂xv − (ω − α)∂2xv + (α0 + α1)∂x
(
|φ′|p−2φ′∂xv

)
+ β∂4xv = γv.

Let v(t, x) = etµz(x), we get the eigenvalue problem

L+z = µ∂xz, (1.8)

where

L+ = (ω − α)∂2x − (α0 + α1)∂x
(
|φ′|p−2φ′∂x(·)

)
− β∂4x + γ Id .

Here, Id is the identity operator. Thus, L+ is a self-adjoint unbounded operator in
L2 and D(L+) = H4. Spectral instability is to study the existence of nontrivial pairs
(µ, z) for problem (1.8) with <µ > 0 and z 6=0 for z ∈ D(L+). On the contrary, the
spectral stability means that no such pair (µ, z) exists. Let

L+ = −∂xL+∂x,

where

L+ = −(ω − α) Id+α0p|φ′|p−2φ′ + α1p|φ′|p−1 + β∂2x − γ∂−2
x .

Here, D(L+) = H2 ∩ Ḣ−2. Thus, (1.8) becomes

−∂xL+(∂xz) = µ∂xz. (1.9)

Using (1.2), we obtain that (1.9) is equivalent to (−L+∂x)z = µz, that is, the
eigenvalue µ of −L+∂x. Let ν be the eigenvalue of self-adjoint operator ∂xL+ =
(−L+∂x)

∗, i.e.,

∂xL+z = νz. (1.10)

Thus, the spectral stability of travelling wave solutions is to prove that the
eigenvalue problem (1.10) has no nontrivial solutions (ν, z) with <ν > 0 and z 6=0.
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1.2. Main results

To state the main results, we define the weak non-degeneracy and spectral stability.

Definition 1.1. The wave φ is weak non-degenerate, if φ⊥Ker[L+]. We call the
solution of (1.7) to be spectrally stable, if the eigenvalue problem (1.10) has no
nontrivial solution (ν, z) with <ν > 0, z 6= 0.

The first result is existence and decay estimates of constrained solitary waves.

Theorem 1.2 Assume that λ, α0, α1 > 0, γ < 0 satisfy βγ = −1, α ∈ R and
ω > α−2. Then, for 1 < p < 5, the constrained variational problems (1.6) and (1.7)
exist solutions

φ = φλ ∈ H4, ψ = ψλ ∈ H2 ∩ Ḣ−2,

respectively, which satisfy

φ′ = ψ,

(α− ω)φ′′ + α0 (|φ′|p)
′
+ α1

(
|φ′|p−1φ′

)′
+ βφ′′′′ − γφ = 0,

(α− ω)ψ + α0|ψ|p + α1|ψ|p−1ψ + βψ′′ − γ∂−2
x ψ = 0,

|φ(x)|+ |φ′(x)|+ |ψ(x)| ≤ Ce−kω ·|x|,

where C = C(α, ω, β, γ) > 0 and

kω =


√

ω−α−
√

(α−ω)2−4

2β , ω > α+ 2,√
ω−α
4β + 1

2

√
−γ
β , α− 2 < ω < α+ 2.

The second result is weak non-degeneracy and spectral stability of solutions in
theorem 1.2.

Theorem 1.3 The minimizer φ = φλ of the constrained variational problem
(1.6) constructed in theorem 1.2 is weakly non-degenerate. Furthermore, if we
additionally assume that 〈

L−1
+ φ, φ

〉
6= 0,

then φ is spectrally stable.

Here are some comments on the theorems.

Remark 1.4. If we consider the variational problems (1.6) without the L2-norm
constraints, the restriction ω > α− 2 in theorem 1.2 is optimal. Indeed, by (2.12),

E[φ] < λ =

∫
R
|φ′|2dx,
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i.e.,

β

2

∫
R
|φ′′|2dx− γ

2

∫
R
|φ|2dx (1.11)

<
α0

p+ 1

∫
R
|φ′|pφ′dx+

α1

p+ 1

∫
R
|φ′|p+1dx+

∫
R
|φ′|2dx.

Using the Pohozaev identity deduced in appendix B, we have

β

2

∫
R
|φ′′|2dx− γ

2

∫
R
|φ|2dx

=
β

2

(
(2p− 1)α0

2(p+ 1)β

∫
R
|φ′|pφ′dx+

(2p− 1)α1

(2(p+ 1))β

∫
R
|φ′|p+1dx

)
− 3

4

(
−2(α− ω)

3

∫
R
|φ′|2dx− (3− 2p)α0

3(p+ 1)

∫
R
|φ′|pφ′dx− (3− 2p)α1

3(p+ 1)

∫
R
|φ′|p+1dx

)
=

α0

p+ 1

∫
R
|φ′|pφ′dx+

α1

p+ 1

∫
R
|φ′|4dx

+
1

2
(α− ω)

∫
R
|φ′|2dx+

(2p− 1)α1

4(p+ 1)

∫
R
|φ′|p+1dx.

This combined with lemma 2.6 shows that (1.11) becomes[
1

2
(α− ω)− 1

] ∫
R
|φ′|2dx ≤ − α1

p+ 1

∫
R
|φ′|p+1dx < 0.

This implies that ω > α−2. However, it is not clear whether this condition is optimal
when considering the L2-norm constraints. Moreover, it is not clear whether the
solution obtained in theorem 1.2 is unique. Finally, theorem 1.2 implies that there
exists ω, α satisfying ω > α − 2 such that the solution exists, and it is not clear
whether there exists a solution φ = φλ for any ω > α− 2.

Remark 1.5. Levandosky has proved the existence and stability of weak solutions
with Lp-norm constraints with 2 ≤ p < 5 for (1.1) with α=0 (see Main Result
(i) in [8]). Compare with his results, we consider the L2-norm constraints in this
paper; the weak solution obtained in theorem 1.2 is actually a strong solution (see
proposition 2.2); moreover, we obtain a fine decay estimate of the solution.

2. Existence of constrained solitary waves

In this section, we consider the existence and decay estimates of constrained solitary
waves of (1.3).

2.1. Decay estimates

We first define the weak solutions of (1.5).
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Definition 2.1. We call φ ∈ H2 a weak solution of (1.5), if〈
(α− ω)φ′′ + α0 (|φ′|p)

′
+ α1

(
|φ′|p−1φ′

)′ − γφ, ψ
〉
+ 〈βφ′′, ψ′′〉 = 0, (2.1)

for any ψ(x) ∈ C∞
c (R), where 〈·, ·〉 = 〈·, ·〉L2,L2 .

The weak solution defined above is actually a strong solution.

Proposition 2.2. Assume that β > 0 and γ < 0, then the weak solution φ ∈ H2 of
the profile equation (1.5) defined by (2.1) actually satisfies φ ∈ H4.

Proof. The proof is based on the bootstrap argument. Since β > 0 and γ < 0, the
formal solution of (1.5) is

φ̃ = −
(
β∂4x − γ Id

)−1
(
(α− ω)φ′′ + α0 (|φ′|p)

′
+ α1

(
|φ′|p−1φ′

)′) ∈ L2. (2.2)

Since (β∂4x − γ Id)−1 : L2 → H4, we get φ̃ ∈ H3. Using (1.5), we have〈(
β∂4x − γ Id

)
φ, ψ

〉
=−

〈(
(α− ω)φ′′ + α0 (|φ′|p)

′
+ α1

(
|φ′|p−1φ′

)′)
, ψ
〉

=
〈(
β∂4x − γ Id

)
φ̃, ψ

〉
, ∀ψ ∈ C∞

c (R),

where 〈·, ·〉 = 〈·, ·〉H−2,H2 . So,

〈
φ,
(
β∂4x − γ Id

)
ψ
〉
=
〈
φ̃,
(
β∂4x − γ Id

)
ψ
〉
, ∀ψ ∈ C∞

c (R).

Thus, we have φ = φ̃ in the distribution sense, which means φ ∈ H3. Since φ is a
weak solution, we obtain

α0 (|φ′|p)
′
+ α1

(
|φ′|p−1φ′

)′ ∈ L2.

Thus, by (2.2), we obtain φ ∈ H4. �

Next, we consider the decay estimates of solutions for the profile equation (1.5).

Proposition 2.3. Suppose β > 0, γ < 0, and ω > α−2
√
−βγ, assume that φ ∈ H4

is a solution of (1.5). Then,

|φ(x)|+ |φ′(x)| ≤ Ce−kω ·|x|, (2.3)

where C = C(α,w, β, γ) > 0 and

kω =


√

ω−α−
√

(α−ω)2+4βγ

2β , ω > α+ 2
√
−βγ,√

ω−α
4β + 1

2

√
−γ
β , α− 2

√
−βγ < ω < α+ 2

√
−βγ.
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Proof. According to β > 0, γ < 0, and ω > α−2
√
−βγ, we obtain that −(α−ω)ξ2+

βξ4−γ > 0 for any ξ ∈ R. Thus,
(
(α− ω)∂2x + β∂4x − γ Id

)−1
is a bounded operator

in L2. Therefore, the solution of (1.5) is

φ = −
(
(α− ω)∂2x + β∂4x − γ Id

)−1
∂x
(
α0|φ′|p + α1|φ′|p−1φ′

)
. (2.4)

The asymptotic behaviour (1.2) yields that

lim
|x|→+∞

(
α0|φ′|p + α1|φ′|p−1φ′

)
(x) = 0, (2.5)

for any φ ∈ H4 ⊂ C0(R); meanwhile,

(
(α− ω)∂2x + β∂4x − γ Id

)−1
g(x) =

∫
R
Gα,ω,β,γ(x− y)g(y)dy,

where Gα,ω,β,γ(x) is the fundamental solution of
(
(α− ω)∂2x + β∂4x − γ Id

)
φ = 0,

satisfying

Ĝα,ω,β,γ(ξ) =
1

−(α− ω)ξ2 + βξ4 − γ
.

Let h1 and h2 be the roots of the polynomial −(α − ω)h2 + βh4 − γ with respect
to h, then

h21 =
α− ω +

√
(α− ω)2 + 4βγ

2β
, h22 =

α− ω −
√
(α− ω)2 + 4βγ

2β
,

√
2π

2h
ê−h|x|(ξ) =

1

2h

(∫ 0

−∞
e(h−iξ)xdx+

∫ +∞

0

e−(h+iξ)xdx

)
=

1

h2 + ξ2
,

<h =


√

ω−α−
√

(α−ω)2+4βγ

2β , ω > α+ 2
√
−βγ,√

ω−α
4β + 1

2

√
−γ
β , α− 2

√
−βγ < ω < α+ 2

√
−βγ,

and

Gα,ω,β,γ(x) =

√
2π

2h
√
(α− ω)2 + 4βγ

e−<h·|x|, ω > α− 2
√
−βγ.

Thus,

∣∣∣G(k)
α,ω,β,γ(x)

∣∣∣ ≤

Ce

−

√
ω−α−

√
(α−ω)2+4βγ

2β
|x|
, ω > α+ 2

√
−βγ,

Ce

√
ω−α
4β

+1
2

√
−γ
β
, α− 2

√
−βγ < ω < α+ 2

√
−βγ,

where k ∈ N and C = C(α, ω, β, γ) > 0 is a constant.
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According to (2.5), for any ε = ε(α0, α1, α, ω, β, γ) > 0, there exists sufficiently
large N, such that when |x| > N ,∣∣(α0|φ′|p + α1|φ′|p−1φ′

)
(x)
∣∣ < ε|φ′(x)|.

Thus, using (2.4), we obtain

φ′ =−
∫
|y|>N

G′′
α,ω,β,γ(x− y)

(
α0|φ′|p + α1|φ′|p−1φ′

)
(y)dy (2.6)

−
∫
|y|≤N

G′′
α,ω,β,γ(x− y)

(
α0|φ′|p + α1|φ′|p−1φ′

)
(y)dy.

We consider the integral equation on L∞({x : |x| > N}):

Fφ′(x)=χ{x:|x|>N}

[
φ′(x) +

∫
|y|≤N

G′′
α,ω,β,γ(x− y)

(
α0|φ′|p + α1|φ′|p−1φ′

)
(y)dy

]
,

where

Fφ′(x) = −χ{x:|x|>N}

∫
|y|>N

G′′
α,ω,β,γ(x− y)

(
α0|φ′|p + α1|φ′|p−1φ′

)
(y)dy.

Let

Hm =

{
u(x) : ‖u‖Hm := sup

|x|>N

|u(x)|em|x| < +∞, m ≥ 0

}
,

then for any m ∈ [0,<h] and φ′(x) ∈ Hm,

|Fφ′(x)| =

∣∣∣∣∣−χ{x:|x|>N}

∫
|y|>N

G′′
α,ω,β,γ(x− y)

(
α0|φ′|p + α1|φ′|p−1φ′

)
(y)dy

∣∣∣∣∣
≤Cε

∫
R
|G′′

α,ω,β,γ(x− y)||φ′(y)|dy

≤Cε‖φ′‖Hm

∫
R
e−<h·|x−y|e−m|y|dy ≤ Cε‖φ′‖Hme

−m|x|.

Thus, F : Hm → Hm satisfies ‖F‖L(Hm) ≤ Cε. Selecting ε> 0 sufficiently small
such that Cε < 1, we obtain that Id−F is bounded and invertible; moreover,

(Id−F)−1 =
∞∑
k=0

Fk,
∥∥(Id−F)−1

∥∥
Hm

≤ 1

1− ‖F‖Hm

,

where F0 = Id. Thus, using (2.6) and taking m =0, we obtain the von Neumann
series

φ′(x) =
∞∑
k=0

Fk

[
−
∫
|y|≤N

G′′
α,ω,β,γ(x− y)

(
α0|φ′|p + α1|φ′|p−1φ′

)
(y)dy

]
.
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This combined with∣∣∣∣∣−
∫
|y|≤N

G′′
α,ω,β,γ(x− y)

(
α0|φ′|p + α1|φ′|p−1φ′

)
(y)dy

∣∣∣∣∣ ≤ Ce−<h·|x|

gives φ′ ∈ H<h. By the definition of Hm, we get sup{x:|x|>N} |φ′(x)| ≤ Ce−<h·|x|.
This combined with the boundedness of φ′(x) gives

sup
R

|φ′(x)| ≤ Ce−<h·|x|.

In addition, φ(x) has the same decay estimate. In fact, note that lim
|x|→+∞

φ = 0,

then

φ(x) =

∫ x

−∞
φ′(y)dy = −

∫ ∞

x

φ′(y)dy,

and φ(x) has a decay estimate with the same order as φ′(x) at x = ±∞. �

Remark 2.4. Consider the zero eigenvalue problems of L+ and L+ defined in (1.8);
we find that the solutions w of L+w = 0 and L+w = 0 have similar estimates as
(2.3) by using proposition 2.3.

2.2. Variational properties

Recalling the previous constrained variational problems (1.6) and (1.7), we
introduce the following cost functions:

ME(λ) = inf
u∈H2

‖u′‖2
L2=λ

{
− α0

p+ 1

∫
R
|u′|pu′dx− α1

p+ 1

∫
R
|u′|p+1dx (2.7)

+
β

2

∫
R
|u′′|2dx− γ

2

∫
R
|u|2dx

}
,

ME(λ) = inf
u∈H1∩Ḣ−1

‖u‖2
L2=λ

{
− α0

p+ 1

∫
R
|u|pudx− α1

p+ 1

∫
R
|u|p+1dx (2.8)

+
β

2

∫
R
|u′|2dx− γ

2

∫
R
|∂−1

x u|2dx
}
.

If they exist, then they correspond to the infimums of the constrained variational
functionals (1.6) and (1.7).

We first study some properties of the functional E[u] and E [u].
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Lemma 2.5. If γ < 0 and 1 < p < 5, then the functional (1.6) is bounded from
below, i.e., ME(λ) > −∞. In addition, ME(λ) = ME(λ); moreover, if φλ is a
minimizer of ME(λ), then φ

′
λ is a minimizer of ME(λ).

Proof. Using the Gagliardo–Nirenberg–Sobolev inequality

‖v‖pLp ≤ Cp‖v‖
(1−βp)p

L2 ‖∇v‖βpp
L2 , βp =

1

2
− 1

p
, (2.9)

where Cp > 0 is a constant, we get

E[u] =− α0

p+ 1

∫
R
|∂xu|p∂xudx− α1

p+ 1

∫
R
|∂xu|p+1dx+

β

2

∫
R
|∂2xu|2dx− γ

2

∫
R
|u|2dx

≥− |α0|+ |α1|
p+ 1

‖∂xu‖p+1
Lp+1 +

β

2
‖∂2xu‖2L2 − γ

2
‖u‖2L2

≥− C
|α0|+ |α1|

p+ 1
‖∂xu‖1−βp+1(p+1)

L2 ‖∂2xu‖
βp+1(p+1)
L2 +

β

2
‖∂2xu‖2L2 − γ

2
‖u‖2L2

≥− C(α0, β)‖∂xu‖

(
1−βp+1

)(
βp+1(p+1)−2

)
βp+1

L2 − γ

2
‖u‖2L2

=− C(α0, β)λ

(
1−βp+1

)(
βp+1(p+1)−2

)
2βp+1 − γ

2
‖u‖2L2 .

Since γ < 0, ME(λ) > −∞.

Denote S by the set of φ ∈ S(R) such that ‖φ‖2
L2 = λ, φ̂ has a compact support,

and there exists δ > 0 such that φ̂(ξ) = 0 for |ξ| < δ. Clearly, S is dense in {φ ∈
H1 : ‖φ‖2

L2 = λ}, and ∂−1
x φ is well-defined. Thus,

ME(λ) = inf
φ∈S

E [φ] = E[∂−1
x φ] ≥ME(λ),

ME(λ) = inf
φ∈S

E [φ] ≤ inf
φ∈S∩H2

E [φ] =ME(λ).

which impliesME(λ) =ME(λ). Moreover, if φλ is a minimizer of (2.7), then E[φλ] =
E [φ′λ]. �

Theorem 2.5 implies the equivalence of ME(λ) and ME(λ). Next, let {uk}∞k=0 be
a minimizing sequence of E [u] constrained on {u : ‖u‖2

L2 = λ}, i.e.,

lim
k→∞

E [uk] =ME , ‖uk‖2L2 = λ. (2.10)

Then, there exists a subsequence of {uk}∞k=0 (still denoted as {uk}∞k=0), such that∫
R
|uk|pukdx→ E1,

∫
R
|uk|p+1dx→ E2,∫

R
|∂xuk|2dx→ E3,

∫
R
|∂−1

x uk|2dx→ E4,
k → +∞. (2.11)

We will prove that E1 and E2 are positive, which is crucial for proving strict
subadditivity of ME(λ) in § 2.3.
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Lemma 2.6. If α0, α1 > 0, βγ = −1, and 1 < p < 5, then for any minimizing
sequence satisfying (2.11), we have E1, E2 > 0.

Proof. E2 ≥ 0 is obvious, and we claim that E1 ≥ 0. If not, note that α0 > 0 and
the other terms of E [u] are symmetric with respect to u. Let u → −u and then
E [−u] < E [u], i.e., −u is closer to ME(λ).

Next, we claim that E1, E2 6= 0. If not, using the Hölder inequality and the
embedding Hs−1 ⊂ L∞, s > 2, we get E1 = E2 = 0. Since βγ = −1,

ME(λ) = inf
‖u‖2

L2=λ

{
β

2

∫
R
|∂xu|2dx− γ

2

∫
R
|∂−1

x u|2dx
}

= inf
‖u‖2

L2=λ

{
β

2

∫
R
ξ2|û(ξ)|2dξ − γ

2

∫
R

1

ξ2
|û(ξ)|2dξ

}

= inf
‖u‖2

L2=λ

{
β

2

∫
R

1

ξ2

(
ξ2 − 1

β

)2

|û(ξ)|2dξ +
∫
R
|û(ξ)|2dξ

}
≥ λ.

The above inequality is actually an equality. In fact, it is necessary to select
u(x ) such that û(ξ) is concentrated at {ξ : ξ = 1√

β
}. Next, in order to derive

a contradiction and complete the proof, it is only necessary to show

ME(λ) < λ. (2.12)

Following the spirits of [22], let ωε(x) ∈ L1 such that

ω̂ε(ξ) =
1√
ε

{
χ̂

(
ξ − 1√

β

ε

)
+ χ̂

(
ξ + 1√

β

ε

)

+ε1−σ

[
χ̂

(
ξ − 2√

β

ε

)
+ χ̂

(
ξ + 2√

β

ε

)]}

and

‖ωε(·)‖2L2 = λ,

where ε> 0 and 0 < σ � 1 are sufficiently small, satisfying ε%
√
β < 1 and χ ∈

S(R) is a non-negative function, such that χ̂ is an even C∞ bump function and
supp χ̂ ⊂ (−%, %), ϱ> 0. Thus,

ωε(x) =
√
εχ(εx)

[
e
i x√

β + e
−i x√

β + ε1−σ

(
e
i 2x√

β + e
−i 2x√

β

)]
=2

√
εχ(εx)

(
cos

(
x√
β

)
+ ε1−σ cos

(
2x√
β

))
∈ R.
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Since ε%
√
β < 1, we have

supp χ̂

(
ξ − 1√

β

ε

)⋂
supp χ̂

(
ξ + 1√

β

ε

)
⋂

supp χ̂

(
ξ − 2√

β

ε

)⋂
supp χ̂

(
ξ + 2√

β

ε

)
= ∅.

Thus,pt

β

2

∫
R

1

ξ2

(
ξ2 − 1

β

)2

|ω̂ε(ξ)|2dξ

=
β

2

∫
R

1

ξ2

(
ξ2 − 1

β

)2
∣∣∣∣∣ 1√ε χ̂

(
ξ − 1√

β

ε

)∣∣∣∣∣
2

+

∣∣∣∣∣ 1√ε χ̂
(
ξ + 1√

β

ε

)∣∣∣∣∣
2
 dξ

+
β

2

∫
R

1

ξ2

(
ξ2 − 1

β

)2
∣∣∣∣∣ 1√ε χ̂

(
ξ − 2√

β

ε

)∣∣∣∣∣
2

+

∣∣∣∣∣ 1√ε χ̂
(
ξ + 2√

β

ε

)∣∣∣∣∣
2
 dξ

=
β

2

∫
R

(
εξ + 2√

β

)2
(εξ)2(

εξ + 1√
β

)2 |χ̂(ξ)|2dξ + β

2

∫
R

(
εξ − 2√

β

)2
(εξ)2(

εξ − 1√
β

)2 |χ̂(ξ)|2dξ

+
β

2
ε2(1−σ)

∫
R

(
εξ + 3√

β

)2 (
εξ + 1√

β

)2
(
εξ + 2√

β

)2 |χ̂(ξ)|2dξ

+
β

2
ε2(1−σ)

∫
R

(
εξ − 3√

β

)2 (
εξ − 1√

β

)2
(
εξ − 2√

β

)2 |χ̂(ξ)|2dξ

=O
(
ε2(1−σ)

)
.

Since χ ≥ 0, we have

∫
R
|ωε(x)|4dx =

∫
R

∣∣∣∣2√εχ(εx)(cos( x√
β

)
+ ε1−σ cos

(
2x√
β

))∣∣∣∣p+1

dx

=2p+1ε
p−1
2

∫
R
χp+1(x)

∣∣∣∣cos( x

ε
√
β

)
+ ε1−σ cos

(
2x

ε
√
β

)∣∣∣∣p+1

dx

≥2p+1ε
p−1
2

∞∑
n=−∞

∫ (
2πn+π

4

)
ε
√
β

2πnε
√
β

χp+1(x)

∣∣∣∣min
x

cos

(
x

ε
√
β

)∣∣∣∣p+1

dx

(2.13)
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=2p+1ε
p−1
2

(√
2

2

)p+1 ∞∑
n=−∞

∫ (
2πn+π

4

)
ε
√
β

2πnε
√
β

χp+1(x)dx

≥Cε
p−1
2

∫
R
χp+1(x)dx+O(ε

p+1
2 ).

The last inequality here has used

∞∑
n=−∞

∫ (
2πn+π

4

)
ε
√
β

2πnε
√
β

χp+1(x)dx ≥ C

∫
R
χp+1(x)dx+O(ε), (2.14)

which is proved in [22]; here, we give a modified version in appendix C.
Next, we show that

∫
R
|ωε(x)|pωε(x)dx→ 0, as ε→ 0+. (2.15)

Indeed,

∫
R
|ωε(x)|pωε(x)dx

=2p+1ε
p+1
2

∫
R
χp+1(εx)

∣∣∣∣cos( x√
β

)
+ ε1−σ cos

(
2x√
β

)∣∣∣∣p
×
[
cos

(
x√
β

)
+ ε1−σ cos

(
2x√
β

)]
dx

=2p+1ε
p+1
2

∫∣∣∣∣cos( x√
β

)∣∣∣∣≤ε
1
3
χp+1(εx)

∣∣∣∣cos( x√
β

)
+ ε1−σ cos

(
2x√
β

)∣∣∣∣p
·
[
cos

(
x√
β

)
+ ε1−σ cos

(
2x√
β

)]
dx

+ 2p+1ε
p+1
2

∫∣∣∣∣cos( x√
β

)∣∣∣∣>ε
1
3
χp+1(εx)

∣∣∣∣cos( x√
β

)
+ ε1−σ cos

(
2x√
β

)∣∣∣∣p
·
[
cos

(
x√
β

)
+ ε1−σ cos

(
2x√
β

)]
dx

=:I1 + I2,

where

|I1| ≤2p+1ε
p+1
2

∫
R
χp+1(εx)ε

p
3 ε

1
3 dx

=2p+1ε
p+1
2 +

p+1
3

∫
R
χp+1(x)dx ≤ Cε

p
2+

p+1
3 , ε→ 0+,
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and

I2 =2p+1ε
p+1
2

∫∣∣∣∣cos( x√
β

)∣∣∣∣>ε
1
3
χp+1(εx)

[
cos

(
x√
β

)
+ ε1−σ cos

(
2x√
β

)]

·
∣∣∣∣cos( x√

β

)
+ ε1−σ cos

(
2x√
β

)∣∣∣∣p dx
=2p+1ε

p+1
2

∫∣∣∣∣cos( x√
β

)∣∣∣∣>ε
1
3
χp+1(εx)

[
cos

(
x√
β

)
+ ε1−σ cos

(
2x√
β

)]

·
∣∣∣∣cos( x√

β

)∣∣∣∣p
1 + pε1−σ

cos
(

2x√
β

)
cos
(

x√
β

)
 dx+O

(
ε
2
(
1−σ− 1

3

)
+

p−1
2

)

=2p+1ε
p+1
2

∫∣∣∣∣cos( x√
β

)∣∣∣∣>ε
1
3
χp+1(εx) cos

(
x√
β

) ∣∣∣∣cos( x√
β

)∣∣∣∣p dx
+ 2p+1(p+ 1)ε

p+1
2 +1−σ

∫∣∣∣∣cos( x√
β

)∣∣∣∣>ε
1
3
χp+1(εx) cos

(
2x√
β

) ∣∣∣∣cos( x√
β

)∣∣∣∣p dx
+O

(
ε
p−1
2 +2(1−σ)− 2

3

)
=:I21 + I22 +O

(
ε
p−1
2 +2(1−σ)

)
.

We can estimate that

I21 =2p+1ε
p+1
2

∫∣∣∣∣cos( x√
β

)∣∣∣∣>ε
1
3
χp+1(εx) cos

(
x√
β

) ∣∣∣∣cos( x√
β

)∣∣∣∣p dx
=2p+1(p+ 1)ε

p+1
2

∫
R
χp+1(εx) cos

(
x√
β

) ∣∣∣∣cos( x√
β

)∣∣∣∣p dx+O
(
ε
p+1
2

)
=− 2p+1ε

p+1
2

∫
R
χp+1

(
ε
(π
2
− y
))

sin

(
y√
β

) ∣∣∣∣sin( y√
β

)∣∣∣∣p dx+O
(
ε
p+1
2

)
=− 2p+1ε

p+1
2

∫
R
χp+1

(
ε
(π
2
− y
))8∂y

∫ sin2
(

y
2
√
β

)
0

(s− s2)
p
2 ds

 dx

+O
(
ε
p+1
2

)
=− 2p+1ε

p+1
2

∫
R

(
χ2χ′) (ε(π

2
− y
))

·

∫ sin2
(

y
2
√
β

)
0

(s− s2)ds

 dx

+O
(
ε
p+1
2

)
=O

(
ε
p+1
2

)
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and

I22 =2p+1ε
p+1
2 +1−σ

∫∣∣∣∣cos( x√
β

)∣∣∣∣>ε
1
3
χp+1(εx) cos

(
2x√
β

) ∣∣∣∣cos( x√
β

)∣∣∣∣p dx
=(p+ 1)2p+1ε

p+1
2 +1−σ

∫
R
χp+1(εx) cos

(
2x√
β

) ∣∣∣∣cos( x√
β

)∣∣∣∣p dx
+O

(
ε
p+1
2 +2(1−σ)− 2

3

)
=:(p+ 1)2p+1ε

p+1
2 +1−σI221 +O

(
ε
p+1
2 +2(1−σ)−2

3

)
.

Let the intervals

4i =

((
2πn+

iπ

4

)√
β,

(
2πn+

(i+ 1)π

4

)√
β

)
, n ∈ Z, i = 0, 1, · · · , 7,

then

|4i| = |4j |, ∪7
i=04i =

(
2πn

√
β, 2π(n+ 1)

√
β
)
.

Thus, we can calculate

I221 =
+∞∑

n=−∞

7∑
i=0

∫
4i

χp+1(εx) cos

(
2x√
β

) ∣∣∣∣cos( x√
β

)∣∣∣∣p dx
=

+∞∑
n=−∞

{∫
40∪43∪44∪47

χp+1(εx) cos

(
2x√
β

)[∣∣∣∣cos( x√
β

)∣∣∣∣p
−
∣∣∣∣sin( x√

β

)∣∣∣∣p] dx
+

∫
40∪44

[
χp+1

(
ε
(
x+

π

2

√
β
))

− χp+1(εx)
]
cos

(
2x√
β

) ∣∣∣∣sin( x√
β

)∣∣∣∣p dx
+

∫
43∪47

[
χp+1

(
ε
(
x− π

2

√
β
))

− χp+1(εx)
]
cos

(
2x√
β

) ∣∣∣∣sin( x√
β

)∣∣∣∣p dx}.
Note that

+∞∑
n=−∞

∫
4i

χp+1(εx) cos

(
2x√
β

)[∣∣∣∣cos( x√
β

)∣∣∣∣p − ∣∣∣∣sin( x√
β

)∣∣∣∣p] dx
=

+∞∑
n=−∞

∫
4i

χp+1(εx)

∣∣∣∣cos( 2x√
β

)∣∣∣∣p dx > 0, i = 0, 3, 4, 7;
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thus,

+∞∑
n=−∞

∫
4i

χp+1(εx) cos

(
2x√
β

)[∣∣∣∣cos( x√
β

)∣∣∣∣p − ∣∣∣∣sin( x√
β

)∣∣∣∣p] dx
≥Cε−1

∫
R
χp+1(x)dx+O(1), i = 0, 3, 4, 7.

In addition,

+∞∑
n=−∞

∣∣∣∣∣
∫
4i

[
χp+1

(
ε
(
x+

π

2

√
β
))

− χp+1(εx)
]
cos

(
2x√
β

) ∣∣∣∣sin( x√
β

)∣∣∣∣p dx
∣∣∣∣∣

≤
+∞∑

n=−∞

∣∣∣∣∣∣
∫
4i

∫ ε
(
x+π

2
√
β
)

εx

(
χp+1

)′
(y)dydx

∣∣∣∣∣∣
≤C

∫
R

∣∣∣(χp+1
)′
(y)
∣∣∣ dy, i = 0, 4,

+∞∑
n=−∞

∣∣∣∣∣
∫
4i

[
χp+1

(
ε
(
x− π

2

√
β
))

− χp+1(εx)
]
cos

(
2x√
β

) ∣∣∣∣sin( x√
β

)∣∣∣∣p dx
∣∣∣∣∣

≤
+∞∑

n=−∞

∣∣∣∣∣∣
∫
4i

∫ ε
(
x−π

2
√
β
)

εx

(
χp+1

)′
(y)dydx

∣∣∣∣∣∣
≤C

∫
R

∣∣∣(χp+1
)′
(y)
∣∣∣ dy, i = 3, 7.

In conclusion, we get (2.15). Combining (2.13) and (2.15), we get

E [ωε] ≤ O
(
ε2(1−σ)

)
+ λ− Cεl,

where l < 2(1− σ). Thus, we have proved (2.12). This completes the proof. �

2.3. Existence of constrained solitary waves

In this section, we use the concentrated compactness principle to study the existence
of solutions to the minimization problems (1.6) and (1.7). By lemma 2.5, we only
need to establish the existence of solutions to the minimization problem (1.6).

First, we establish strict subadditivity of ME(λ).

Lemma 2.7. Given λ> 0, ME(λ) has strict subadditivity, i.e.,

ME(λ) < ME(α) +ME(λ− α), ∀α ∈ (0, λ).
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Proof. Let

T : Sλ → Sα, ∀α ∈ (0, λ),

‖ux(·)‖L2 7→
∥∥∥∥√α

λ
ux(·)

∥∥∥∥
L2
,

where Sλ := {u(x) : ‖u(·)‖2
L2 = λ}. It follows from lemma 2.6 that

ME(λ) = inf
‖∂xu‖2

L2=λ

{
− α0

p+ 1

∫
R
|∂xu|p∂xudx

− α1

p+ 1

∫
R
|∂xu|p+1dx+

β

2

∫
R
|∂2xu|2dx− γ

2

∫
R
|u|2dx

}

=
λ

α
inf

‖∂xu‖2
L2=α

{
− α0

p+ 1

(
λ

α

)p−1
2
∫
R
|∂xu|p∂xudx

− α1

p+ 1

(
λ

α

)p−1
2
∫
R
|∂xu|p+1dx+

β

2

∫
R
|∂2xu|2dx−

γ

2

∫
R
|u|2dx

}
<
λ

α
ME(α),

i.e., λ−1ME(λ) is decreasing with respect to λ. Thus,

ME(λ) <
λ

α
ME(α) =ME(α) +

λ− α

α
ME(α) ≤ME(α) +ME(λ− α), ∀α ≥ λ

2
.

If α < λ
2 , then λ− α > λ

2 . Thus, the above inequality implies

ME(λ) < ME(λ− α) +ME(λ− (λ− α)) =ME(α) +ME(λ− α).

This completes the proof. �

Define

uk(x) = |∂xuk|2.

We will use the concentrated compactness principle to establish the compactness.

Lemma 2.8. There exists {yk}∞k=1 ⊂ R such that for any ε> 0, there exists rε > 0
satisfying ∫

U(yk,rε)

ukdx ≥
∫
R
ukdx− ε,

where U(yk, rε) = {x ∈ R : |x− yk| < rε}.

Proof. According to the concentrated compactness principle (see the seminal work
of Lions, p.115 ff. in [13]), {uk}k satisfies one of the following three cases:
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Case 1. Compactness. There exists {yk}∞k=1 ⊂ R, such that for any ε> 0, there
exists rε > 0 satisfying ∫

U(yk,rε)

ukdx ≥
∫
R
ukdx− ε,

where U(yk, rε) = {x ∈ R : |x− yk| < rε}.
Case 2. Vanishing. For any r > 0,

lim
k→+∞

sup
y∈R

∫
U(y,r)

ukdx = 0.

Case 3. Dichotomy. There exists α ∈ (0, λ) such that for ε> 0, there exist r > 0,
rk → +∞, {yk} ⊂ R, and k0 ∈ R, such that for any k ≥ k0,

max

{∣∣∣∣∣
∫
|x−yk|<r

ukdx− α

∣∣∣∣∣ ,
∣∣∣∣∣
∫
|x−yk|>rk

ukdx− (λ− α)

∣∣∣∣∣ ,
∣∣∣∣∣
∫
r<|x−yk|<rk

ukdx

∣∣∣∣∣
}

< ε.

We claim that {uk}k(x) can only occur in case 1. Indeed, assume that case 2
holds. Let χ(x) be a smooth bump function satisfying

χ ∈ [0, 1], χ ≡ 1 on (−1, 1), supp(χ) ⊂ (−2, 2),

then, the Gagliardo–Nirenberg–Sobolev inequality (2.9) implies that {uk}+∞
n=0 ⊂

H2,∫
U(y,1)

|∂xuk|p∂xukdx ≤
∫
R
|∂xuk(x)χ(x− y)|p+1dx

≤C ‖∂xuk(·)χ(· − y)‖
p+3
2

L2 ‖∂x (∂xuk(·)χ(· − y))‖
p−1
2

L2 (2.16)

≤C ‖∂xuk(·)‖
p+3
2

L2(U(y,2))

and ∫
U(y,1)

|∂xuk|p+1dx ≤ C ‖∂xuk(·)‖
p+3
2

L2(U(y,2))
. (2.17)

Vanishing implies that there exists k0 � 0, such that for any k ≥ k0,∫
U(y,2)

ukdx < ε, ∀y ∈ R,∀ε > 0.

Selecting {yn}+∞
n=0 ⊂ R satisfies that ∪+∞

n=0U(yn, 1) = R, and for any x ∈ R, there
exists {nj}Nj=0 ⊂ N, N < +∞ such that

x 6∈ R\ ∪N
j=0 U(ynj , 1).
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Obviously, ∪+∞
n=0U(yn, 2) = R. Thus, according to (2.16) and (2.17), we get∫

R
|∂xuk|p∂xukdx+

∫
R
|∂xuk|p+1dx

≤
∫
R
|∂xuk|p+1dx ≤

∞∑
n=0

∫
U(yn,1)

|∂xuk|p+1dx

<C
∞∑

n=0

ε
p−1
2 ‖∂xuk(·)‖2L2(U(yn,2)) ≤ Cε

p−1
2 ‖∂xuk(·)‖2L2 .

Since supk ‖uk‖H2 < +∞, selecting sufficiently small ε yields a contradiction to
lemma 2.6. Thus, case 2 cannot occur. Suppose that case 3 holds. Dichotomy
implies that there exist a subsequence of {uk}+∞

k=1 (still denoted as {uk}+∞
k=1) and a

sequence {rk}+∞
k=1 ⊂ R, satisfying lim

k→+∞
rk = +∞ and {yk}+∞

k=1 ⊂ R, such that

lim
k→+∞

∫
R

∣∣∣∣∂x [uk(x)χ1

(
2(x− yk)

rk

)]∣∣∣∣2 dx = α,

lim
k→+∞

∫
R

∣∣∣∣∂x [uk(x)χ2

(
x− yk
rk

)]∣∣∣∣2 dx = λ− α,∫
rk
2 ≤|x−yk|<rk

|∂x (uk(x))|2 dx ≤ 1

k
,

where χ1(x), χ2(x) ∈ C∞(R) are smooth cut-off functions satisfying

χ1(x), χ2(x) ∈ [0, 1], ∀x ∈ R, χ1(x) =

1, |x| < 1,

0, |x| ≥ 2,
χ2(x) =

1, |x| ≥ 1,

0, |x| ≤ 1
2 .

Select {ak}+∞
k=1 and {bk}+∞

k=1 ⊂ R, satisfying

ak, bk → 1, k → +∞,∫
R

∣∣∣∣∂x [akuk(x)χ1

(
2(x− yk)

rk

)]∣∣∣∣2 dx = α, ∀k ≥ 1,∫
R

∣∣∣∣∂x [bkuk(x)χ2

(
x− yk
rk

)]∣∣∣∣2 dx = λ− α, ∀k ≥ 1.

Then,

E[uk]− E

[
akukχ1

(
2(x− yk)

rk

)]
− E

[
bkukχ2

(
x− yk
rk

)]
=− α0

p+ 1

∫
R
|∂xuk|p∂xukdx− α1

p+ 1

∫
R
|∂xuk|p+1dx

+
β

2

∫
R
|∂2xuk|2dx− γ

2

∫
R
|uk|2dx
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+
α0

p+ 1

∫
R

∣∣∣∣∂x(akukχ1

(
2(x− yk)

rk

))∣∣∣∣p ∂x(akukχ1

(
2(x− yk)

rk

))
dx

+
α1

p+ 1

∫
R

∣∣∣∣∂x(akukχ1

(
2(x− yk)

rk

))∣∣∣∣p+1

dx

− β

2

∫
R

∣∣∣∣∂2x(akukχ1

(
2(x− yk)

rk

))∣∣∣∣2 dx+
γ

2

∫
R

∣∣∣∣akukχ1

(
2(x− yk)

rk

)∣∣∣∣2 dx
+

α0

p+ 1

∫
R

∣∣∣∣∂x(bkukχ2

(
x− yk
rk

))∣∣∣∣p ∂x(bkukχ2

(
x− yk
rk

))
dx

+
α1

p+ 1

∫
R

∣∣∣∣∂x(bkukχ2

(
x− yk
rk

))∣∣∣∣p+1

dx

− β

2

∫
R

∣∣∣∣∂2x(bkukχ2

(
x− yk
rk

))∣∣∣∣2 dx+
γ

2

∫
R

∣∣∣∣bkukχ2

(
x− yk
rk

)∣∣∣∣2 dx
=

∫
R

[
1− χ2

1

(
2(x− yk)

rk

)
− χ2

2

(
x− yk
rk

)][
β

2

∣∣∂2xuk∣∣2 − γ

2
|uk|2

]
dx

+

∫
R

[
(1− a2k)χ

2
1

(
2(x− yk)

rk

)
+ (1− b2k)χ

2
2

(
x− yk
rk

)][
β

2
|∂2xuk|2 −

γ

2
|uk|2

]
dx

− α0

p+ 1

∫
R
|∂xuk|p∂xuk

[
1− χp+1

1

(
2(x− yk)

rk

)
− χp+1

2

(
x− yk
rk

)]
dx+O

(
1

rk

)
− α0

p+ 1

∫
R
|∂xuk|p∂xuk

[(
1− ap+1

k

)
χp+1
1

(
2(x− yk)

rk

)
+
(
1− bp+1

k

)
χp+1
2

×
(
x− yk
rk

)]
dx

− α1

p+ 1

∫
R
|∂xuk|p+1

[
1− χp+1

1

(
2(x− yk)

rk

)
− χp+1

2

(
x− yk
rk

)]
dx

− α1

p+ 1

∫
R
|∂xuk|p+1

[(
1− ap+1

k

)
χ4
1

(
2(x− yk)

rk

)
+
(
1− bp+1

k

)
χp+1
2

(
x− yk
rk

)]
dx.

By proposition 2.3, we get∫
R

[
1− χ2

1

(
2(x− yk)

rk

)
− χ2

2

(
x− yk
rk

)][
β

2

∣∣∂2xuk∣∣2 − γ

2
|uk|2

]
dx

=

∫
rk
2 <|x−yk|<rk

[
1− χ2

1

(
2(x− yk)

rk

)
− χ2

2

(
x− yk
rk

)][
β

2

∣∣∂2xuk∣∣2 − γ

2
|uk|2

]
dx

→0, k → +∞.

Similarly, we have

− α0

p+ 1

∫
R
|∂xuk|p∂xuk

[
1− χp+1

1

(
2(x− yk)

rk

)
− χp+1

2

(
x− yk
rk

)]
dx→ 0,

k → +∞,
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and

− α1

p+ 1

∫
R
|∂xuk|p+1

[
1− χp+1

1

(
2(x− yk)

rk

)
− χp+1

2

(
x− yk
rk

)]
dx→ 0,

k → +∞.

Since ak, bk → 1, we obtain∫
R

[
(1− a2k)χ

2
1

(
2(x− yk)

rk

)
+ (1− b2k)χ

2
2

(
x− yk
rk

)][
β

2
|∂2xuk|2 −

γ

2
|uk|2

]
dx

→ 0, k → +∞,

− α0

p+ 1

∫
R
|∂xuk|p∂xuk

[(
1− ap+1

k

)
χp+1
1

(
2(x− yk)

rk

)
+
(
1− bp+1

k

)
χp+1
2

(
x− yk
rk

)]
dx→ 0, k → +∞,

and

− α1

p+ 1

∫
R
|∂xuk|p+1

[(
1− ap+1

k

)
χp+1
1

(
2(x− yk)

rk

)
+
(
1− bp+1

k

)
χp+1
2

(
x− yk
rk

)]
dx→ 0, k → +∞.

Therefore,

E[uk] ≥ME(α) +ME(λ− α) + ok(1).

Taking k → +∞ in the above equation, we get ME(λ) ≥ ME(α) +ME(λ − α).
This contradicts the strict subadditivity of lemma 2.7. Thus, we exclude case 2.
This completes the proof. �

Next, we use lemma 2.8 to prove the existence of minimizers, which leads to the
existence of constrained solitary waves.

Proof of theorem 1.2. According to lemma 2.5, theorem 1.2 is deduced by the
following proposition. �

Proposition 2.9. There exists a solution for the minimization problem (2.7).

Proof. Let zk(x) = uk(x− yk). Using (2.9) and the Young inequality, we get

E[zk] =− α0

p+ 1

∫
R
|z′k|pz′kdx− α1

p+ 1

∫
R
|z′k|p+1dx+

β

2

∫
R
|z′′k |2dx− γ

2

∫
R
|zk|2dx

≥− |α0|+ |α1|
p+ 1

‖z′k‖
p+1

Lp+1 +
β

2
‖z′′k‖2L2 − γ

2
‖zk‖2L2
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≥− C‖z′k‖
(
1−βp+1

)
(p+1)

L2 ‖z′′k‖
βp+1(p+1)

L2 +
β

2
‖z′′k‖2L2 − γ

2
‖zk‖2L2

≥− Cελ

(
1−βp+1

)
(p+1)

2−βp+1(p+1) +

(
β

2
− ε

)
‖z′′k‖2L2 − γ

2
‖zk‖2L2 ,

where 0 < ε < β
2 and 1 < p < 5. This implies that {zk}+∞

k=1 ⊂ H2 is bounded. Thus,

there exists a subsequence of {zk}+∞
k=1 (still denoted by {zk}+∞

k=1) such that zk ⇀ z
in H 2. By lemma 2.8, there exists rε > 0 such that∫

(U(0,rε))c
|∂xzk|2dx < ε. (2.18)

By the Rellich–Kondrachov compact embedding H1(U(0, rε)) ↪→ L2(U(0, rε)),
there exists a subsequence of {zk}+∞

k=1 (still denoted by {zk}+∞
k=1) satisfying ∂xzk →

∂xz in L
2(U(0, rε)). Selecting ε =

1
n , letting n→ +∞, and using (2.18), there exists

a subsequence {zk}+∞
k=1 satisfying ∂xzk → ∂xz in L2. In addition, using H1 ⊂ L∞

and

||x|ax− |y|ay| ≤ C|x− y| (|x|a + |y|a) , ∀x, y ∈ R,

we obtain ∣∣∣∣∫
R
|∂xzk|p∂xzkdx−

∫
R
|∂xz|p∂xzdx

∣∣∣∣
≤C

∫
R
|∂xzk − ∂xz| (|∂xzk|p + |∂xz|p) dx

≤C‖∂xzk − ∂xz‖L2

(
‖∂xzk‖L2 + ‖∂xz‖L2

)p
and∣∣∣∣∫

R
|∂xzk|p+1dx−

∫
R
|∂xz|p+1dx

∣∣∣∣ ≤ C‖∂xzk − ∂xz‖L2

(
‖∂xzk‖L2 + ‖∂xz‖L2

)p
.

Thus,

lim
k→+∞

∫
R
|∂xzk|p∂xzkdx =

∫
R
|∂xz|p∂xzdx,

lim
k→+∞

∫
R
|∂xzk|p+1dx =

∫
R
|∂xz|p+1dx.

(2.19)

Based on the lower semi-continuity of the norm and (2.19), we get

ME(λ) = lim
k→+∞

E[zk] ≥ E[z].

Thus, E[z] =ME(λ), which means that z is a minimizer. This completes the proof
of theorem 1.2. �
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3. Spectral stability

In this section, we consider the stability of the constrained solitary waves
constructed in § 2.

3.1. Instability index and spectral stability

According to § 2, in order to study the spectral stability, we need to discuss the
existence of nontrivial solution (ν, z) to the eigenvalue problem (1.10). We will
use the instability index theory, which is a powerful tool for studying the spectral
stability (see [4–7, 20]). We will introduce some basic results of instability index
and establish a sufficient condition for spectral stability of the constrained solitary
waves. Here, we adopt the theory of [11]. Consider a general linear Hamiltonian
system ∂tu = JLu, where J is anti-self-dual in the sense of J∗ = −J and L is
a bounded symmetric operator in the Hilbert space satisfying L∗ = L, such that
〈Lu, v〉 is a bounded symmetric bilinear form. For our problem, J = ∂x, i.e., we
consider the eigenvalue problem

∂xLz = νz, (3.1)

where L : X → X∗ is a bounded symmetry operator, dim(Ker[L]) < +∞, and

X = X− ⊕Ker[L]⊕X+, dim(X−) < +∞.

Here, L−|X− ≤ −δ, L+|X+ ≥ δ for some δ > 0, and X is a real

Hilbert space. Denote n−(L) := dim(X−) by the Morse index. Let E0 ={
u ∈ X : (∂xL)ku = 0, k ∈ Z+

}
, then Ker[L] ⊂ E0. Let E0 = Ker[L]⊕ Ẽ0, Z ⊂ Ẽ0

satisfying 〈Lz, z〉 < 0, ∀z ∈ Z, and k≤0
0 = max(dim(Z)). Let the number of solu-

tions of (1.8) be kc. According to Theorem 2.3 in [11], we have kc ≤ n−(L)− k≤0
0 .

In particular, if n−(L) = 1 and k≤0
0 ≥ 1, then the problem (1.8) is spectrally stable.

For the eigenvalue problem (1.10), we select X = H1 ∩ Ḣ−1.
Next, we derive the Vakhitov–Kolokolov stability criterion. Suppose that Υ is

sufficiently smooth satisfying Υ′ ∈ Ker[L] and Υ⊥Ker[L]. Since

(∂xL)2(L−1Υ) = (∂xL)Υ′ = ∂x(LΥ′) = 0, (∂xL)(L−1Υ) = Υ′,

we have L−1Υ ∈ Ker[(∂xL)2] \ Ker[∂xL] ⊂ Ẽ0. If 〈L(L−1Υ),L−1Υ〉 < 0, we get

k≤0
0 (L) ≥ 1. This combined with n−(L) = 1 gives the spectral stability. Moreover,〈
L(L−1Υ),L−1Υ

〉
=
〈
L−1Υ,Υ

〉
. Note that if φ = φλ is the minimizer of the

minimization problem (1.7), then the eigenvalue problem (1.10) satisfies Lφ′ = 0.
In fact, we have

Lemma 3.1. See [22] If the solution φ = φλ satisfies

n−(L+) = 1, φ ⊥ Ker(L+),
〈
L−1
+ φ, φ

〉
< 0,

then φ is spectrally stable, i.e., the eigenvalue problem (1.7) has no nontrivial
solution. Furthermore, σ(∂xL+) ⊂ iR.
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To verify the conditions of lemma 3.1, we introduce the following lemma.

Lemma 3.2. See [22] Let L be a self-adjoint operator on a Hilbert space X satisfies
L|{φ0}⊥ ≥ 0, where φ0 satisfying ‖φ0‖L2 = 1 and φ0 ⊥ Ker[L]. If 〈Lφ0, φ0〉 ≤ 0,

then 〈L−1φ0, φ0〉 ≤ 0.

3.2. Weak non-degeneracy and spectral stability

In this section, we prove the weak non-degeneracy and spectral stability of
constrained solitary waves, which gives a proof of theorem 1.3.

First, we consider the number of negative eigenvalues of the linear operator.

Proposition 3.3. Suppose φ = φλ is a minimizer of the constrained mini-
mization problem (2.8), ω satisfies (A.4). Then, the linearized operator L+ :=
−(ω − α) Id+α0p|φ|p−2φ+ α1p|φ|p−1 + β∂2x − γ∂−2

x satisfies

L+|{φ}⊥ ≥ 0.

Furthermore, L+ has a unique negative eigenvalue.

Proof. For vδ defined by (A.3), we have

E [vδ] =ME(λ) + δ

{∫
R

[
α0|φ|pψ + α1|φ|p−1φψ − βφ′ψ′ + γ∂−1

x φ∂−1
x ψ

]
dx

− 1

λ

[∫
R

(
α0|φ|p−1φ+ α1|φ|p+1 − β|φ′|2 + γ|∂−1

x φ|2
)
dx

] ∫
R
φψdx

}
+
δ2

2

{∫
R

[
α0p|φ|p−2φ|ψ|2 + α1p|φ|p−1|ψ|2 − β|ψ′|2 + γ|∂−1

x ψ|2
]
dx

− 1

λ

[∫
R

(
α0|φ|pφ+ α1|φ|p+1 − β|φ′|2 + γ|∂−1

x φ|2
)
dx

] ∫
R
|ψ|2dx

}
+ δ2(p+ 1)

1

λ

(∫
R
φψdx

)∫
R

[
α0|φ|pψ + α1|φ|p−1φψ − βφ′ψ′

+γ∂−1
x φ∂−1

x ψ
]
dx

+ δ2
1

λ2

(∫
R
φψdx

)2 ∫
R

[
−p+ 3

2
α0|φ|pφ− p+ 3

2
α1|φ|p+1 + β|φ′|2

+γ|∂−1
x φ|2

]
dx

+O
(
δ3
)
.

Since φ is a minimizer of problem (2.8) and w satisfies (A.4), the terms of δ2 must
be non-negative. Thus, if we choose ψ satisfying ψ⊥φ and ‖ψ‖L2 = 1, then∫

R

[
α0p|φ|p−2φ|ψ|2 + α1p|φ|p−1|ψ|2 − β|ψ′|2 + γ|∂−1

x ψ|2
]
dx

− 1

λ

[∫
R

(
α0|φ|pφ+ α1|φ|p+1 − β|φ′|2 + γ|∂−1

x φ|2
)
dx

] ∫
R
|ψ|2dx ≥ 0,
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i.e., 〈L+ψ,ψ〉 ≥ 0. Thus, we get L+|{φ}⊥ ≥ 0, which means that the second smallest

eigenvalue of L+ must be non-negative, i.e., n(L+) ≤ 1. In addition, by lemma 2.6
and (A.2), we have

〈L+φ, φ〉 =
〈(
−(ω − α) Id+α0p|φ|p−2φ+ α1p|φ|p−1 + β∂2x − γ∂−2

x

)
φ, φ

〉
(3.2)

=
〈
−(p− 1)

(
α0|φ|p−2φ+ α1|φ|p−1

)
φ, φ

〉
< 0.

This implies that there exist negative eigenvalues for L+. Therefore, there exists a
unique negative eigenvalue for L+. �

Proof of theorem 1.3. First, we show that φ = φλ satisfies weak non-degeneracy,
i.e., φ ⊥ Ker[L+]. Here, φ is the minimizer of the minimization problem (1.7)
and L+ is the linearized operator of equation (1.1), i.e., we consider L+ = −(ω −
α) Id+α0p|φ|p−1 + α1p|φ|p−2φ + β∂2x − γ∂−2

x . Considering that the minimizer of
the minimization problem (1.6) and the linearized operators corresponding to the
equation (1.3) are analogous. For any Υ ∈ Ker[L+] satisfying

‖Υ‖L2 = 1.

According to proposition 3.3, we get

L+|{φ}⊥ ≥ 0. (3.3)

By (
Υ− 1

λ
〈Υ, φ〉φ

)
⊥ φ, ‖φ‖2

L2 = λ,

and (3.2), we have

0 ≤
〈
L+

[
Υ− 1

λ
〈Υ, φ〉φ

]
,Υ− 1

λ
〈Υ, φ〉φ

〉
=

1

λ2
〈Υ, φ〉2〈L+φ, φ〉 ≤ 0.

Thus, 〈Υ, φ〉 = 0. This proves that φ has weak non-degeneracy.
Second, we prove the spectral stability. According to lemma 3.2, we select L = L+

and φ0 = 1√
λ
φ. By (3.2) and (3.3), we obtain that lemma 3.2 implies 〈L−1

+ φ, φ〉 ≤ 0.

Since 〈L−1
+ φ, φ〉 6= 0, we get 〈L−1

+ φ, φ〉 < 0. Thus, using lemma 3.1, we obtain that
φ is spectrally stable. This proves theorem 1.3. �
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Appendix A. Derivation of Euler–Lagrange equations

In this appendix, we derive the Euler–Lagrange equations corresponding to the
minimization problems (1.6) and (1.7).

Proposition A.1. There exists ω ∈ R, such that the solutions to the constrained
minimization problems (1.6) and (1.7), respectively, satisfy the Euler–Lagrange
equations

(α− ω)φ′′ + α0 (|φ′|p)
′
+ α1

(
|φ′|p−1φ′

)′
+ βφ′′′′ − γφ = 0 (A.1)

and

(α− ω)φ+ α0|φ|p + α1|φ|p−1φ+ βφ′′ − γ∂−2
x φ = 0. (A.2)

Proof. Let

uδ =
√
λ

φ+ δψ

‖φ′ + δψ′‖L2
,

where ψ is a test function. Obviously, ‖∂xuδ‖L2 = λ and

E[uδ] =− α0

p+ 1

∫
R
|∂xuδ|p∂xuδdx− α1

p+ 1

∫
R
|∂xuδ|p+1dx

+
β

2

∫
R
|∂2xuδ|2dx− γ

2

∫
R
|uδ|2dx

=ME(λ) + δ

{∫
R

(
−α0|φ′|pψ′ − α1|φ′|p−1φ′ψ′ + βφ′′ψ′′ − γφψ

)
dx

− 1

λ

[∫
R

(
−α0|φ′|pφ′ − α1|φ′|p+1 + β|φ′′|2 − γ|φ|2

)
dx

] ∫
R
φ′ψ′dx

}
+O(δ).

Since E[uδ] ≥ME(λ), ∀δ ∈ R, we choose w satisfying

α− ω =
1

λ

∫
R

(
−α0|φ′|pφ′ − α1|φ′|p+1 + β|φ′′|2 − γ|φ|2

)
dx,

then 〈
(α− ω)φ′′ + α0 (|φ′|p)

′
+ α1

(
|φ′|p−1φ′

)′
+ βφ′′′′ − γφ, ψ

〉
= 0, ∀ψ,

This implies that φ is a distribution solution of (A.1).
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Similarly, let

vδ =
√
λ

φ+ δψ

‖φ+ δψ‖L2
, (A.3)

then, ‖vδ‖L2 = λ and

E [vδ] =− α0

p+ 1

∫
R
|vδ|pvδdx− α1

p+ 1

∫
R
|vδ|p+1dx

+
β

2

∫
R
|∂xvδ|2dx− γ

2

∫
R
|∂−1

x vδ|2dx

=ME(λ) + δ

{∫
R

[
α0|φ|pψ + α1|φ|p−1φψ − βφ′ψ′ + γ∂−1

x φ∂−1
x ψ

]
dx

− 1

λ

[∫
R

(
α0|φ|pφ+ α1|φ|p+1 − β|φ′|2 + γ|∂−1

x φ|2
)
dx

] ∫
R
φψdx

}
+O

(
δ2
)
.

Since E [vδ] ≥ME(λ), ∀δ ∈ R, we choose w satisfying

α− ω =
1

λ

∫
R

(
α0|φ|pφ+ α1|φ|p+1 − β|φ′|2 + γ|∂−1

x φ|2
)
dx, (A.4)

then 〈
(α− ω)φ+ α0|φ|p + α1|φ|p−1φ+ βφ′′ − γ∂−2

x φ, ψ
〉
= 0, ∀ψ,

This implies that φ is a distribution solution of (A.2). �

Appendix B. Pohozaev identity

We establish the following Pohozaev identity.

Lemma B.1. Suppose that φ ∈ H2 is a weak solution of (1.5), then∫
R
|φ′′|2dx =

(2p− 1)α0

2(p+ 1)β

∫
R
|φ′|pφ′dx+

(2p− 1)α1

2(p+ 1)β

∫
R
|φ′|p+1dx

− γ

β

∫
R
|φ|2dx,

2(ω − α)

3

∫
R
|φ′|2dx =

(3− 2p)α0

3(p+ 1)

∫
R
|φ′|2φ′dx+

(3− 2p)α1

3(p+ 1)

∫
R
|φ′|4dx

+
4γ

3

∫
R
|φ|2dx.

(A.1)

Proof. Multiplying φ at both sides of (1.5) and integrating the result over R, based
on proposition 2.3, we get

(ω − α)

∫
R
|φ′|2dx+ β

∫
R

|φ′′|2dx

=
α0

p+ 1

∫
R
|φ′|pφ′dx+

α1

p+ 1

∫
R
|φ′|p+1dx+ γ

∫
R
|φ|2dx.

(A.2)
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In addition, note that

(α− ω)

∫
R
φ′′xφ′dx =

ω − α

2

∫
R
|φ′|2dx,

α0

∫
R
(|φ′|p)′ xφ′dx =− α0

∫
R
|φ′|pφ′dx− α0

p+ 1

∫
R
(|φ′|pφ′)′ xdx

=− pα0

p+ 1

∫
R
|φ′|pφ′dx,

α1

∫
R
(|φ′|pφ′)′ φ′xdx =− α1

∫
R
|φ′|p+1dx− α1

p+ 1

∫
R

(
|φ′|p+1

)′
xdx

=− pα1

p+ 1

∫
R
|φ′|p+1dx,

β

∫
R
φ′′′′φ′xdx =β

∫
R
|φ′′|2dx− β

2

∫
R

(
|φ′′|2

)′
xdx

=
3β

2

∫
R
|φ′′|2dx,

−γ
∫
R
φφ′xdx =

γ

2

∫
R
|φ|2dx.

Multiplying xφ′ at both sides of (1.5) and integrating the result over R, we get

ω − α

2

∫
R
|φ′|2dx+

3β

2

∫
R
|φ′′|2dx

=
pα0

p+ 1

∫
R
|φ′|pφ′dx+

pα1

p+ 1
β

∫
R
|φ′|p+1dx− γ

2

∫
R
|φ|2dx.

(A.3)

Combining (A.2) and (A.3), we get the Pohozaev identity (A.1). �

Remark B.2. According to lemma B.1, for the weak solution φ ∈ H1 ∩ H−1 of
equation (α− ω)φ+ α0|φ|p + α1|φ|p−1φ+ βφ′′ − γ∂−2

x φ = 0, we have∫
R
|φ′|2dx =

(2p− 1)α0

2(p+ 1)β

∫
R
|φ|2φdx+

(2p− 1)α1

2(p+ 1)β

∫
R
|φ|4dx

+
γ

β

∫
R
|∂−1φ|2dx,

2(ω − α)

3

∫
R
|φ|2dx =

5α0

18

∫
R
|φ|2φdx+

α1

6

∫
R
|φ|4dx+

4γ

3

∫
R
|∂−1φ|2dx.
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Appendix C. Proof of inequality (2.14)

We prove the inequality (2.14), which can be obtained by the following estimate.
It is a modified version of one in [22].

Proposition C.1. The following inequality holds:∣∣∣∣∣
+∞∑

n=−∞

∫ 2πnε
√
β+π

4 ε
√
β

2πnε
√
β

χp+1(x)dx− 1

8

∫
R
χp+1(x)dx

∣∣∣∣∣
≤7(p+ 1)

32
πε
√
β

∫
R

∣∣χ3(y)χ′(y)
∣∣ dx.

Proof. Splitting the interval (2πnε
√
β + π

4 ε
√
β, 2π(n+ 1)ε

√
β) into seven intervals

with the same length, i.e.,(
2πnε

√
β +

mπ

4
ε
√
β, 2πnε

√
β +

(m+ 1)π

4
ε
√
β

)
, m = 1, 2, · · · , 7.

We can calculate

8
+∞∑

n=−∞

∫ 2πnε
√
β+π

4 ε
√
β

2πnε
√
β

χp+1(x)dx

=
+∞∑

n=−∞

∫ 2π(n+1)ε
√
β

2πnε
√
β

χp+1(x)dx

+
+∞∑

n=−∞

7 ∫ 2πnε
√
β+π

4 ε
√
β

2πnε
√
β

χp+1(x)dx−
7∑

m=1

∫ 2πnε
√
β+

(m+1)π
4 ε

√
β

2πnε
√
β+mπ

4 ε
√
β

χp+1(x)dx


=

∫
R
χp+1(x)dx

+
+∞∑

n=−∞

7∑
m=1

∫ 2πnε
√
β+π

4 ε
√
β

2πnε
√
β

χp+1(x)dx−
∫ 2πnε

√
β+

(m+1)π
4 ε

√
β

2πnε
√
β+mπ

4 ε
√
β

χp+1(x)dx

 .
Thus, according to∣∣∣∣∣∣

∫ 2πnε
√
β+π

4 ε
√
β

2πnε
√
β

χp+1(x)dx−
∫ 2πnε

√
β+

(m+1)π
4 ε

√
β

2πnε
√
β+mπ

4 ε
√
β

χp+1(x)dx

∣∣∣∣∣∣
=

∣∣∣∣∣
∫ 2πnε

√
β+π

4 ε
√
β

2πnε
√
β

[
χp+1(x)− χp+1

(
x+

mπ

4
ε
√
β
)]
dx

∣∣∣∣∣
≤(p+ 1)

∫ 2πnε
√
β+π

4 ε
√
β

2πnε
√
β

∫ x+mπ
4 ε

√
β

x

|χp(y)χ′(y)| dx
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≤(p+ 1)

∫ 2πnε
√
β+π

4 ε
√
β

2πnε
√
β

∫ 2πnε
√
β+

(m+1)π
4 ε

√
β

2πnε
√
β

|χp(y)χ′(y)| dx

≤p+ 1

4
πε
√
β

∫ 2π(n+1)ε
√
β

2πnε
√
β

|χp(y)χ′(y)| dx, m = 1, 2, · · · , 7,

we have∣∣∣∣∣8
+∞∑

n=−∞

∫ 2πnε
√
β+π

4 ε
√
β

2πnε
√
β

χp+1(x)dx−
∫
R
χp+1(x)dx

∣∣∣∣∣
≤

+∞∑
n=−∞

7∑
m=1

∣∣∣∣∣∣
∫ 2πnε

√
β+π

4 ε
√
β

2πnε
√
β

χp+1(x)dx−
∫ 2πnε

√
β+

(m+1)π
4 ε

√
β

2πnε
√
β+mπ

4 ε
√
β

χp+1(x)dx

∣∣∣∣∣∣
≤7(p+ 1)

4
πε
√
β

+∞∑
n=−∞

∫ 2π(n+1)ε
√
β

2πnε
√
β

|χp(y)χ′(y)| dx

≤7(p+ 1)

4
πε
√
β

∫
R
|χp(y)χ′(y)| dx.

This completes the proof. �
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