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We consider the existence and stability of constrained solitary wave solutions to the
generalized Ostrovsky equation

Oz (Beu + adeu+ 02(f(w)) + BO3u) = Yu, ||U||2Lz =A>0,

where the homogeneous nonlinearities f(s) = ag|s|? + a1|s|P~1s, with p > 1. If
ap,a1 >0, a € R, and v <0 satisfying 8y = —1, we show that for 1 < p < 5, there
exists a constrained ground state traveling wave solution with travelling velocity

w > a — 2. Furthermore, we obtain the exponential decay estimates and the weak
non-degeneracy of the solution. Finally, we show that the solution is spectrally
stable. This is a continuation of recent work [1] on existence and stability for a water
wave model with non-homogeneous nonlinearities.
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1. Introduction

In this paper, we consider the existence and stability of solitary wave solutions of
the generalized Ostrovsky equation

dx (Opu + adyu + 0, (f (w)) + BO2u) = yu, (1.1)

where u = u(t,z) : Ry X R — R is the wave shape distribution; the homogeneous
nonlinearities f(u) = ao|ul? + aq|u|P~tu, with degree p > 1; and a, ag, a1, 8, and 7
are some parameters that arise during the derivation of the evolution equation. This
study was inspired by the work of Levandosky [8] on the existence and stability of
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solitary waves of (1.1) with LP-norm constraints, and in this paper, we consider the
case of solutions with L2-norm constraints. This is a continuation of recent work
of Chen, Gao, and Han [1] for existence and stability for a water wave model with
non-homogeneous nonlinearities.
If f(u) =u% a=0,and B =+ =1, (1.1) is the classical Ostrovsky equation (see
[18)):
Or (Opu — 2u — 0, (u?)) = u,

which describes the unidirectional propagation of weakly nonlinear long surface and
internal waves with small amplitude in rotating fluids. The spectral, orbital, and
weak orbital stabilities of the solitary wave solutions have been proved in [14, 15,
17). If f(u) = |u*u, =0, and 8 = v = 1, (1.1) is the Ostrovsky—Vakhnenko model
or the short pulse model:

Oy (3tu — 82u — am(u?’)) = u,

which appears in the studies of water waves with Coriolis forces and the amplitude
of short pulses in optical fibres, see, e.g., [2, 18, 19, 24]. If f(u) = wP or |u[P~ u,
then letting u = v,, where v satisfies v, v, — 0, |z| — 400, we get

0y (O — 030 — (Jvz]?)) =v or 8, (8o — v — (Jvg [P v,)) = w.

Their local and global well-posedness (see, e.g., [3, 12, 21, 24-26]) and blowup
solutions [16] have been established. Considering the solitary wave of form v(t, z) =
¢(x — wt) yields the profile equation

d)//// + w¢// +¢+ (|¢I‘p)/ —0 or ¢//// +W¢)H + ¢+ (|¢/|p—1¢/)/ —0.

The existence of variational solutions can be found in [8-10], etc. When p =2, the
solution is unique (see [27]). Recently, Posukhovskyi and Stefanov [22, 23] consid-
ered the existence of solitary waves, with the L?-norm constraint. In detail, they
proved the existence and spectral stability for (1.1) with f(u) = |ul? (1 < p < 3)
or f(u) = |ulP~'u (1 < p < 5), which satisfy Hu||2LQ = A > 0. These results are
different from those of Levandosky and Liu [9, 10] who considered the existence
of solitary waves with LP*!'-norm constraints; meanwhile, they proved that the
solitary waves are unstable when p is sufficiently large.

In this paper, we consider that f(u) is the homogeneous nonlinearity with degree
p>1:

Fw) = Jul? + |ufP~tu.

Levandosky [8] proved that for 2 < p < 5, there exists an LP-norm constrained soli-
tary wave and it is stable. The purpose of this paper is to prove the existence and
stability of L2-norm constrained solitary waves. This is based on the recent work of
Chen, Gao, and Han [1] on the existence and stability of L?-norm constrained soli-
tary waves in the intracoastal zone, which has a non-homogeneous nonlinearity. We
consider the existence and stability of solitary waves with the L?-norm constraint
for (1.1). Let u = O,v, then (1.1) becomes

0z (01020 + 0y (v + o] Opv]? + oz1|8IU\p_18$v) + Baﬁv) = v0,v,
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where

v= lim Jyv=0. (1.2)

|z|—+o00 |z|—+o00
Integrating the above equation with respect to z, we get
Oy (atv + @0, + | 0pv[P + a1|0v[P T 00 + B@gv) = Y. (1.3)

The purpose of this paper is to construct stable solitary wave solutions of (1.3) of
the form

v(t,z) = ¢o(x — wt). (1.4)

1.1. Problem setting
Substituting (1.4) into (1.3), we get ¢ that satisfies the profile equation

(= w)g” +ao (197) + a1 (19/1771¢)" + 89" =19 = 0. (15)
To state our problem, we introduce some notations. Denote || - ||p by the usual

norm of Lebesgue spaces L? = LP(R), with p > 1. For u(z) € L', define the Fourier
transform and its Fourier inverse transform as

U :L u(z)e ey uac:L W(&)e e dx
©) = o= [ u@e e, u(w) = 2= [ a©eta.

Define the norms in the Sobolev spaces H* := W*2(R) with k € N and k € R by

: }
lollge =3 1ol Tullye = (| (4 162) " o))

a=0

respectively. Define the semi-morn on the homogeneous Sobolev space HF as

ol i = ( / Iélz’“lﬂ(f)IQd&)%-

The dual space H* with k € N is defined by

B ={feS®R): f=0%g|Iflyk=lgl,2}

where §’(R) is the dual of the Schwartz space S(R).
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We consider the solutions of the minimization problem with respect to (1.3):

Elu] = p+1 Jg [/ [P’ dze
— 2L ol e + 5 [ Pde — § [ [uf*de — min,  (1.6)

Jg lw/ (@) Pdz = X > 0,

and

Elu) = —:% fR |ulPudx

p+1 g [ulPTide + 5 5 Jp [0/ Pz — 3 [ 107 ul?dz — min, (1.7)

Jolu(@)Pdz =X>0, weH

Here, ' = 0,. Notice that E[u] = &[u']. The Euler-Lagrange equations corre-
sponding to the constrained functionals E[u] and E[u] are derived in appendix
A.

To study the stability of solutions, we linearize the solution v(t,x) of (1.3) near
¢(x — wt), where ¢ is the minimizer of (1.6). Then, we get the linearized equation

00,0 — (w — @)I2v + (ap + 1)y (|¢' P29/ 0,0) + BOGv = Yo.
Let v(t, z) = e*2(z), we get the eigenvalue problem
Liz=pdy;z, (1.8)

where
Li=(w—-0a)d?— (a0 +a1)ds (|¢'[P72¢'0:(-)) — BIs +y1d.

Here, Id is the identity operator. Thus, L, is a self-adjoint unbounded operator in
L? and D(L, ) = H*. Spectral instability is to study the existence of nontrivial pairs
(1, z) for problem (1.8) with Ry > 0 and z #0 for z € D(L, ). On the contrary, the
spectral stability means that no such pair (u, z) exists. Let

L+ = —81£+6$,
where
Ly =—(w—a)ld+aop|¢'[P72¢" + arp|¢/ [P~ + BO7 — 70, 2.
Here, D(£,) = H?> N H—2. Thus, (1.8) becomes
— 0, L4 (02) = 0y 2. (1.9)

Using (1.2), we obtain that (1.9) is equivalent to (—£4,0,)z = pz, that is, the
eigenvalue p of —£,0,. Let v be the eigenvalue of self-adjoint operator 0,L, =
(—L40)%, 1€

0Lz =vz. (1.10)

Thus, the spectral stability of travelling wave solutions is to prove that the
eigenvalue problem (1.10) has no nontrivial solutions (v, z) with & > 0 and z #0.
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1.2. Main results

To state the main results, we define the weak non-degeneracy and spectral stability.

DEFINITION 1.1. The wave ¢ is weak non-degenerate, if L Ker[L]. We call the
solution of (1.7) to be spectrally stable, if the eigenvalue problem (1.10) has no
nontrivial solution (v, z) with v > 0, z#£ 0.

The first result is existence and decay estimates of constrained solitary waves.

THEOREM 1.2 Assume that A\, ap, 00 > 0, v< 0 satisfy py = —1, a« € R and
w > a—2. Then, for 1 < p < 5, the constrained variational problems (1.6) and (1.7)
exist solutions

p=¢r€ H*, =1 H* NH?,

respectively, which satisfy

¢ =1,

(@ —w)¢” +ao (1¢/1") + a1 (10/P¢) + Be"™ — ¢ =0,
(a0 — w) + Y|P + cx [P~ + By — 49, % =0,
6(x)] + |6/ ()] + [b(2)| < CeFelel)

where C = C(a,w, 8,7) > 0 and

w—a—/(a—w)2—
soviere T ws a2,

ke = 2 ’
Y =
%+% %7, a—2<w<a+?2.

The second result is weak non-degeneracy and spectral stability of solutions in
theorem 1.2.

THEOREM 1.3 The minimizer ¢ = ¢y of the constrained variational problem
(1.6) constructed in theorem 1.2 is weakly non-degenerate. Furthermore, if we
additionally assume that

(L3, 9) #0,
then ¢ is spectrally stable.

Here are some comments on the theorems.

REMARK 1.4. If we consider the variational problems (1.6) without the L?-norm
constraints, the restriction w > « — 2 in theorem 1.2 is optimal. Indeed, by (2.12),

Elg] < A= /R|qb’|2dq:,

https://doi.org/10.1017/prm.2024.86 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.86

6 F. Han and Y. Gao

ie.,
g/}R¢"|2dx—;/R|¢|2dx (1.11)

/R ¢/ 2da.

Using the Pohozaev identity deduced in appendix B, we have

5 [1oPdn =3 [ (oo
(2p Qo Doy 1
2<21H,1/W¢W¢d +( p+1 /ﬁ¢p+¢@
—( e “/W B2 [ 1gpotan- 52200 [ pian)

:p+1 +1
2
+3la-w) [loPars S0 [ophia

This combined with lemma 2.6 shows that (1.11) becomes

oo

This implies that w > a—2. However, it is not clear whether this condition is optimal
when considering the L?-norm constraints. Moreover, it is not clear whether the
solution obtained in theorem 1.2 is unique. Finally, theorem 1.2 implies that there
exists w, o satisfying w > a — 2 such that the solution exists, and it is not clear
whether there exists a solution ¢ = ¢, for any w > o — 2.

REMARK 1.5. Levandosky has proved the existence and stability of weak solutions
with LP-norm constraints with 2 < p < 5 for (1.1) with a=0 (see Main Result
(i) in [8]). Compare with his results, we consider the L?-norm constraints in this
paper; the weak solution obtained in theorem 1.2 is actually a strong solution (see
proposition 2.2); moreover, we obtain a fine decay estimate of the solution.

2. Existence of constrained solitary waves

In this section, we consider the existence and decay estimates of constrained solitary
waves of (1.3).

2.1. Decay estimates
We first define the weak solutions of (1.5).
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DEFINITION 2.1. We call ¢ € H? a weak solution of (1.5), if

((a=w)¢" + a0 (F1) + o1 (6P78) — 0, 0) + (86", 9") =0, (21)

for any ¢(z) € C(R), where (-,-) = (") 2 2.
The weak solution defined above is actually a strong solution.

PROPOSITION 2.2. Assume that 3> 0 and vy < 0, then the weak solution ¢ € H? of
the profile equation (1.5) defined by (2.1) actually satisfies ¢ € H*.

Proof. The proof is based on the bootstrap argument. Since 5 >0 and v <0, the
formal solution of (1.5) is

b=— (808 —y10) " ((a = w)¢" + a0 (1) + s (16177'¢)) ) € 12 (22)
Since (882 —y1d)~!: L2 — H*, we get ¢ € H3. Using (1.5), we have
(0%~ 1) 6,0) == (((a = )" + a0 (0'P) +ar (0P10')') )
= (801 =714) $,¥), Vo € CE(R),

where (-, ) = (-,+) y—2 g2 So,

(6, (80% = 71a) ) = (&, (802 —y1d) ¥), Vi € C2(R).

Thus, we have ¢ = ¢ in the distribution sense, which means ¢ € H3. Since ¢ is a
weak solution, we obtain

a0 (18'7) + an (91 9) € L2
Thus, by (2.2), we obtain ¢ € H*. O
Next, we consider the decay estimates of solutions for the profile equation (1.5).

PROPOSITION 2.3. Suppose 3> 0, v < 0, and w > a—2v/—PB7, assume that ¢ € H*
is a solution of (1.5). Then,

[p(@)] + ¢ (x)] < Ceherlel, (2:3)
where C = C(a,w, B,7) > 0 and
w—— a—w 2
\/ VI w> a+2V-B,
“T_ﬁaJr% = a—2y/-Py<w< a+2y-p7.

ky, =
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Proof. According to 8> 0, v <0, and w > a—2v/— 7, we obtain that —(a—w)&2 +
Bér—~ > 0 for any € € R. Thus, ((o — w)d2 + Bos — *yld)_1 is a bounded operator
in L?. Therefore, the solution of (1.5) is

6 =— ((a—w)02 + Bt —y1d) " 0, (aol¢'|” + o |¢/[771¢) . (2.4)

The asymptotic behaviour (1.2) yields that

lim (aol¢/l” + a7 ¢') (@) =0, (2.5)

|z —
for any ¢ € H* C Cp(R); meanwhile,

—1

(0 — w)22 + pO! — 7 1d) " g(a /cawgvx— D)9 ()dy,

where G . 5,,() is the fundamental solution of ((ow — w)d2 + BI3 — y1d) ¢ = 0,
satisfying

1
o) 1 B~y

Let hy and ho be the roots of the polynomial —(a — w)h? + Bh* — + with respect
to h, then

éa,w,ﬁ,v(g) =

a—w+/(a—w)?+48y a—w—+/(a—w)?+48y

h2 — h2 =
1 2/8 9 2 Qﬁ )
V21— 1 0 . oo . 1
Tl (g) — (h=i&)e / —(Higrgy ) — b
an ¢ ©) 2h</me e )T Rre

)

w)2
\/ VO w > a+2/-F7,
’lw—i—i‘/?’y, a—2\/—7ﬁ'y<w<a+2\/j,

and
V 27T R
G )= e Bl s a0 —24/—Br.
a,wﬁ,’Y( ) oh (a — w)2 T 4ﬂ’7 57
Thus,

[l
Ce 26 , w> a4 2y—p,

it}

w—a+1 -
ceVl 2 B, a =20y <w<a+2y/-p7,

where k € N and C' = C(a,w, 8,7) > 0 is a constant.

G5 @) <
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According to (2.5), for any € = e(ag, a1, @, w, B,7) > 0, there exists sufficiently
large N, such that when |z| > N,

(a0l + aa]¢'|P19') ()| < el¢'(2)].

Thus, using (2.4), we obtain
¢ =— / N oy (=) (a0l¢'[” + en] @ [P71) (y)dy (2.6)
Y| >
[ Ghaale =) (cold P+ a6
yl<

We consider the integral equation on L ({z : |z| > N}):

¢'(x) + / g (T —Y) (cwl@'|P + Oé1|¢/|p_1¢/) (y)dy] ,
ly|<N
where

]:¢l(m> = —X{z:|z|>N} /|;,|>N G” w,B, 'y(x - ) (a0|¢/|p + a1|¢/|p—1¢l) (y)dy

Let

Ho = {u(x) s w3y, == sup |u(m)|em|“"‘ < 400, m > O} ,

|| >N

then for any m € [0, Rh] and ¢'(z) € Hin,

|Fo'(z)| = ‘X{MDN} / . Gl s (@ =) (aold'|P + a1l¢' [P ¢') (y)dy

<C€/ G2 s (@ =)0 (y)|dy
<Ol [ €=y < el e~
R

Thus, F : Hyy — Hm satisfies || F|zep,,) < Ce. Selecting € >0 sufficiently small
such that Ce < 1, we obtain that Id —F is bounded and invertible; moreover,

1
k o —1
(Id—F)~ Z]—' (M =F)",,,, < 1= F

where 79 = Id. Thus, using (2.6) and taking m =0, we obtain the von Neumann
series

— OOJ:_k _ Vel B o I .
kz:;) l /|y|<N a,w,ﬁn(iﬁ ) (040|¢>\ + aq|d’| ¢)(y) y
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This combined with
‘ / <N Goropy (@ =) (0l P + @719 (y)dy| < Cem 17!
yl<

gives ¢' € Hyp. By the definition of H,,, we get supy,.i, sy |9/ ()] < Ce RNzl
This combined with the boundedness of ¢'(x) gives

sup |¢/ ()| < Ce™ Izl
R

In addition, ¢(x) has the same decay estimate. In fact, note that ‘ |lim ¢ =0,
z|—+o00

then

o= [ ; ¢ (y)dy = — / " )y,

and ¢(z) has a decay estimate with the same order as ¢'(z) at x = +oo. O

REMARK 2.4. Cousider the zero eigenvalue problems of L and £ defined in (1.8);
we find that the solutions w of Liw = 0 and £;w = 0 have similar estimates as
(2.3) by using proposition 2.3.

2.2. Variational properties

Recalling the previous constrained variational problems (1.6) and (1.7), we
introduce the following cost functions:

Mp(\) = inf {— o /|u'|pu’da:— a1 /|u’|p+1dx (2.7)

ue 2 P p+1
179 =X
ﬂ/ "2 Y 2
+= [ | de— <= | |u|dx,
2 Ja 2 Ja
. (&7))] Qaq
Mg () = inf — /upudx— /up+1dx 2.8
e =t {2 [upude - 2 [ (25)
Hulligzk

+B/u’2dx—7/|8x1u|2d:c}.
2 Jr 2 Jr

If they exist, then they correspond to the infimums of the constrained variational
functionals (1.6) and (1.7).
We first study some properties of the functional Efu] and E[u].
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LEMMA 2.5. If y< 0 and 1 < p < 5, then the functional (1.6) is bounded from
below, i.e., Mgp()\) > —oo. In addition, Mg(\) = Mg()\); moreover, if ¢x is a
minimizer of Mg(X), then @) is a minimizer of Mg(X).

Proof. Using the Gagliardo—Nirenberg—Sobolev inequality

(1-Bp)p Bpp 11
lolize < Cpllollz ™ IVoll 2 By =5 = e (2.9)
where Cp, > 0 is a constant, we get
ag a1 +1 B 212 Y 2
FElu] = — Ozu|P Ozudx — OzulP T d = 0, dr — = d
[u] p+1/R|xu\ rudT p+1/R|xu| x—|—2/R|zu|x 2/}R|u|gc
gl + | +1, Bya2.on2. Y2
> -l nlyo, et + Zjoduls - Juls
oo | + ] 1-8 +1) 142, 1 Bor1(p+1) | Bya2 2y 2
>~ O 0l 7 U 0kl s T 4 l0%ul e — il
(1=Fp41) (Bpr P+ —2)
B
>~ Clao. M0zull . — Zlull?:

(17Bp+1>(ﬁp+l<p+1)72) ~
=~ C(ao, )\ RGe — g llullZe.

Since v <0, Mg(\) > —oc.
Denote S by the set of ¢ € S(R) such that ||(;S||i2 = A, ¢ has a compact support,
and there exists § >0 such that ¢(¢) = 0 for [¢| < §. Clearly, S is dense in {¢ €

H' 1 [|9]|7, = A}, and 0, "¢ is well-defined. Thus,
Me(A) = inf £[g] = El8;'¢] > Mp()),

Me(3) = i Elo] < it £16] = Mp(h).

which implies Mg (\) = Mg (). Moreover, if ¢, is a minimizer of (2.7), then E[¢,] =
E[L]. O

Theorem 2.5 implies the equivalence of Mg () and Mg (A). Next, let {uy}32,, be
a minimizing sequence of £[u] constrained on {u : ||uH2L2 = A}, Le.,

lm Efug] = Me, |lugl32 = A (2.10)
k—o00

Then, there exists a subsequence of {uy}72 (still denoted as {uy}3), such that

/ |ug|Pugde — &, / \uk\p+1dw — &,
® ® k — 4-oo0. (2.11)

/ |8zuk|2dx — &3, / |8;1uk|2dx — &4,
R R

We will prove that & and & are positive, which is crucial for proving strict
subadditivity of Mg(X) in § 2.3.
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LEMMA 2.6. If ag, a1 > 0, By = —1, and 1 < p < 5, then for any minimizing
sequence satisfying (2.11), we have &1,E5 > 0.

Proof. & > 0 is obvious, and we claim that & > 0. If not, note that ag > 0 and
the other terms of £[u] are symmetric with respect to u. Let v — —u and then
El—u] < Elu], i.e., —u is closer to Mg ().

Next, we claim that &,& # 0. If not, using the Holder inequality and the
embedding H*~! € L™, s >2, we get & = & = 0. Since fy = —1,

Me |u|i§lf—x{§/|a ufde =3 / 1% uFdx}
2 — — -
|u|1§1f_k{ /f [a(€)]°dg /§2\ 131 dg}
_ B - )2 s o
|u|1§f—x{ /R«? (5 5 ) Ul d£+/RIU(€)\ d&} >\

The above inequality is actually an equality. In fact, it is necessary to select
u(z) such that a(§) is concentrated at {¢ : £ = ﬁ} Next, in order to derive
a contradiction and complete the proof, it is only necessary to show

Me(\) < A (2.12)

Following the spirits of [22], let w,(x) € L such that

B N N e A W A
ws(f)—ﬁ{x< - >+x< -

and

lwe(lI72 = A,

where €¢>0 and 0 < ¢ < 1 are sufficiently small, satisfying eor/B < 1 and x €
S(R) is a non-negative function, such that x is an even C* bump function and
supp X C (=g, 0), ¢>0. Thus,

L iz 127517 71271
we(z) =Vex(ex) [e VB 4e VB 4O <e VB +e \/E)]

—2\/ex(ex) <Cos (\%) + 7 cos (j%)) €R.
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Since €pv/3 < 1, we have

-7 ¢+
Suppfc( ﬁ) ()supp ¥ (

()supp ¥

e
~ ~—

Thus,pt

Il
NIy
T
R

3 (ef-l- 2ﬁ)2(€£2 8 (e{—%)Q €€)?
25/]1& (e§+%)2 [X(&)[Pde + 2/R (657 iﬁ 5—IX( RS
e [ (54 35) (€2 5)
+yet [ o a) [%(6) e
“CTVR
2 2
+§62<1—v>/]R (<€ i> (25)2 ) [(©)Pde
ST VB
=0 (62(170)) . B
Since x > 0, we have
/ lwe(2)|*dx = | |2¢/ex(ex) (cos (x) + €77 cos ( 20 )> - dx
R R VB VB
p+1
:2p+1e%/RXp+1(x) cos <€\xf) + €77 cos (j;%) : dx
>2p+1 Z /27m+ P (x) mincos< ’ )p+1 dx
ne_oo ¥ 2mneV/B ® VB
(2.13)
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p+l 27 +
st (B) 5 [0
2 2wney/B

n=—oo

-1
>0 / Xp+1(:v)dx+0(eT).
R

The last inequality here has used

(27rn+

p+1(m)dx

Z / pH(a:)dm > C’/ X (z)dx + O(e),
ne—oo Y 2mneV/B R

which is proved in [22]; here, we give a modified version in appendix C.

Next, we show that

/ |we (z)[Pwe(z)dr — 0, ase— 0.
R

Indeed,

| oo

f2p+1 = p+1 ex

5)
xw =)

—9p+l, 7

. {cos (\;UB) + €177 cos (
T 2z
(i) el

. [cos (\fﬁ) +¢€'7% cos (

=0 + I,

where

|11

ptl p 1
§2p+1eT/Xp+1(ex)e§e3dx

1 1 1
_op+1 BR P / PHL (g < o5t
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opt1 p+/

and

e (G5) oo ()

%
- |cos (x) + €% cos (2:8) pdx
VB VB
—op+l, P+1/ l p+1(€x) [COS (\j@) Jrelfo cos <2";>:|
cos ﬁ €3
P cos (2 1 -1

- |cos (x) 1 +p61"(\/B) dr + O <€2(103)+p?>

VB cos (%)

1 z 2 \ P

=optle &/ p“ €x) Ccos () cos ( dx
COS T % ( ) \/B /B
+ 2x T P

+ 2Pt (p4+1 LH*"/ P (ex) cos () cos () dx

( ) cos(ﬁ) >e% ( ) \/B \/B
L0 (EPT71+2(170)7%)

—1
=I5 + I+ O (epT+2(1_”)) :
We can estimate that
+1 T z \ |
1oy :2p+lepT/ 1 Pt (ex) cos <> cos (> dx
cos(%) >e3 \/B \/B
p 1

=2t (p4+1 ET/ P (ex) cos (m) coS (m) dr + O e

( Jeos\ vs ) |\ vs (%)

p
i1 25 p+1 Y Y B
-2 / y) sm( 5) sm(\/B) dx—l—O(e >
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and

1
>e3

I :2p+1e%+1*” /
COS(L>

VB

pt+1 2z
=(p+1)2p+1eT+17”/Xp+1( x) cos <) cos
R VB
JrO( 2El o(1—0)— 3)

=:(p+ 1)2p+16%+1_01221 + 0 (6%"_2(1_0)_%) )

(%)

Let the intervals

Ai:(<27m+ )f,(?ﬂn—k(itll)w)\/ﬁ), nez, i=01,---,7,

then

1Al = |0, Uoli = (27m\/5, 2 (n + 1)\/5),

Thus, we can calculate

p

x
COS | —F=

e £ e ()l

n=-—oo =0

()]

= x
o AOUA3UA4UA7X e %
t ()]

sin (75 ] s

I
g

3l

# Lo, D (e 5VB)) @ eos (T ) on (5 )|
; /A [ (e (2= TVB)) =+ ()] cos (33) sin (ﬂ) d}
Note that
3 [ (3] o (55 o ()]
2_:/ P+ (ex) cos(j%) pdm>0, i=0,3,4,7;
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thus,
£ oo (N (2]
By S
R

In addition,

ni::o /A, [ pH( (“H' \[)) X )} cos (3%) sin (\%) " e

+oo

e / (") (y)dyde

SC/R’(XPH)/(Z/)‘dy, i=0,4,
ol e e e R

+oo z g\/a /
/ () (y)dyda

n=—oo

<0/] pt1y/ dy, i=3,7.
In conclusion, we get (2.15). Combining (2.13) and (2.15), we get
Elw] <0 (1) + A=,

where | < 2(1 — o). Thus, we have proved (2.12). This completes the proof. O

2.3. Existence of constrained solitary waves

In this section, we use the concentrated compactness principle to study the existence

of solutions to the minimization problems (1.6) and (1.7). By lemma 2.5, we only

need to establish the existence of solutions to the minimization problem (1.6).
First, we establish strict subadditivity of Mg()).

LEMMA 2.7. Given A> 0, Mg()\) has strict subadditivity, i.e.,

Mg(N\) < Mg(e) + Mg(A — ), Vo € (0,N).
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Proof. Let

T:Sy = Sa, Va e (0,)),

e ()] 2 — H’/ —Ug (-

where Sy := {u(z) : Hu()||2L2 = A}. It follows from lemma 2.6 that

Qg
Mg(A) = inf
) |6xu||22—x{ p+1
L
5/|82u|2da: /|u|2d:c}
p—|—1 R

:i inf { ( ) /|8 u|POyudz
@ opul? ,=a P+1
L2
< ) /|8 u|p+1dx+/6/|82u\ dx— /|u| dx}
p+1

A
—M
<Oé E(Oé),

i.e., A\T1Mg()\) is decreasing with respect to A. Thus,

Mg\ < gME(Oz) = Mg(a) + %ME( ) < Mg(a)+ Mg(A—«a), Va> g

If a< %, then A — a > % Thus, the above inequality implies
ME()\) < ME(A — Oé) + ME(/\ — ()\ — a)) = ME(Oé) + ME(/\ — Oé).
This completes the proof. O

Define

uk(x) = |8zuk|2

We will use the concentrated compactness principle to establish the compactness.

LEMMA 2.8. There exists {yx}3>; C R such that for any € > 0, there exists re > 0

satisfying
/ updx > /ukda; — €,
U(ykﬂ”e) R

where U(yg,re) = {x € R: |z —yr| < e}

Proof. According to the concentrated compactness principle (see the seminal work
of Lions, p.115 ff. in [13]), {uy }« satisfies one of the following three cases:
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Case 1. Compactness. There exists {yx}7>; C R, such that for any >0, there

exists re > 0 satisfying
/ updx > / urdr — ¢,
U(yp.re) R

where U(yg,7me) = {z € R: |z — yi| < e}
Case 2. Vanishing. For any >0,

lim sup/ ugdx = 0.
k=tooyeR JU(y.r)

Case 3. Dichotomy. There exists « € (0, A) such that for € >0, there exist r >0,
rr — 400, {yx} C R, and kg € R, such that for any k > ko,
} < €.

max / upde — « / ugde — (A — ) / upde
|z—yr|<r |lz—yK| >k r<|z—yg|<rg

We claim that {ug}r(z) can only occur in case 1. Indeed, assume that case 2
holds. Let x(x) be a smooth bump function satisfying

I I

X € [07 1}7 X = 1on (71, 1)3 Supp(X) - (7272)3

then, the Gagliardo—Nirenberg—Sobolev inequality (2.9) implies that {uy}°) C
a2,

/ | Oy [P0y upda S/ |Opug () x (x — y) [P da
U(y,l) R

<Ol (I~ E 0s @run(Ix( — )T (216)
p+3
SC Haﬂluk() ||L22(U(y,2))
and
/ el de < C 0,3y (2.17)
Uly,1) Y,2))

Vanishing implies that there exists ky > 0, such that for any k& > ko,
/ updr <e, VYyeR Ve>0.
U(y,2)

Selecting {y,}20 C R satisfies that U/ U(y,, 1) = R, and for any = € R, there

n=0

exists {n;}’_y C N, N < 400 such that

T ¢ R\ U;'V:O U(ynja 1)
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Obviously, U5 U (y,,2) = R. Thus, according to (2.16) and (2.17), we get

/|8wuk|p(')$ukdx+/|8wuk|p+1dar
R R

S/ |0pug [P de < Z/ |0y ug [P da
R n=0

U(yn,1)

= p-1
<O T 02y ay < O 10022 -

n=0

Since supy, [|ug|| 2 < +o00, selecting sufficiently small € yields a contradiction to
lemma 2.6. Thus, case 2 cannot occur. Suppose that case 3 holds. Dichotomy
implies that there exist a subsequence of {u}>5 (still denoted as {uy};>;) and a
sequence {rj}/> C R, satlsfymg hm T = +oo and {y;}{>5 C R, such that

. 2 —y)\ I,

lim Or |ug(z)x1 | ————= dx = «,
k—4o0 R Tk

2

lim Oy |:'I.Lk(£f)X2 <$_yk>H dr =\ — a,

k—+oco R Tk
) 2 gp < 1

IS 02 (e (@) dor < 7

) |:E ’L/k|<7“k

where x1(z), x2(z) € C*(R) are smooth cut-off functions satisfying

1, |z| <1, 1, |z| > 1,
(@) xe(@) € 0,1, Ve eR, xa(@) =40 <t L@ = b 1
0, |z| > 2, 0, |z| < 3.

Select {ax};25 and {bx}/>5 C R, satisfying

ag, b, > 1, k — 400,

[ (25529

2
/896 [kak(IE)XQ (x_yk>H de =X—a, Vk>1.
R

2
dr =«a, Vk2>1,

Tk
Then,
2(x — xr —
Eluy] - E [akUle ((yk)ﬂ -K [bkusz ( yk)]
Tk Tk
= a1 Ty
p + 1 !

Jr
+§/|8§uk|2dx—f/\uk\2dx
2 Jr 2 Jr
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— p 2Ue —
+ 20 Oz (akukX1 (2(:6 yk))) O (akuwa <(x yk))) dx
p+ 1 R Tk Tk
B p+1
! t/jf%:(akukXﬂ (2@ryk))> dx
p+1 Tk
2z — 2 2z — 2
6 8 (akukm (M)) dx+1/ apUEX1 ((:cyk)>' dx
2 R Tk 2 R Tk
J— p —
+-2 [ 1o, (bkum (m yk)) GX (bkum (w“)) da
p+1Jr Tk Tk
p+1
(o5} T — Yk
st1 Lo (e (52 )|

2

2
-5 83 (ka,kXQ (a:yk>> dx + l/ bruk X2 (z yk)’ dx
R Tk 2 R Tk
U — _
:/ {1—)& ((m yk)) - X3 (x yk)} { |07u ‘2_;|Uk2] da
R Tk
Wy — _
# [ Ja-atng (E2D) - ing (S| Bt - G| ao
R Tk Tk
Q0 p o pt+l Q(x—yk) _optl (T Yk i
p+1/|&cuk| Oz Uy, [1 X1 <7’k x5 e dx + O o
Ny —
[(1 __ap+1) Xt < ($7m:yk)> +_<1 —-bﬁ+1> VAR
X (I ykﬂ dx
Tk

2 —_ _
- ot (B e (220 g,
p+1 R Tk Tk
Qaj 1 2(z — yx) +1
- b [(1— )t (2 | (1 i)
S Lol | (1= )t (B2 ) 4 (10
X}Q)Jrl (x_yk>:| dz.
Tk
By proposition 2.3, we get
2(z — yi) 2 (T~ Yk Bloz 12 7 12
1— 2 =—20) — — = |0sug|” — = d
/R{ Xl( " G\ T )] [l = gl e
2(x — T — 2
:/ P—X%(<yw)—ﬁ( %>}V”@WI—WMﬁ]M
%<\mfyk\<rk Tk Tk 2 2

—0, k — 4o0.

p+1

Similarly, we have

o () (5o
Tk Tk

_p+1
k — +oo,
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W — _
o (2520 (5o
Tk Tk
Since ag, b — 1, we obtain

[ la=and (B2) s i (222 )| [ S0l - Jhusk | as

—+0, k—= oo,

and

_p+1
k — +oo.

2(z — yr) 1
: ) (28) )
p+1 {( RS o + k
XP'H( yk)}dmﬁo, k — 400,
Tk

and

_ M pHL (] p+1 p+1 M
p+1/n@|amuk| [( )Xl < Tk
+ (1 — bi“) X! <x—yk>} de — 0, k— 4o0.
Tk

Therefore,

Elug] > Mp(a) + Mg(X — ) + o(1).

Taking k — +oo in the above equation, we get Mg(\) > Mg(a) + Mg(A — «).
This contradicts the strict subadditivity of lemma 2.7. Thus, we exclude case 2.
This completes the proof. O

Next, we use lemma 2.8 to prove the existence of minimizers, which leads to the
existence of constrained solitary waves.

Proof of theorem 1.2. According to lemma 2.5, theorem 1.2 is deduced by the
following proposition. a

PROPOSITION 2.9. There exists a solution for the minimization problem (2.7).

Proof. Let zp(x) = ug(x — yx). Using (2.9) and the Young inequality, we get

E[z] B/|z —1/|zk|2dx
|ao|+|a1|
z——;;T—nmpH+—wm;—§wm;
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(1fﬁp+1)(p+1) Pp+1(p+1) 2 7|
2

B
> = Clizll 2 1% 11,5 + 512072 = Sl

(1—/3p+1)(p+1) 3
2— 1 i
> = Cx O 4 (2 ) a2 - el
where 0 < € < g and 1 < p < 5. This implies that {25 }°; C H? is bounded. Thus,

there exists a subsequence of {24} (still denoted by {21 }{>]) such that z, — z
in H2. By lemma 2.8, there exists r. > 0 such that

/ |0, 21| ?dx < €. (2.18)
(U (0,re))*

By the Rellich-Kondrachov compact embedding H*(U(0,r.)) — L*(U(0,r.)),
there exists a subsequence of {zx},°5 (still denoted by {21}/ >}) satisfying 9,2, —
0,z in L2(U(0,7.)). Selecting € = %, letting n — +o00, and using (2.18), there exists
a subsequence {zk};;"l’ satisfying 0,z — O,z in L?. In addition, using H' C L*>

and
[z — [y["y| < Clz —y| (|2|* + [y|*), Vz,y €R,
we obtain
’/ |0z 2k [P O 21 d — / |02 2|P O 2zd:
R R
SC’/ |0z 2 — 0z2| (|0x2k|P + |022|P) dx
R

<C||0z 21 — aacZ”LQ (Haxz/f”[,? + H8x2||L2)p

and
/R|8wzk|p+ldx — /]R |0, 2P d2| < C||0pzr — 02| 12 (||6mzk||L2 + ||8$z||L2)p.

Thus,

lim /\8zzk|paxzkdx:/|8mz|pamzdm,
R R

k—+oco

(2.19)
lim /\8$zk|p+1d9::/|8xz|p+1d:r.
R R

k—+oc0

Based on the lower semi-continuity of the norm and (2.19), we get

Mp(\) = lim Elz)] > Elz).

k—+o00

Thus, E[z] = Mg()\), which means that z is a minimizer. This completes the proof
of theorem 1.2. O
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3. Spectral stability

In this section, we consider the stability of the constrained solitary waves
constructed in § 2.

3.1. Instability index and spectral stability

According to § 2, in order to study the spectral stability, we need to discuss the
existence of nontrivial solution (v, z) to the eigenvalue problem (1.10). We will
use the instability index theory, which is a powerful tool for studying the spectral
stability (see [4-7, 20]). We will introduce some basic results of instability index
and establish a sufficient condition for spectral stability of the constrained solitary
waves. Here, we adopt the theory of [11]. Consider a general linear Hamiltonian
system O;u = JLu, where J is anti-self-dual in the sense of J* = —J and L is
a bounded symmetric operator in the Hilbert space satisfying L* = L, such that
(Lu,v) is a bounded symmetric bilinear form. For our problem, J = 3d,, i.e., we
consider the eigenvalue problem

0Lz = vz, (3.1)

where £ : X — X* is a bounded symmetry operator, dim(Ker[£]) < 400, and
X=X_oKell]dX;, dim(X_)<+4oo.

Here, £ |x_ < -4, L4|x, = ¢ for some >0, and X is a real
Hilbert space. Denote n™(£) := dim(X_) by the Morse index. Let Ey =
{ue X :(0,L)Fu=0, k€ Z"}, then Ker[L] C Ey. Let Ey = Ker[L]® Ey, Z C Ej
satisfying (Lz,2) < 0, Vz € Z, and k3" = max(dim(Z)). Let the number of solu-
tions of (1.8) be k.. According to Theorem 2.3 in [11], we have k. < n~ (L) — k3",
In particular, if n=(£) = 1 and k:OSO > 1, then the problem (1.8) is spectrally stable.
For the eigenvalue problem (1.10), we select X = H' N H~L.

Next, we derive the Vakhitov—Kolokolov stability criterion. Suppose that T is
sufficiently smooth satisfying Y’ € Ker[£] and YT L Ker[£]. Since

(0L)*(L7IY) = (0uL)Y" = 0o (LX) =0, (L)(LT'T) =T,

we have L7177 € Ker[(8,£)?] \ Ker[,L] C Eo. If (L(L7'Y),L71T) < 0, we get
k5°(L) > 1. This combined with n~(£) = 1 gives the spectral stability. Moreover,
<£(£71T),£71T> = <£71T,T>. Note that if ¢ = ¢, is the minimizer of the
minimization problem (1.7), then the eigenvalue problem (1.10) satisfies £¢' = 0.
In fact, we have

LEMMA 3.1. See [22] If the solution ¢ = ¢ satisfies

n(Ly)=1, ¢ LKer(Ly), (Li'¢,¢) <0,

then ¢ is spectrally stable, i.e., the eigenvalue problem (1.7) has no nontrivial
solution. Furthermore, 0(0,L4) C iR.
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To verify the conditions of lemma 3.1, we introduce the following lemma.

LEMMA 3.2. See [22] Let L be a self-adjoint operator on a Hilbert space X satisfies
L|{¢O}J_ > 0, where ¢g satisfying |¢oll 2 = 1 and ¢o L Ker[L]. If (Lo, o) < 0,

then <L71¢0,¢0> <0.

3.2. Weak non-degeneracy and spectral stability

In this section, we prove the weak non-degeneracy and spectral stability of
constrained solitary waves, which gives a proof of theorem 1.3.
First, we consider the number of negative eigenvalues of the linear operator.

PROPOSITION 3.3. Suppose ¢ = ¢y is a minimizer of the constrained mini-
mization problem (2.8), w satisfies (A.4). Then, the linearized operator L, :=
—(w — @) Id +agp|d[P~2¢ + arp|p[P~ + BO2 — 40,2 satisfies

Lilggpr 20.

Furthermore, L4 has a unique negative eigenvalue.

Proof. For vs defined by (A.3), we have
Elvs) =Me (M) + 6{ /]R [aololPy + aa|@[P~ b — Y'Y + 0, 90, 1] da

_1 p—1 p+1 712 8_1 2 d:| d}
| aoloP o anloir™t = plo? + 5loroP) as) [ ovas

2

0
+ [ oaploP=2olul + asplop = ul? = plu/ + 107 ] do

_1 P p+1 _ /2 o1 Qd] 2d}
A[/ (colo6 + sl = B0/ +910 o) da| [ [0da
L R2p+t (/mm)/ aold P + angP 1y — Bty

+v0; L0, 11/1] dx

oo (o) [[25

+76;1¢|2} dx
+0(8°%).

+ 3
P2 |t + Bl¢ 2

Since ¢ is a minimizer of problem (2.8) and w satisfies (A.4), the terms of §2 must
be non-negative. Thus, if we choose v satisfying ¢ L¢ and |[¢|| ;2 = 1, then

/]R [aopl@ P20l + aaplolP = eI = Bl'[* + 4105 ¢I?] da

_ l +1 2 —1 42 2
Y [/R (aol@[P¢ + ar|g|P™ — Bl¢'[* + 407 ' | )dx} /R|¢| dz > 0,
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ie., (Li1,1) > 0. Thus, we get £+|{¢}J_ > 0, which means that the second smallest

eigenvalue of £, must be non-negative, i.e., n(£y) < 1. In addition, by lemma 2.6
and (A.2), we have

(L+6,0) = ((~(w — @) Id+aop|g|" "¢ + arplo[P~! + BI; —1077) ¢, ¢)  (3.2)
=(~(p—1) (a0|d"2¢ + ar|g|"™) ¢, ) < 0.

This implies that there exist negative eigenvalues for £, . Therefore, there exists a
unique negative eigenvalue for £ . g

Proof of theorem 1.3. First, we show that ¢ = ¢, satisfies weak non-degeneracy,
ie, ¢ L Ker[£4]. Here, ¢ is the minimizer of the minimization problem (1.7)
and L is the linearized operator of equation (1.1), i.e., we consider £, = —(w —
o) Id +agp|g|P~ + aap|o|P~2¢ + BO? — vO, 2. Considering that the minimizer of
the minimization problem (1.6) and the linearized operators corresponding to the
equation (1.3) are analogous. For any T € Ker[£] satisfying

ITllp2 = 1.

According to proposition 3.3, we get

£+|{¢}J_ > 0. (3.3)

By

(T-300008) Lo ol =
and (3.2), we have

1

0< <£+ [T—1<T,¢>¢} T3

; (T.6)0) = 35 (X 0*(£46.0) <0

Thus, (T, ¢) = 0. This proves that ¢ has weak non-degeneracy.
Second, we prove the spectral stability. According to lemma 3.2, we select L = £
and ¢o = %(ﬁ. By (3.2) and (3.3), we obtain that lemma 3.2 implies (L', ¢) < 0.

Since (ﬁj_lgb, @) # 0, we get ([,_Ilgzb, @) < 0. Thus, using lemma 3.1, we obtain that
¢ is spectrally stable. This proves theorem 1.3. O
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Appendix A. Derivation of Euler—Lagrange equations

In this appendix, we derive the Euler—Lagrange equations corresponding to the
minimization problems (1.6) and (1.7).

PROPOSITION A.1. There exists w € R, such that the solutions to the constrained
minimization problems (1.6) and (1.7), respectively, satisfy the FEuler—Lagrange

equations
(= w)e” + a0 (I¢'") +a (81771 ¢')" + 8™ =76 = 0 (A1)
and
(a —w)¢ + aolol” + ar|pP~ ¢+ B¢" — 79, %¢ = 0. (A.2)
Proof. Let
¢+ oy
VA"
U5 =V T

where 1 is a test function. Obviously, ||0,us|| 2 = A and

E[u(;] = —

&7s) aq
Orus|POpusdr — Opus|P T dz
p+14| 5| s p+14| s

+é/ |8§u5|2dx—1/|u5|2da:
2 Jr 2 Jr

01+ 8{ [ (~aald P~ anlg P+ 50"~ v00) do
=5 | [ Cald e - anlot 4 5162 < 5lo) da] [ suras )+ 00,
Since Elus] > Mg()), V6 € R, we choose w satisfying
a—w= [ (CauldPs —anld P + 816"~ 216P) d
then
((@=w)g" + a0 (1§17) +a1 (16777 ¢) + 88" —16,0) =0, W,

This implies that ¢ is a distribution solution of (A.1).
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Similarly, let

¢+ 6y
o = VA ol (4-3)

then, [Jvs||,2 = A and

—_ Qo
ool == 051 e PR
B 2 g -1, )2
+§/R|8$v5| dx—i/R\@m vs|“dx
=Me(\) + 6{ /R [ |@P) + o |@[P~ b — B + 705 O, ] d
=5 | (@aloPo + artop=t - 516P +al0s o) ds] [ suasf +0 ().

Since E[vs] > Mg(N), Vd € R, we choose w satisfying

1 _
a—w= X/ (0l @[Pd + ar|oP* — B¢ 2 + 110, ¢[) da, (A4)
R
then
<(O[ - W)¢ + a0|¢|p + a1|¢|p—1¢ + 5¢)H - Wa;2¢a ¢> = 07 Vd}»
This implies that ¢ is a distribution solution of (A.2). O

Appendix B. Pohozaev identity
We establish the following Pohozaev identity.

LEMMA B.1. Suppose that ¢ € H? is a weak solution of (1.5), then

16 pae =572 [opoae + G [0

+1
—f/|¢| dz,

(3 —=2p)ag (3 —2p)aq
2 [opae G200 [ oo G220 [opas

4
+l/wwﬁ
3 Jr

Proof. Multiplying ¢ at both sides of (1.5) and integrating the result over R, based
on proposition 2.3, we get

w—a) / &/ 2do + 3 / 9" 2da

+1

(A.1)

/ 6[2dz.

p+1
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In addition, note that

(a—w) /R ¢"z¢dr = 2

ao/<|¢|”> wdo:f—ao/w

__ bao /P

(\cb [¢/) wde

+1

" /R (47¢) ade = - / ¢ de - pil ] /R (I¢'P+") ad

T ppill / @1 de,

1" _ 2 _é 2\’
o [ oirads =5 [ (o' Pdo =5 [ (0) ado

30 [ g2
_ ! — 1 2
v/Rw wdz 2/R\¢| dz.

Multiplying 2¢’ at both sides of (1.5) and integrating the result over R, we get

w;a/|¢/‘2dﬂl+%/|¢”‘2dl‘
o o (A.3)
_ 770 P 1 p+1
2o [opadn+ 22p [(opiae =7 [ o
Combining (A.2) and (A.3), we get the Pohozaev identity (A.1). O

REMARK B.2. According to lemma B.1, for the weak solution ¢ € H' N H~! of
equation (o — w)d + ag|d|? + a1|dP~te + Be" — v0;2¢ = 0, we have

J10par =200 [ 200+ G20 [ jojtas
’ / 07 oz,

o) [loas =22 [ jopoe+ % [ orar+ T [ 1070 an

https://doi.org/10.1017/prm.2024.86 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.86

Spectral stability of constrained solitary waves 31
Appendix C. Proof of inequality (2.14)

We prove the inequality (2.14), which can be obtained by the following estimate.
It is a modified version of one in [22].

PrOPOSITION C.1. The following inequality holds:

400 27rn€\/,§+%e\/[? 1
/ X”H(ac)da:—f/xpﬂ(x)dx
27nev/B 8 R

SWWE\/BA X ()X (y)] da.

Proof. Splitting the interval (27ne\/B + Jey/B,2m(n + 1)ey/f) into seven intervals
with the same length, i.e.,

(27T716\/B+ %e\/@ 27me\/B+ Weﬂ) , m=12--- 7.

We can calculate

+0o0 27Tne\/3+%e\/3
8 / P (z)dx
2

ne—oo Y 2mne/B

00 27 (n+1)e/B
= / P (z)dx
n=—o0 27rne\/ﬁ
io 27rne\/3+%e\/> 1 27: 27{'7’7,6\/3+W6\/E "
+ 7/ P (x)dz — / X (z)dx
ne—oo 2nev/B 1 27rnef+m7ref
:/Xp+1($)dx
R
Z Z 27rnef+zef " 2ﬁne\/ﬁ+We\/B 1
+ / xP (x)dx—/ XP (z)dx
ne—o0 m—1 2mney/B 27rn5f+ T e\/B

Thus, according to

27rne\/B+%e\/E 271'715\/54—%6\/?
/ e [ 7 (@)
2wney/ 27rne\/ﬁ+7l}1ﬂe\/,§
Zﬂne\/[?-‘r{rs\/ﬁ
_ / |:Xp+1(1') — Pt (x + @6\/5)} dx
2ney/ 4

27rne\/B+1;[e\/B ac—i—mlge\/ﬁ )
<(p+ 1)/ / IXP ()X (y)| dz
27ne/B x
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Qﬂne\/EJr%e\/B 2ﬂne\/B+We\/B ,
(0+1) / / WY ()] da
2 2

wney/B mnev/B
p_,’_ 2m(n+1)eV/B )
B WX () de, m=1,2,--,7,
2mney/B
we have
27rnef+7xref
sy e [ @
n=—o0 2mne/B R
+oo 7 2nney/B+ T VB 27”16\/[7—4-%5\/{7
B ol W
n=—oo m=1 27neV/B 277"6\/B+%£5\/B
p+ 1 27 (n+1)e
mev/B Z / L WXl

! wef/|x )| da.

This completes the proof.
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