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A rigidity result for the product of spheres

Pak Tung Ho

Abstract. In this paper, we prove a rigidity result for the product metric on the product of spheres
S1 × Sn−1 .

1 Introduction

Throughout this paper, we assume n ≥ 3. Let gS n be the standard metric on the
n-dimensional unit sphere Sn . Answering a question of Gromov [5], Llarull [11]
proved the following:

Theorem 1.1 (Theorem A in [11]) Suppose g is a Riemannian metric on Sn such that
its scalar curvature Rg ≥ n(n − 1) = RgSn and g ≥ gS n . Then we must have g = gS n .

In the even-dimensional case, Listing [9] was able to generalize Theorem 1.1 as
follows:

Theorem 1.2 Let n ≥ 4 be an even integer. Moreover, suppose that g is a Riemannian
metric on Sn satisfying Rg ≥ (n − 1)trg(gS n) at each point on Sn . Then g is a constant
multiple of gS n .

Later, rigidity results related to the scalar curvature, including compact symmetric
spaces, have been obtain by other authors in [3, 4, 10, 12]. For more rigidity results
involving scalar curvature, we refer the readers to the survey [1].

For any c > 0, let gc be the product metric given by gc = c ds2 + gS n−1 on the product
of spheres S1 × Sn−1. In this paper, we prove the following:

Theorem 1.3 Suppose g is a Riemannian metric on S1 × Sn−1 such that:
(i) its scalar curvature Rg ≥ (n − 1)(n − 2) = Rgc ,
(ii) g ≥ gc , and
(iii) its Ricci curvature Ricg ≥ 0.
Then g is isometric to g c̃ for some c̃ ≥ c.
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Compared to that of Theorems 1.1 and 1.2, the assumption of Ricci curvature in
Theorem 1.3 may seem to be strong. But we remark that lower bound on the Ricci
curvature is assumed when rigidity result of symmetric space is studied. See Theorem
0.2 in [3].

In Section 2, we prove a conformal version of Theorem 1.3. See Corollary 2.2 for
the precise statement. Note that the similar idea can be used to prove rigidity results
for manifolds with boundary and for CR manifolds within a fixed conformal class.
See Propositions 2.3 and 2.5.

In Section 3, we prove Theorem 1.3. We then provide examples showing that neither
assumption (i) nor assumption (ii) could be dropped in Theorem 1.3. This leaves
us the question whether assumption (iii) on Ricci curvature could be dropped in
Theorem 1.3. While we are not able to answer it, we are able to prove a rigidity result of
warped product metric without any assumption on Ricci curvature. See Theorem 3.1
for the precise statement.

2 A conformal version

As a warm-up, we will prove in this section a conformal version of Theorem 1.3. We
first prove the following more general proposition.

Proposition 2.1. Suppose (M , g̃) is a closed (i.e., compact without boundary)
Riemannian manifold such that its scalar curvature satisfies R g̃ ≥ 0 and R g̃ /≡ 0. If g
is conformal to g̃ such that g ≥ g̃ and Rg ≥ R g̃ , then g = g̃.

Proof Since g is conformal to g̃, we can write g = u 4
n−2 g̃ for some 0 < u ∈ C∞(M).

By the assumption that g ≥ g̃, we have

u ≥ 1.(2.1)

Moreover, since g = u 4
n−2 g̃, it is well known that

−4(n − 1)
n − 2

Δ g̃u + R g̃u = Rgu
n+2
n−2 .(2.2)

By (2.2) and the assumption that Rg ≥ R g̃ , we find

−4(n − 1)
n − 2

Δ g̃u = Rgu
n+2
n−2 − R g̃u

≥ R g̃u
n+2
n−2 − R g̃u = R g̃u

4
n−2 (u − 1).(2.3)

It follows from (2.1) and the assumption that R g̃ ≥ 0 that the last term in (2.3) is
nonnegative, which gives Δ g̃u ≤ 0 in M. Since M is compact, we must have

u ≡ c

for some constant c. On one hand, it follows from (2.1) that c ≥ 1. On the other hand,
by (2.2) and the assumption that Rg ≥ R g̃ , we deduce

Rg = R g̃ c−
4

n−2 ≥ R g̃ .
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Since R g̃ ≥ 0 and R g̃ /≡ 0, we have c ≤ 1. That is to say, we have c = 1 and u ≡ 1, or
equivalently, g = g̃, as claimed. ∎

For the product metric gc = c ds2 + gS n−1 on the product of spheres S1 × Sn−1,
the scalar curvature of gc is equal to (n − 1)(n − 2). Therefore, we can apply
Proposition 2.1 with (M , g̃) = (S1 × Sn−1 , gc) to get the following corollary, which
is a conformal version of Theorem 1.3.

Corollary 2.2. If g is a metric on S1×Sn−1 conformal to gc such that Rg ≥Rgc =(n − 1)
(n − 2) and g ≥ gc , then g = gc .

Note that there is no assumption on the Ricci curvature in Corollary 2.2. The idea
of the proof of Proposition 2.1 can be used to prove the following:

Proposition 2.3. Suppose (M , g̃) is a compact Riemannian manifold with boundary
∂M such that its scalar curvature satisfies R g̃ ≥ 0 and R g̃ /≡ 0 in M and its mean
curvature satisfies H g̃ = 0 on ∂M. If g is conformal to g̃ such that g ≥ g̃, Rg ≥ R g̃ in M,
and Hg = 0 on ∂M, then g = g̃.

Proof Since the proof is very similar to Proposition 2.1, we only sketch it. If we write
g = u 4

n−2 g̃ for some 0 < u ∈ C∞(M), we still have (2.1). Since g = u 4
n−2 g̃, we have (see,

for example, [2])

−4(n − 1)
n − 2

Δ g̃u + R g̃u = Rgu
n+2
n−2 in M ,

2(n − 1)
n − 2

∂u
∂ν g̃
+H g̃u = Hgu

n
n−2 on ∂M .(2.4)

It follows from the second equation in (2.4) and the assumption that Hg = H g̃ = 0 that

∂u
∂ν g̃
= 0 on ∂M .(2.5)

Following the proof of Proposition 2.1, we can conclude that
Δ g̃u ≤ 0 in M .

Combining this with (2.5), we can conclude that u ≡ c for some constant c. As in the
proof of Proposition 2.1, we can then conclude that u ≡ 1, or equivalently, g = g̃. ∎

Let (M , g0) be a closed (i.e., compact without boundary) n-dimensional Rieman-
nian manifold such that its scalar curvature Rg0 ≥ 0 and Rg0 /≡ 0. Then [0, 1] ×M
is a compact (n + 1)-dimensional manifold with boundary ({0} ×M) ∪ ({1} ×M).
Equipped with the product metric ds2 + g0, [0, 1] ×M has scalar curvature being
equal to Rg0 and has vanishing mean curvature. Therefore, we can apply Proposi-
tion 2.3 to get the following:

Corollary 2.4. Let (M , g0) be a closed (i.e., compact without boundary)
n-dimensional Riemannian manifold such that its scalar curvature Rg0 ≥ 0 and Rg0 /≡ 0.
If g is a metric on [0, 1] ×M conformal to g̃ = ds2 + g0 such that g ≥ g̃, Rg ≥ R g̃ in M,
and Hg = 0 on ∂M, then g = g̃.
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Similarly, one can prove the following CR version of Proposition 2.1. Basic facts
about CR manifolds could be found in [7] for example.

Proposition 2.5. Suppose that (M , θ̃) is a compact strictly pseudoconvex CR manifold
of real dimension 2N + 1 with a given contact form θ̃ such that its Webster scalar
curvature satisfies Rθ̃ ≥ 0 and Rθ̃ /≡ 0. If θ is conformal to θ̃ such that θ ≥ θ̃ and Rθ ≥ Rθ̃ ,
then θ = θ̃.

Proof Since θ is conformal to θ̃, we can write θ = u 2
N θ̃ for some 0 < u ∈ C∞(M).

We then have

u ≥ 1,(2.6)

since θ ≥ θ̃ by assumption. Since θ = u 2
N θ̃, we have (cf. [7])

−(2 + 2
N
)Δθ̃ u + Rθ̃ u = Rθ u1+ 2

N ,(2.7)

where Δθ̃ is the sub-Laplacian of θ̃. Using (2.7) and the assumption that Rθ ≥ Rθ̃ , we
deduce

−(2 + 2
N
)Δθ̃ u = Rθ u1+ 2

N − Rθ̃ u

≥ Rθ̃ u1+ 2
N − Rθ̃ u = Rθ̃ u

2
N (u − 1).(2.8)

From (2.7) and the assumption that Rθ̃ ≥ 0, we can see that the last term in (2.8) is
nonnegative, which implies that Δθ̃ u ≤ 0. Since M is compact, we have

u ≡ c

for some constant c. Note that c ≥ 1 by (2.6). Note also that

Rθ = Rθ̃ c−
2
N ≥ Rθ̃

by (2.7) and the assumption Rθ ≥ Rθ̃ . Since Rθ̃ ≥ 0 and Rθ̃ /≡ 0, we must have c ≤ 1.
Hence, we have c = 1 and u ≡ 1, which gives θ = θ̃. ∎

The unit sphere S2N+1 in C
N+1 = {(z1 , ..., zN+1)) ∶ z i ∈ C} has a standard contact

form given by

θ0 =
√
−1

N+1
∑
j=1
(z jdz j − z jdz j).

Then the Webster scalar curvature of (S2N+1 , θ0) is equal to Rθ0 = N(N + 1)/2 (see,
for example, [6]). The following corollary follows from Proposition 2.5 by putting
(M , θ̃) = (S2N+1 , θ0):

Corollary 2.6. Let (S2N+1 , θ0) be the standard CR sphere equipped with the standard
contact form θ0. If θ is conformal to θ0 such that Rθ ≥ Rθ0 = N(N + 1)/2 and θ ≥ θ0,
then θ = θ0.
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3 Proof of Theorem 1.3

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3 Consider the universal covering R × Sn−1 of S1 × Sn−1. The
pullback of the metric g on S1 × Sn−1 under the covering map gives a metric g on
R × Sn−1. By assumption (iii), the compact manifold (S1 × Sn−1 , g) has nonnega-
tive Ricci curvature. By Theorem 2.5 in Chapter I of [13], the universal covering
(R × Sn−1 , g) of S1 × Sn−1 is isometric to R

k ×M equipped with the product metric,
where M is a compact (n − k)-dimensional manifold. Hence, we must have k = 1,
and the metric g is isometric to the product metric ds2 + g̃ on R × Sn−1, where g̃ is a
metric on Sn−1. Therefore, the metric g, which is the metric g descending on S1 × Sn−1

through the covering map, is isometric to the product metric c̃ ds2 + g̃ on S1 × Sn−1,
where c̃ is a positive real number and g̃ is a metric on Sn−1. As a result, up to isometry,
we can assume that

g = c̃ ds2 + g̃ in S1 × Sn−1 .(3.1)

By assumption (ii), we have g ≥ gc , which together with (3.1) implies that

g = c̃ ds2 + g̃ ≥ c ds2 + gS n−1 = gc .

From this, we have

c̃ ≥ c and g̃ ≥ gS n−1 .(3.2)

In view of (3.1), the scalar curvature of g is equal to the scalar of g̃, i.e., R g̃ = Rg .
Combining this with assumption (i), we have

R g̃ ≥ (n − 1)(n − 2) = RgSn−1 .(3.3)

In view of (3.3) and the second condition in (3.2), we can apply Llarull’s result in
Theorem 1.1 to conclude that g̃ = gS n−1 . Now the assertion follows from this, (3.1), and
the first condition in (3.2). ∎

The following example shows that some assumptions in Theorem 1.3 could not be
dropped. Consider the product metric

g = ds2 + c1 gS n−1

on S1 × Sn−1, where c1 is a positive constant to be chosen. Then the Ricci curvature of
g is nonnegative. In particular, assumption (iii) in Theorem 1.3 is satisfied. Moreover,
the scalar curvature of g is equal to

Rg = c−1
1 RgSn−1 = c−1

1 (n − 1)(n − 2).(3.4)

When c1 ≠ 1, it follows from (3.4) that g is not isometric to gc = cds2 + gS n−1 for any
c > 0, since the scalar curvature of gc is equal to (n − 1)(n − 2). Therefore, if c1 > 1,
then

g = ds2 + c1 gS n−1 > g1 = ds2 + gS n−1 ,
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i.e., assumption (ii) in Theorem 1.3 is satisfied, and by (3.4)

Rg = c−1
1 (n − 1)(n − 2) < (n − 1)(n − 2),

i.e., assumption (iii) in Theorem 1.3 is not satisfied. To conclude, we see that assump-
tion (iii) in Theorem 1.3 cannot be dropped. On the other hand, if c1 < 1, then

g = ds2 + c1 gS n−1 < g1 = ds2 + gS n−1 ,

i.e., assumption (ii) in Theorem 1.3 is not satisfied, and by (3.4)

Rg = c−1
1 (n − 1)(n − 2) > (n − 1)(n − 2),

i.e., assumption (iii) in Theorem 1.3 is satisfied. From this, we see that assumption (ii)
in Theorem 1.3 also cannot be dropped.

We wonder if assumption (iii) in Theorem 1.3 could be dropped. While we are not
able to come up with an example, we can prove a rigidity result of warped product
metric without any assumption on Ricci curvature. To this end, we consider the
warped product metric

g = ds2 + f (s)2 g̃(3.5)

on R × Sn−1, where f > 0 and g̃ is a metric on Sn−1. Let {e i}n
i=1 be an orthonormal

basis with respect to g such that e1 is tangent to R. Then the Ricci curvature of g is
given by (cf. [8, Appendix A])

Ric1 j = −(n − 1) ((log f )′′ + ((log f )′)2) δ1 j = −
(n − 1) f ′′

f
δ1 j(3.6)

for any 1 ≤ j ≤ n, and

Ric i j =
1
f 2 R̃ic i j − ((log f )′′ + (n − 1)((log f )′)2) δ i j

= 1
f 2 [R̃ic i j − ( f f ′′ + (n − 2)( f ′)2)δ i j](3.7)

for any 2 ≤ i , j ≤ n, where R̃ic denotes the Ricci curvature of g̃. Take f to be a smooth
periodic function on R with period 1. Then the warped product metric g defined in
(3.5) descends to the metric ds2 + f (s)2 g̃ on S1 × Sn−1, which we still denote by g.
And, (3.6) and (3.7) can still be applied. Using (3.6) and (3.7), we can compute the
scalar curvature of g:

Rg =
1
f 2 [R g̃ − (n − 1)(2 f f ′′ + (n − 2)( f ′)2)],(3.8)

where R g̃ is the scalar curvature of g̃.
Since f is a smooth periodic function on R, f is bounded. Let m =min f . If g ≥ g1,

then it follows from (3.5) that

g = ds2 + f (s)2 g̃ ≥ g1 = ds2 + gS n−1 ,
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which gives

f (s)2 g̃ ≥ gS n−1(3.9)

for all s ∈ R. Take s0 ∈ R with f (s0) = m. Then (3.9) with s = s0 implies that

g̃ ≥ m−2 gS n−1 .(3.10)

On the other hand, if Rg ≥ (n − 1)(n − 2), then it follows from (3.8) that

R g̃ ≥ (n − 1)(2 f f ′′ + (n − 2)( f ′)2) + (n − 1)(n − 2) f 2(3.11)

for all s ∈ R. Once again, if we take s0 ∈ R with f (s0) = m =min f , then the second
derivative implies that f ′′(s0) ≥ 0. This together with (3.11) at s = s0 implies that

R g̃ ≥ (n − 1)(n − 2)m2 .(3.12)

Hence, it follows from (3.10) and (3.12) that the rescaling metric m2 g̃ on Sn−1 satisfies

m2 g̃ ≥ gS n−1 and Rm2 g̃ ≥ (n − 1)(n − 2).

We can then apply Llarull’s result in Theorem 1.1 to infer that m2 g̃ = gS n−1 . To conclude,
we have proved the following:

Theorem 3.1 If g is a warped product metric on S1 × Sn−1 given by (3.5) such that
g ≥ g1 = ds2 + gS n−1 and Rg ≥ (n − 1)(n − 2), then g = ds2 +m−2 gS n−1 for some m > 0.

Acknowledgments This work first started when the author was invited by Prof.
Jaigyoung Choe to visit the Korea Institute for Advanced Study (KIAS) in the fall of
2022. The author would like to thank Prof. Jaigyoung Choe for raising the question
about rigidity, and for the hospitality of KIAS.

References

[1] S. Brendle, Rigidity phenomena involving scalar curvature. Surv. Differ. Geom. XVII(2012),
179–202.

[2] J. F. Escobar, The Yamabe problem on manifolds with boundary. J. Differ. Geom. 35(1992), no. 1,
21–84.

[3] S. Goette and U. Semmelmann, Spinc structures and scalar curvature estimates. Ann. Glob. Anal.
Geom. 20(2001), 301–324.

[4] S. Goette and U. Semmelmann, Scalar curvature estimates for compact symmetric spaces.
Differential Geom. Appl. 16(2002), 65–78.

[5] M. Gromov, Large Riemannian manifolds. In: Curvature and topology of Riemannian manifolds
(Katata, 1985), Lecture Notes in Mathematics, 1201, Springer, Berlin, 1986, pp. 108–121.

[6] P. T. Ho, The Webster scalar curvature flow on CR sphere. Part I. Adv. Math. 268(2015), 758–835.
[7] D. Jerison and J. M. Lee, The Yamabe problem on CR manifolds. J. Differ. Geom. 25(1987), 167–197.
[8] P. Li, Geometric analysis, Cambridge Studies in Advanced Mathematics, Cambridge University

Press, Cambridge, 2012.
[9] M. Listing, Scalar curvature on compact symmetric spaces, preprint, 2010, arXiv:1007.1832.
[10] M. Llarull, Scalar curvature estimates for (n + 4k)-dimensional manifolds. Differential Geom.

Appl. 6(1996), 321–326.

https://doi.org/10.4153/S0008439523000978 Published online by Cambridge University Press

https://arxiv.org/abs/1007.1832
https://doi.org/10.4153/S0008439523000978


8 P. T. Ho

[11] M. Llarull, Sharp estimates and the Dirac operator. Math. Ann. 310(1998), no. 1, 55–71.
[12] M. Min-Oo, Scalar curvature rigidity of certain symmetric spaces. In: Geometry, topology and

dynamics Montreal, PQ, 1995, CRM Proceedings and Lecture Notes, 15, American Mathematical
Society, Providence, RI, 1998, pp. 127–136.

[13] R. Schoen and S. T. Yau, Lectures on differential geometry, International Press, Boston, 1994.

Department of Mathematics, Tamkang University, Tamsui, New Taipei City 251301, Taiwan
e-mail: paktungho@yahoo.com.hk

https://doi.org/10.4153/S0008439523000978 Published online by Cambridge University Press

mailto:paktungho@yahoo.com.hk
https://doi.org/10.4153/S0008439523000978

	1 Introduction
	2 A conformal version
	3 Proof of Theorem 1.3

