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In this paper, we study divergence properties of the Fourier series on Cantor-type
fractal measure, also called the mock Fourier series. We give a sufficient condition
under which the mock Fourier series for doubling spectral measure is divergent on a
set of strictly positive measure. In particular, there exists an example of the quarter
Cantor measure whose mock Fourier sums are not almost everywhere convergent.
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1. Introduction

This paper is a follow-up of Dutkay et al. [4] which studied divergence properties
of the Fourier series on Cantor measures. They proved there are examples of con-
tinuous functions for which the mock Fourier series does not converge uniformly to
itself. To prove this result, Dutkay et al. showed that the L1-norm of the Dirichlet
kernel can grow exponentially fast using Birkhoff’s ergodic theorem. This approach
is useful, and we show that if instead one assumes only that the function is inte-
grable, then it is possible for the partial mock Fourier sums to diverge at a set of
strictly positive measure for the example of Dutkay et al.

The proof given here and that of Dutkay et al. are both distinctive and connective
from each other, which consists of the following elements: (i) the Christ [3] method
of dyadic systems with doubling measure; (ii) the resulting discretization lemma
for the mock Dirichlet summation operator and (iii) a variant of the Dutkay et al.
discriminant value for these Dirichlet kernels, which allow us to apply the obtained
lemma to certify the main result of this paper.

Let us briefly introduce some of the notations and results that we will use later.
Consider a Borel probability measure μ on Rd with compact support. We say that
μ is a spectral measure if there exists a discrete set Λ ⊂ Rd such that E(Λ) :=
{e−2πiλ·x : λ ∈ Λ} is an orthonormal basis for L2(μ). Jorgensen and Pedersen [10]
constructed the first singular, non-atomic spectral measure, namely the quarter
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Divergence of mock Fourier series for spectral measures 1819

Cantor measure. Over 20 years, many other intriguing singular spectral measures
on self-affine and Moran fractal sets have been constructed (see [1, 4, 5] and so on).

Given a spectral measure μ with a spectrum Λ, for L1(μ) function f ,
we define coefficients cλ(f) =

∫
f(y)e−2πiλ·ydμ(y) and the mock Fourier series∑

λ∈Λ cλ(f)e2πiλ·x. There is a natural sequence of finite subsets Λn increasing to Λ
as n→ ∞, and we define the partial sums of the mock Fourier series by

Sn(f)(x) =
∑

λ∈Λn

cλ(f)e2πiλ·x.

We will use (Sn, Λn) to denote the mock Dirichlet summation operator Sn with Λn.
As an analogue to classical Fourier analysis, an extremely natural question is

whether Sn(f) converges to f as n→ ∞. The answer has an added piquancy since:
not only does it depend on the determining what the function space f is belonged
to, but it also depends critically on how one defines ‘convergence’.

Recalling that if μ is the Lebesgue measure on [0, 1]d, the assertion of uniform
convergence of classical Fourier series is not true for some continuous functions
[13, p. 83]. By contrast, Strichartz [14] showed that it is correct for a large fam-
ily of singular continuous spectral measures with the standard spectrums. On the
other hand, different spectrums may have different convergence for a given spectral
measure. As we have already mentioned, Dutkay et al. [6] proved there is a con-
tinuous function f whose (Sn(f), Λn) does not even converge pointwise to f if one
changes the spectrum from standard to some non-standard. Yet it is worth noting
that Dutkay et al. [6] did not say if it could diverge on a set of strictly positive
measure, we will show this is the case.

To conveniently state our main results, we briefly introduce the related concepts,
and their well-posedness will be given in § 2. Let (M, ρ) be a metric space and
suppose that μ is a positive locally finite Borel measure on M . We call μ a doubling
measure if μ satisfies the doubling condition

μ(B(x, 2r)) � A1μ(B(x, r)) <∞

for all x ∈M and r > 0, where A1 is constant and independent of x, r. Here B(x, r)
denotes the closed ball B(x, r) = {y ∈M : ρ(y, x) � r}.

Recall the finite discrete measure defined on a measure space (X, A, μ) has the
form ν = 1

N

∑N
i=1 δxi

for every finite collection x1, x2, . . . , xN ∈ X not necessarily
pairwise different points, where δx is the Dirac measure concentrated at the point
x ∈ X. Given a mock Dirichlet summation operator Sn with Λn, we formally write

Sn(ν)(x) =
1
N

∑
λ∈Λn

N∑
j=1

e2πiλ·(x−xj).

Now we state our main result.
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Theorem 1.1. Let μ be a doubling spectral measure and let (Sn, Λn) be the mock
Dirichlet summation operator. If

lim
α→∞ sup

ν= 1
N

∑N
i=1 δxi

μ
({
x ∈ X : sup

n
|Sn(ν)(x)| > α

})
> 0,

then there exists an integrable function such that the mock Fourier series diverges
on a set of strictly positive μ-measure.

As an application, we find the example in [6] diverges on a set of strictly positive
measure.

Theorem 1.2. Let μ4 be the quarter Cantor measure and let (Sn, 17Λn) be the
mock Dirichlet summation operator with

17Λn =

⎧⎨
⎩17

n∑
j=0

4j lj : lj ∈ {0, 1}, n ∈ N

⎫⎬
⎭ .

Then there exists an integrable function f ∈ L1(μ4) whose mock Fourier series
Sn(f)(x) diverges on a set of strictly positive μ-measure.

We organize our paper as follows. In § 2, we first present a brief overview of the
relationship between the continuity of maximal operators and convergence almost
everywhere. Succeeded by, we introduce the main tool for our proof of theorem 1.1,
i.e. the dyadic cube analysis constructed by Christ [3]. In § 3, as an application of
theorem 1.1, we consider the self-affine measures generated by Hadamard triples.
Under some technical conditions about the spectrum, we give a criterion on there
exists an integrable function whose mock Fourier series diverges on a set of strictly
positive measure. The criterion can be applied to cover theorem 1.2.

2. The proof of theorem 1.1

Let (X, A, μ) be a complete finite measure space with a σ-field A. To recall some
basic facts firstly, the space of (equivalence classes of) all measurable functions
on(X, A, μ) is denoted by L0(μ). It is endowed with the topology of convergence
in measure by the metric

d(f, g) =
∫

X

|f − g|
1 + |f − g|dμ.

It is not difficult to show that (L0(μ), d) is a complete metric space.
A mapping T : (M, d1) → (L0(μ), d) from a metric space M to L0(μ) is

said to be continuous at x ∈M , if for any sequence {xn} ⊂M, n � 1, we
have d(Txn, Tx) −→ 0 whenever d1(xn, x) −→ 0. We call that a mapping T is
continuous if it is continuous at every point of M .

We first recall the following theorem on the almost everywhere finiteness of the
maximal operator due to Guzman [8].
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Theorem 2.1 [8, p. 10]. Assume (X, A, μ) is a complete measure space and Tk :
L1(μ) → (L0(μ), d) is a sequence of sub-linear operators with μ(X) <∞. If each Tk

is continuous and that the maximal operator T ∗ defined for f ∈ L1(μ) and x ∈ X
as

T ∗f(x) := sup
k

|Tkf(x)| <∞ μ− a.e.

Then T ∗ is also continuous at 0, and therefore

lim
α→∞φ(α) := lim

α→∞ sup
‖f‖L1(μ)�1

μ({x ∈ X : T ∗f(x) > α}) = 0.

Notice that the bounded linear operator is always continuous. By theorem 2.1, if
{Tk} is a sequence of bounded linear operators, then limα→∞ φ(α) > 0 implies there
exists an integrable function g such that Tk(g) is not almost everywhere convergent.

Corollary 2.2. Let (X, A, μ) be a complete measure space and Tk : L1(μ) →
(L0(μ), d) be a sequence of bounded linear operators with μ(X) <∞. If

lim
α→∞ sup

‖f‖L1(μ)�1

μ({x ∈ X : T ∗f(x) > α}) > 0, (2.1)

then a function g existing in L1(μ) can be obtained that its Tk(g) diverges on a set
of strictly positive μ-measure.

However, it is difficult to verify (2.1). Thus, in comparison with testing on the
integrable functions, we consider acting over a sum of Dirac measure, which is better
handled in most cases. Concretely, let (X, A, μ) and (X, A, ν) be complete Borel
measure spaces defined on a Hausdorff space X, and B(X) be the space of locally
finite Borel space measure on X. Consider a sequence kj of kernels satisfying the
following two properties:

(i) Each kj : X ×X → X is a measurable function such that kj(·, y) ∈ L1(μ).

(ii) For each j there exists Oj such that

‖kj(·, y)‖L1(μ) � Oj for every y ∈ X.

We write

Kjf(x) =
∫

X

kj(x, y)f(y)dμ(y) for f ∈ X.

Using Fubini–Tonelli’s theorem, the second property of kernels makes the maximal
operator sensible as follows:

K∗f(x) = sup
j

|Kjf(x)|.

Moreover, if kj(x, y) is a continuous function with compact support on X ×X for
any j ∈ N, then each Kj is a bounded linear operator from L1(μ) to L∞(μ). Such
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an operator has a natural extension to a bounded linear operator from B(X) to
L∞(μ), which we denote by Kj again, namely

Kjν(x) =
∫

X

kj(x, y)dν(y), K∗ν(x) = sup
j

|Kjν(x)|. (2.2)

Especially, choose a sum of Dirac measure ν = 1
H

∑H
h=1 δxh

for x1, . . . , xH ∈ X,
then

Kjν(x) =
1
H

H∑
h=1

kj(x, xh), K∗ν(x) =
1
H

sup
j

∣∣∣∣∣
H∑

h=1

kj(x, xh)

∣∣∣∣∣ .
In what follows, our main aim is to extend the ‘pointillist principle’ of Carena
[2, theorem 1], then a similar conclusion can be obtained under slightly different
conditions. To certify theorem 1.1, recall the dyadic cubes constructed by Christ
in [3], which is extremely important for extending results from classical harmonic
analysis to the metric space setting.

Theorem 2.3 [3, theorem 11]. Let (X, ρ) be a metric space and suppose that μ is
a regular doubling measure on X. Then there exists a collection of open subsets

{Qk
α ⊂ X : k ∈ Z, α ∈ Ik}

satisfying the following properties:

(i) For each integer k,

μ
(
X\

⋃
α
Qk

α

)
= 0.

(ii) Each Qk
α has a centre zQk

α
such that

B(zQk
α
, C1δ

k) ⊆ Qk
α ⊆ B(zQk

α
, C2δ

k),

where C1, C2 and δ are positive constants depending only on the doubling
constant A1 of the measure μ and independent of Qk

α.

(iii) For each (k, α) and each l < k, there is a unique β such that Qk
α ⊂ Ql

β.

(iv) For any k, α and t > 0, there exist constants δ ∈ (0, 1), C3 <∞, η > 0
depending only on μ such that

μ
{
x ∈ Qk

α : ρ(x,X\Qk
α) � tδk

}
� C3t

ημ(Qk
α).

Note that Ik denotes some index set. Dyadic cubes are constructed by⋃
k∈Z, α∈Ik

{Qk
α}. We also assume that the centre of dyadic cubes satisfies maximal

δk-distance disperse condition, that is

ρ(zQk
α
, zQk

β
) � δk for any α �= β. (2.3)

In this context, maximality means that no new points of the space X can be added
to the set {zQk

α
} such that (2.3) remains valid. One other factor indeed, the last

condition says that the area near the boundary of a ‘cube’ Qk
α is small.
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The main result is as follows.

Lemma 2.4. Let (X, ρ) be a metric space and let μ be a positive regular Borel
measure satisfying the doubling condition on X. Let ν be a measure such that
dν = gdμ with g ∈ L1

loc(X, ρ, μ). Denote

ψα(f) := ν({x ∈ X : |f(x)| > α})

for a measurable function f defined on (X, ρ, ν). If each kernel kj(x, y) is a
continuous function with compact support on X ×X and K∗ is defined in (2.2),
then

lim
α→∞ sup

‖f‖L1(ν)�1

ψα(K∗f) = 0 ⇐⇒ lim
α→∞ sup

ω= 1
H

∑H
h=1 δah

ψα(K∗ω) = 0 (2.4)

for every finite collection a1, a2, . . . , aH ∈ X not necessarily pairwise different
points.

Proof. For pairwise different points a1, a2, . . . , aH ∈ X, we firstly denote following
sets of measures as elements:

MN =

{
ω =

∑H
h=1 chδah∑H

h=1 ch
: ch ∈ N+

}
,

MQ =

{
ω =

∑H
h=1 chδah∑H

h=1 ch
: ch ∈ Q+

}
,

MR =

{
ω =

∑H
h=1 chδah∑H

h=1 ch
: ch ∈ R+

}
,

and set of functions

FR =

{
f =

∑H
h=1 chχQh∑H

i=1 chν(Qh)
: ch ∈ R+, Qi ∩Qj = ∅

}
,

where Qh is a dyadic cube constructed in theorem 2.3 and χQh
is the characteristic

function.

Necessity. We divide the proof of

lim
α→∞ sup

ω= 1
H

∑H
h=1 δah

ψα(K∗ω) = 0 =⇒ lim
α→∞ sup

‖f‖L1(ν)�1

ψα(K∗f) = 0

into four steps.
Step 1. In the first step, we verify limα→∞ supω∈MQ

ψα(K∗ω) = 0. Consider an
element ω in the class of all linear combinations of Dirac deltas with positive integer
coefficients MN. Then limα→∞ supω∈MN

ψα(K∗ω) = 0 by the assumption.
Write ch = nh

mh
with nh, mh ∈ N+ for ch ∈ Q+. Since

∑H
h=1 chδah∑H

h=1 ch
=
∑H

h=1 chδah∑H
h=1 ch

, where ch = nh

H∏
j=1,j �=h

mj ∈ N+,

we know MN = MQ. Hence limα→∞ supω∈MQ
ψα(K∗ω) = 0.
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Step 2. In this step, we want to prove that limα→∞ supω∈MR
ψα(K∗ω) = 0.

Let us start by defining maximal truncated operator acting on functions and
distributions:

K∗
Nf(x) = max

1�j�N
|Kjf(x)|, K∗

Nν(x) =
1
H

sup
1�j�N

∣∣∣∣∣
H∑

h=1

kj(x, xh)

∣∣∣∣∣ .
We next claim that, for each integer N , real numbers α, ε > 0, 0 < β < α and
ω ∈ MR, we can find a finite discrete measure ω ∈ MQ satisfying the inequality

ψα(K∗
Nω) � ψα−β(K∗

Nω) + 2ε.

In fact, for ω ∈ MR, take dh ∈ Q+ such that ch = dh + rh, where rh > 0 will be
determined later. If we write ω =

∑H
h=1 dhδdh

/
∑H

h=1 dh, then, for 0 � β � α,

ψα(K∗
Nω) � ψα−β(K∗

Nω) + ψβ(K∗
N (ω − ω)).

Hence

ψβ(K∗
N (ω − ω))

� 2
β

N∑
j=1

H∑
h=1

|rh|
∫

X

|kj(x, ah)|dν
(

1∑H
h=1 dh

+
∑H

h=1 rh∑H
h=1 dh

∑H
h=1 ch

)
.

Applying the properties (i) of kernels, we can choose small rh such that the right-
hand side of the above inequality are all less than arbitrary ε > 0. Thus our claim
is proved.

Hence we use K∗
N � K∗ to get ψα(K∗

Nω) � supω∈MQ
ψα−β(K∗ω) + 2ε. Taking

the maximum in the measure family MR and letting β → 0, ε→ 0, we have

sup
ω∈MQ

ψα(K∗ω) � sup
ω∈MR

ψα(K∗
Nω) � lim

α0→α−
sup

ω∈MQ

ψα0(K∗ω).

Since supω∈MQ
ψα(K∗ω) monotonically decreases with α and limα→∞ supω∈MQ

ψα

(K∗ω) = 0, one obtain limα→∞ supω∈MR
ψα(K∗ω) = 0.

Step 3. Next, we show limα→∞ supf∈FR
ψα(K∗f) = 0. It will suffice to show that

for each integer N , real numbers α, ε > 0, 0 < β < α and ω ∈ MR, there exists a
function f ∈ FR satisfying the inequality ψα(K∗

Nω) � ψα−β(K∗
Nf) + ε. Once again,

the desired limiting behaviour will follow by reasoning as in the proof of step 2.
Let f =

∑H
h=1 chχQh

/
∑H

h=1 chν(Qh) ∈ FR and ω =
∑H

h=1 chν(Qh)δzQh
/
∑H

h=1 ch
ν(Qh) ∈ MR, where zQh

denotes the centre of the dyadic cube Qh. Without loss of
generality, we shall assume that every dyadic set Qh such that diam(Qh) < η for
h = 1, 2, . . . , H; η > 0. This assumption is practicable since we can write, except
on a set with ν-measure equal to zero, f =

∑W
j=1 cjχQ′

j
/
∑W

j=1 cjν(Q′
j) with disjoint

dyadic cubes Q′
j and diam(Q′

j) < η for all j if f and η is given. See properties (i)
and (iii) in theorem 2.3. Thus we will keep writing f =

∑H
h=1 chχQh

/
∑H

h=1 chν(Qh)
and suppose that the diameter of each Qh is as little as we need.
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If 0 � β � α, for fixed N , we obtain that

ψβ(K∗
N (f − ω))

�
N∑

j=1

1
β

∫
X

|Kj(f − ω)(x)|dν(x)

� 1

β
(∑H

h=1 chν(Qh)
) N∑

j=1

∫
X

(
H∑

h=1

ch

∫
Qh

|kj(x, y) − kj(x, zQh
)|dν(y)

)
dν(x)

� 1

β
(∑H

h=1 chν(Qh)
) N∑

j=1

H∑
h=1

ch

∫
Qh

(∫
Fj

|kj(x, y) − kj(x, zQh
)|dν(x)

)
dν(y),

where Fj denotes the projection of the support of kj(x, y). From the hypothesis, Fj

is a bounded set with finite measure. Hence every kj(x, y) is a uniformly continuous
function with compact support in X ×X, we can take small diam(Qi) such that
ψβ(K∗

N (f − ω)) is small enough.
Step 4. Finally, from the fact that the set of all real coefficients linear combina-

tions of characteristic functions of dyadic sets is dense in L1(μ), by the standard
argument, one obtains

lim
α→∞ sup

‖f‖1�1

ψα(K∗f) = lim
α→∞ sup

f∈FR

ψα(K∗f) = 0.

The proof of lemma 2.4 in one direction is complete.

Sufficiency. Conversely, we want to prove

lim
α→∞ sup

‖f‖1�1

ψα(K∗f) = 0 =⇒ lim
α→∞ sup

ω∈MN

ψα(K∗ω) = 0.

Clearly ω ∈ MN ⊂ MQ. For pairwise different points a1, a2, . . . , aH ∈ X, we denote
the metric by ρ and d = min{ρ(xi, xj), xi �= xj}. Now we apply properties (i)
and (ii) in theorem 2.3, then there exists Qn

ih
such that xh ∈ Qn

ih
. Let n be a

large integer such that C2δ
n < d

4 , where C2, δ are constants mentioned in theorem
2.3. We claim the set in {Qn

ih
}H

h=1 is pairwise disjoint. In fact, if x ∈ Qn
ih

∩Qn
im

for h �= m. Since Qn
ih

⊂ B(zQn
ih
, C2δ

n) ⊂ B(zQn
ih
, d

4 ) and Qn
im

⊂ B(zQn
im
, C2δ

n) ⊂
B(zQn

im
, d

4 ), using the triangle inequality, we have

ρ(xh, xm) � ρ(xh, zQn
ih

) + ρ(zQn
ih
, x) + ρ(x, zQn

im
) + ρ(zQn

im
, xm) < d.

This is a contradiction to ρ(xh, xm) � d. Apparently, let ch ∈ N+ and

ω =
H∑

h=1

chδxh
, f =

1∑H
h=1 ch

H∑
h=1

ch
ν(Qn

ih
)
χQn

ih
,
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then ω ∈ MN and ‖f‖1 = 1. Fix N ∈ N+ and β > 0 we have

ψβ(K∗
N (f − ω))

� 1∑H
h=1 βch

H∑
h=1

ch

ν
(
Qn

ih

) N∑
j=1

∫
X

(∫
Qn

ih

|kj(x, y) − kj(x, xh)|dν(y)

)
dν(x)

� 1∑H
h=1 βch

H∑
h=1

ch

ν
(
Qn

ih

) N∑
j=1

∫
Fj

(∫
Qn

ih

|kj(x, y) − kj(x, xh)|dν(x)

)
dν(y),

where Fj is the projection of the support of kj(x, y) once again. Repeating the
arguments in the proof of step 3, we obtain that limα→∞ supω∈MN

ψα(K∗ω) = 0.
This completes the proof of lemma 2.4. �

Combining with corollary 2.2 and lemma 2.4, we have the following corollary.

Corollary 2.5. Let (X, ρ) be a metric space. Assume every kernel kj(x, y) is a
continuous function with compact support on X ×X and K∗ is defined in (2.2). If
μ is a totally finite complete measure satisfying the doubling condition and

lim
α→∞ sup

ω= 1
H

∑H
h=1 δah

μ({x ∈ X : K∗ω(x) > α}) > 0,

then there exists a function g ∈ L1(μ) such that Tk(g) diverges on a set of positive
μ-measure.

Next we establish theorem 1.1.

Proof. Let μ denote a spectral measure supported on a compact subset of X ⊂
(Rd, ρ), where (Rd, ρ) is the Euclidean space. Let {e−2πiλ·x : λ ∈ Λ} be an expo-
nential orthonormal basis of L2(μ). For a natural sequence of finite subsets Λn

increasing to Λ as n→ ∞, consider the mock Dirichlet kernel as

kn(x, y) =
∑

λ∈Λn

e2πiλ·(x−y).

Then the mock Dirichlet summation operator Sn with Λn can be written as

Sn(f)(x) =
∑

λ∈Λn

cλ(f)e2πiλ·x =
∫

X

kn(x, y)f(y)dμ(y).

From corollary 2.5, the theorem follows immediately. �

3. Application to self-affine spectral measures

In this section, we apply our results to self-affine spectral measures. Recall that the
self-affine measure is defined by iterated function system (IFS).
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Definition 3.1 (Self-affine measure). Let R be a d× d expansive matrix (all its
eigenvalues have modulus strictly bigger than one). Let B = {b1, b2, . . . , bN} be a
finite subset of Rd. We define the affine iterated function system

ϕb(x) = R−1(x+ b) for x ∈ Rd and b ∈ B.

The self-affine measure (with equal weights) is the unique probability measure
satisfying

μ(E) =
1
N

∑
b∈B

μ(ϕ−1
b (E)) for all Borel subsets E of Rd.

We will use μR,B to denote it for convenience. This measure is supported on the
attractor T (R, B) which is the unique compact set that satisfies

T (R,B) =
⋃
b∈B

ϕb(T (R,B)).

The set T (R, B) is also called the self-affine set associated with the IFS. It can also
be described as

T (R,B) =

{ ∞∑
k=1

R−kbk : bk ∈ B

}
.

One can refer to [9] for a detailed exposition of the theory of iterated function
systems. In this section, we will use μ4 to denote the quarter Cantor measure which
is the special case when d = 1, R = 4 and B = {0, 2}.

To the best of our knowledge, most of self-affine spectral measures are constructed
by Hadamard triples.

Definition 3.2 (Hadamard triple). For a given expansive d× d matrix R with inte-
ger entries. Let B, L ⊂ Zd be finite sets of integer vectors with the same cardinality
N � 2. We say that the triple (R,B,L) forms a Hadamard triple if the matrix

H =
1√
N

[
e2πiR−1b·l

]
l∈L,b∈B

is unitary, i.e. H∗H = I, where H∗ denotes the conjugate transpose of H.

The system (R, B, L) forms a Hadamard triple if and only if the Dirac measure
δR−1D = 1

#B

∑
b∈B δR−1b is a spectral measure with the spectrum L. Moreover, this

property is a key property in producing a spectrum of self-affine spectral measures.
�Laba and Wang [11] and Dutkay et al. [5] eventually proved that the Hadamard
triple generates the self-affine spectral measure in all dimensions.
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If (R, B, L) forms a Hadamard triple, we let

Λn = L+RtL+ (Rt)2L+ · · · + (Rt)n−1L =
n−1∑
k=0

(Rt)kL,

and

Λ =
∞⋃

n=0

Λn =
∞∑

k=0

(Rt)kL, (3.1)

where Rt denotes the transpose of R.
The set Λ forms an orthonormal set for the self-affine spectral measure μ := μR,B.

But the set Λ can be incomplete (see [7, p. 4]). In this paper, we assume that the
self-affine spectral measure μ generated by the Hadamard triple (R, B, L) always
has a spectrum like (3.1).

We say that the self-affine measure μ in definition 3.1 satisfies the no-overlap
condition or the measure disjoint condition if

μ(ϕb(T (R,B)) ∩ ϕb′T (R,B)) = 0 for all b �= b
′ ∈ B.

Dutkay et al. [5] proved that if the self-affine spectral measure is generated by a
Hadamard triple, then the no-overlap condition is satisfied.

Following the work of Dutkay et al. [6], the encoding map plays the key role in
linking a no-overlap self-affine measure and a code space. Let N∗ denote the posi-
tive integer numbers. Recall the symbolic space BN∗

with the product probability
measure dP where each digit in B has probability 1/N , also known as the equally
weighted Bernoulli measure space. The right shift defined by T : BN∗ → BN∗

,

T (b1b2b3 · · · ) = b2b3 · · · ,
is a dP -measure-preserving transformation. Also note that T is dP -ergodic.

For the attractor, we consider the map R : T (R, B) → T (R, B),

R
( ∞∑

i=1

R−ibi

)
=

∞∑
i=1

R−ibi+1.

Dutkay et al. [6] proved the following proposition.

Proposition 3.3 (Dutkay et al. [6, proposition 1.11)]. Define the encoding map
h : BN∗ → T (R, B) by

h(b1b2b3 · · · ) =
∞∑

i=1

R−ibi,

then h is onto, measure preserving and hT = Rh. Furthermore, if the self-affine
measure μR,B satisfies the no-overlap condition, then h is one to one on a set of
full measure.

This implies that the map h is an isomorphism of dynamical systems. By
proposition 3.3, we immediately obtain the following corollary.
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Corollary 3.4. If μR,B has the no-overlap condition, μR,B is an ergodic measure.

For a self-affine spectral measure μR,B generated by a Hadamard triple (R, B, L),
let τ be an integer such that

τΛ = τ

∞⋃
n=0

Λn = τ

∞∑
k=0

(Rt)kL

is a spectrum of μ. Define the Dirichlet kernel

Dn(x) :=
∑

λ∈τΛn

e2πiλ·x (x ∈ Rd).

For f ∈ L1(μ), the mock Dirichlet summation operator

Sn(f)(x) =
∑

λ∈τΛn

(∫
T (R,B)

f(y)e−2πiλ·ydμ(y)

)
e2πiλ·x

can be written as

Sn(f)(x) =
∫

T (R,B)

f(y)Dn(x− y)dμ(y).

We record one obvious fact, and its proof is similar to [6, proposition 2.2]. This
fact suggests that there is an explicit formula of the Dirichlet kernel that can be
concisely estimated, which depends to a large extent on the division of the ‘mock
block’, i.e. the choice of Λn.

Proposition 3.5. Define trigonometric polynomials

mτ (x) =
∑
l∈L

e2πi(τl)·x (x ∈ Rd).

Then the Dirichlet kernel satisfies the formula

Dn(x) =
n∏

k=0

mτ (Rkx). (3.2)

Proof. The proof is by induction on n. The base case holds for n = 0 since

D0(x) =
∑

λ∈τΛ0

e2πiλ·x =
∑
l∈L

e2πi(τl)·x = mτ (x).

Assume that the formula holds for n, and we prove that the statement holds for
n+ 1. To do this, we need to prove

Dn+1(x) = mτ (x)Dn(Rx). (3.3)
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Since Λn+1 = RtΛn + L, we see that every point λn+1 in Λn+1 will have a unique
representation of the form λn+1 = Rtλn + l with λn ∈ Λn and l ∈ L. This yields

Dn+1(x) =
∑

λn∈Λn

∑
l∈L

e2πiτ(Rtλn+l)·x

=
∑
l∈L

e2πi(τl)·x ∑
λn∈Λn

e2πiτλn·(Rx)

= mτ (x)Dn(Rx).

Thus equation (3.2) follows by induction from equation (3.3). �

Using above propositions and theorem 1.1, we shall prove the following lemma.

Lemma 3.6. Let R be an integer matrix and let μ := μR,B be a self-affine spectral
measure generated by a Hadamard triple (R, B, L). Assume μ is a doubling measure
with the spectrum τΛ =

∑∞
k=0R

kτL. Let

Δ(mτ,b) := exp

(∫
T (R,B)

log |mτ (x− (I −R−1)−1b)|dμ(x)

)
, b ∈ B,

where mτ (x) is defined in proposition 3.5. If Δ(mτ,b) > 1 for some b ∈ B, then
there exists an integrable function such that the mock Fourier series diverges on a
set of strictly positive μ-measure set.

Proof. Recall that the points in T (R, B) have the form x =
∑∞

i=1R
−ibi with

bi ∈ B, and the map R is

R
( ∞∑

i=1

R−ibi

)
=

∞∑
i=1

R−ibi+1.

Denote Rk = R· · ·R and y =
∑∞

i=1R
−ici with ci ∈ B, and we see that

(Rkx−Rky) −Rk(x− y) = −
k∑

i=1

Rk−i(bi − ci) ∈ Z.

Since mτ (x) is Z-periodic, we have

mτ (Rkx−Rky) = mτ (Rk(x− y)) (3.4)
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for all x ∈ T (R, B) and k ∈ N. Now note that
∑∞

i=0R
−ib = (I −R−1)−1b are fix

points of the map R for any b ∈ B, thus proposition 3.5 and formula (3.4) gives

Dn(x− (I −R−1)−1b) =
n∏

k=0

mτ

(
Rk

(
x−

∞∑
i=0

R−ib

))

=
n∏

k=0

mτ

(
Rkx−Rk

( ∞∑
i=0

R−ib

))

=
n∏

k=0

mτ (Rkx− (I −R−1)−1b).

Combining with corollary 3.4 and Birkhoff’s ergodic theorem, one has that for
μ-a.e. x in T (R, B),

lim
n→∞

1
n

n−1∑
k=0

log |mτ (Rkx− (I −R−1)−1b)| = log Δ(mτ,b),

i.e.

lim
n→∞

1
n

log |Dn−1(x− (I −R−1)−1b)| = log Δ(mτ,b).

Thus we can get a subset A ⊂ T (R, B) with measure μ(A) > 1
2 such that the limit

above is uniform on A. If Δ(mτ,b) > 1 for some b ∈ B, for x ∈ A, taking 1 < ρ <
Δ(mτ,b), then there exists nρ such that for n > nρ,

1
n

log |Dn−1(x− (I −R−1)−1b)| > log ρ.

For x ∈ A, it is easy to see

sup
n

|Dn−1(x− (I −R−1)−1b)| � sup
n>nρ

|Dn−1(x− (I −R−1)−1b)|

� sup
n>nρ

ρn = +∞.

Hence for any α � 0, the mock Dirichlet summation operator Sn acting on
δ(I−R−1)−1b satisfies

μ

({
x ∈ T (R,B) : sup

n
|Sn(δ(I−R−1)−1b)(x)| > α

})
� μ(A) � 1

2
.

The proof is complete by theorem 1.1. �

Recall the discriminant value defined by Dutkay et al. [6, theorem 2.3]

ΔNmL
:= exp

(∫
T (R,B)

log |NmL(x)|dμ
)

where mL(x) = 1
N

∑
l∈L e2πil·x. Our discriminant value Δ(mτ,0) may be reduced

into ΔNmL
if d = 1 and B contains the origin.
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It is noteworthy that the proper separation condition of IFS implies the regularity
of the measure, and in fact, Mauldin and Urbański proved that if the IFS satisfies the
open set condition, then μR,B has the no-overlap condition, and thus the associated
self-affine is doubling on its support T (R, B). See [12, lemma 3.14]. This means that
if the discriminant of Dutkay is greater than 1, not only there exists a continuous
functions such that the mock Fourier series at zero is unbounded, but also there
exists an integrable function such that the mock Fourier series diverges on a set of
strictly positive μ-measure.

Proof. By lemma 3.6, we only need to gauge whether Δ2mL
is larger than 1. But

this fact has been shown in [6, example 2.5] by numerical approximation. �
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12 R. D. Mauldin and M. Urbański. Dimensions and measures in infinite iterated function
systems, Proc. London Math. Soc. (3) 73 (1996), 105–154.

13 E. M. Stein and R. Shakarchi, Fourier analysis. An introduction. Princeton Lectures in
Analysis, Vol. 1 (Princeton University Press, Princeton, NJ, 2003).

14 R. Strichartz. Convergence of mock Fourier series. J. Anal. Math. 99 (2006), 333–353.

https://doi.org/10.1017/prm.2022.68 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.68

	1 Introduction
	2 The proof of theorem [st1]1.1
	3 Application to self-affine spectral measures
	References

