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A high-order asymptotic analysis of the
Benjamin–Feir instability spectrum in
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We investigate the Benjamin–Feir (or modulational) instability of Stokes waves, i.e.
small-amplitude, one-dimensional periodic gravity waves of permanent form and constant
velocity, in water of finite and infinite depth. We develop a perturbation method to describe
to high-order accuracy the unstable spectral elements associated with this instability,
obtained by linearizing Euler’s equations about the small-amplitude Stokes waves. These
unstable elements form a figure-eight curve centred at the origin of the complex spectral
plane, which is parametrized by a Floquet exponent. Our asymptotic expansions of this
figure-eight are in excellent agreement with numerical computations as well as recent
rigorous results by Berti et al. (Full description of Benjamin–Feir instability of Stokes
waves in deep water, 2021, arXiv:2109.11852) and Berti et al. (Benjamin–Feir instability
of Stokes waves in finite depth, 2022, arXiv:2204.00809). From our expansions, we
derive high-order estimates for the growth rates of the Benjamin–Feir instability and for
the parametrization of the Benjamin–Feir figure-eight curve with respect to the Floquet
exponent. We are also able to compare the Benjamin–Feir and high-frequency instability
spectra analytically for the first time, revealing three different regimes of the Stokes waves,
depending on the predominant instability.

Key words: surface gravity waves

1. Introduction

Stokes (1847) derived a formal asymptotic expansion for the small-amplitude, periodic
travelling wave solutions of the full water wave equations in infinite depth, see figure 1
for a schematic. Seventy-five years later, Nekrasov (1921) and Levi-Civita (1925) proved
the validity of these expansions if the amplitude ε of the waves is sufficiently small.
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Figure 1. Schematic of a 2π/κ-periodic Stokes wave ηS in finite depth h. The wave travels uniformly to the
left or right, depending on its velocity. In the case of infinite depth, Stokes derived an asymptotic expansion for
ηS and its velocity as power series in a small parameter ε related to the amplitude of the wave.

Not long after, Struik (1926) extended this analysis to finite depth. The stability with
respect to sideband perturbations of these solutions, now known as Stokes waves, was
investigated first experimentally by Benjamin & Feir (1967) and immediately after
supported by independent formal calculations by Benjamin (1967) and Whitham (1967)
using distinct methods. Both calculations suggest that Stokes waves are modulationally
unstable with respect to longitudinal sideband perturbations provided κh > αBW , where κ

is the wavenumber of the Stokes waves, h is the constant depth of the water and αBW =
1.3627827567 . . .. This instability is now known as the Benjamin–Feir or modulational
instability.

In the years since the pioneering work of Benjamin and Whitham, several papers have
explored the Benjamin–Feir instability experimentally, numerically and analytically. It is
impossible to summarize all these works here, rather we highlight a few works that are
most relevant to our investigation. For a more comprehensive history of the Benjamin–Feir
instability, see Craik (2004), Grimshaw (2005), Yuen & Lake (1980) and, in different
contexts, Deconinck & Oliveras (2011), Korotkevich, Dyachenko & Zakharov (2016) and
Zakharov & Ostrovsky (2009).

Beginning in the 1970s, Bryant (1974, 1978) numerically studied the stability of
Stokes waves in shallow water (κh < αBW ) with respect to co-periodic longitudinal and
transverse perturbations, respectively. Around the same time, Longuet-Higgins (1978a,b)
used similar numerical methods to study the stability of Stokes waves with respect to sub-
and super-harmonic longitudinal perturbations in infinitely deep water. McLean (1982)
generalized the numerical results of Bryant and Longuet-Higgins by investigating the
stability of Stokes waves in finite depth with respect to sub- and super-harmonic transverse
perturbations.

The results of Bryant and Longuet-Higgins are obtained by perturbing the Stokes waves
ηS in a co-moving frame according to

η(x, t; ε, ρ) = ηS(x; ε) + ρ exp(λt + iμx)N (x) + O(ρ2), (1.1)

where x is the horizontal coordinate in the co-moving frame, ρ is a small parameter
unrelated to the amplitude of the Stokes wave ε, λ ∈ C controls the exponential growth
rates of the perturbation, μ ∈ (−κ/2, κ/2] is called the Floquet exponent and determines
the periodic (or quasi-period) of the perturbation, and N (x) is a sufficiently smooth,
2π/κ-periodic function. The results of McLean are obtained if dependence on a transverse
variable y is introduced appropriately in (1.1).

Substituting (1.1) into the full water wave equations and linearizing in ρ leads to a family
of spectral problems parametrized by the Floquet exponent μ for fixed wave amplitude ε.
The eigenvalues of each spectral problem are given by the exponential growth rates λ
in (1.1) and their corresponding eigenfunctions are N (x) (Kapitula & Promislow 2013).

956 A29-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
31

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1031


Asymptotics of the Benjamin–Feir instability spectrum
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Figure 2. Schematic of the stability spectrum for a small-amplitude Stokes wave in sufficiently deep water.
Spectral elements with positive real part indicate instability according to (1.1). The Benjamin–Feir figure-eight
curve is coloured blue, while the high-frequency instabilities are coloured orange. In this manuscript, we are
concerned with high-order asymptotic approximations of the blue figure-eight curve. For the corresponding
approximations of the high-frequency instabilities in orange, see Creedon et al. (2022).

The union of these eigenvalues over μ ∈ (−κ/2, κ/2] yields a continuous spectrum called
the stability spectrum of the Stokes wave. The Benjamin–Feir instability occurs when four
eigenvalues with the same Floquet exponent collide at the origin of the stability spectrum
and separate, each eigenvalue occupying a distinct quadrant, as the amplitude ε of the
Stokes wave increases. This is a consequence of the quadrafold symmetry of the spectrum
due to the Hamiltonian structure of the water wave equations (Zakharov 1968; Haragus &
Kapitula 2008).

Despite numerical evidence of these eigenvalues close to the origin in the stability
spectrum, a proof of their existence did not appear until 1995. In the classic work of
Bridges & Mielke (1995), techniques from spatial dynamics and centre manifold theory are
used to prove the existence of unstable eigenvalues close to the origin whenever κh > αBW
and ε is sufficiently small. The proof is valid for any finite depth but fails in water of infinite
depth. Only in the past two years have Nguyen & Strauss (2020) developed a proof based
on Lyapunov–Schmidt reduction that works in both finite and infinite depth. Another proof
based on periodic Evans functions appeared in the literature more recently (Hur & Yang
2022).

In 2011, Deconinck & Oliveras (2011) revisited the numerical computations of McLean
and others but allowed for more generic choices of the Floquet exponent μ (Deconinck
& Kutz 2006). To our knowledge, this is the first work displaying full stability spectra
of Stokes waves in finite and infinite depth that exhibits a figure-eight curve at the
origin of the complex spectral plane associated with the Benjamin–Feir instability, see
a schematic in figure 2. Evidence of instabilities away from the origin, referred to as
high-frequency instabilities, was also demonstrated by Deconinck & Oliveras (2011).
These high-frequency instabilities have been analytically explored with Trichtchenko in
Creedon, Deconinck & Trichtchenko (2022) and by Hur & Yang (2022).

In recent months, seminal work by Berti, Maspero & Ventura (2021, 2022) has
confirmed the existence of the Benjamin–Feir figure-eight in finite and infinite depth,
provided κh > αBW and ε is sufficiently small. The proof of both cases relies on the
Hamiltonian and reversibility properties of the water wave equations together with Kato’s
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Figure 3. Numerically computed Benjamin–Feir instability spectra in infinitely deep water for Stokes waves
of amplitude ε = 0.31 (a), ε = 0.32 (b), and ε = 0.33 (c). The methods presented in this work apply only for
sufficiently small ε and, thus, do not capture the separation of the figure-eight from the origin.

theory of similarity transformations (Kato 1966) and KAM theory. Reported in these
works are explicit expressions for the figure-eight curves, up to real analytic functions
of the Floquet exponent μ and the amplitude of the Stokes waves ε. A low-order
approximation of the curves is also given.

In this work, we obtain high-order asymptotic expansions of the Benjamin–Feir
figure-eight curve in finite and infinite depth. In particular, we seek high-order asymptotic
estimates for the interval of Floquet exponents parametrizing the figure-eight and
for the most unstable eigenvalue. Using the results of Creedon et al. (2022) allows
us to compare the Benjamin–Feir and high-frequency growth rates analytically. This
comparison suggests three regimes for Stokes waves: (i) shallow water (κh < αBW ),
in which only high-frequency instabilities exist; (ii) intermediate water (αBW < κh <

αDO(ε) = 1.4308061674 . . . + O(ε2)), in which both instabilities exist but high-frequency
instabilities dominate; and (iii) deep water (κh > αDO(ε)), in which both instabilities are
present, but the Benjamin–Feir instability dominates.

Our method to obtain these high-order asymptotic approximations is a modification of
that developed for high-frequency instabilities in Creedon, Deconinck & Trichtchenko
(2021a,b) and Creedon et al. (2022). Although the method is formal, it offers a more
direct approach to the Benjamin–Feir figure-eight curve and produces results consistent
with numerical computations (for sufficiently small ε) as well as with rigorous results
reported by Berti et al. (2021, 2022). The method loses validity for sufficiently large ε,
when the Benjamin–Feir instability spectrum separates from the origin and changes its
topology, see figure 3. Some of the lower-order details of our method are also presented
by Akers (2015) for the Benjamin–Feir instability in infinite depth, although this work
uses different conventions for the water wave equations and underlying Stokes waves. In
contrast, our expressions are in one-to-one correspondence with those reported by Berti
et al. (2021, 2022), giving confidence in the rigorous results as well as in our asymptotic
calculations.
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Asymptotics of the Benjamin–Feir instability spectrum

2. Preliminaries

2.1. AFM formulation of the water wave equations
The Euler equations governing the dynamics of a one-dimensional periodic water wave
free of surface tension over an inviscid, irrotational and two-dimensional bulk are

φxx + φzz = 0, in {(x, z) : |x| < π/κ and − h < z < η}, (2.1a)

ηt + ηxφx = φz, on z = η, (2.1b)

φt + 1
2
(φ2

x + φ2
z ) + gη = 0, on z = η, (2.1c)

φz = 0, on z = −h, (2.1d)

together with the periodicity conditions

η(−π/κ, t) = η(π/κ, t), (2.2a)

φx(−π/κ, z, t) = φx(π/κ, z, t), φz(−π/κ, z, t) = φz(π/κ, z, t). (2.2b)

Here, x is the horizontal coordinate, z is the vertical coordinate, t is time, η(x, t) is the
surface profile of the water wave relative to the z = 0 reference level, φ(x, z, t) is the
velocity potential in the bulk, g is the magnitude of the vertical acceleration due to gravity,
h is the average depth of the water (assuming constant bathymetry) and 2π/κ is the period
of the wave.

Many formulations of water waves exist that avoid the bulk variable φ but whose
dynamics are fully equivalent to (2.1)–(2.2), e.g. Craig & Sulem (1993), Dyachenko,
Zakharov & Kuznetsov (1996), Shaw (1979) and Zakharov (1968). We use the
Ablowitz–Fokas–Musslimani (AFM) formulation (Ablowitz, Fokas & Musslimani 2006;
Ablowitz & Haut 2008), which only involves the surface variables η and q = φ(x, η, t)
and avoids computations of the Dirichlet-to-Neumann operator. The AFM equations can
be written as∫ π/κ

−π/κ

e−iκmx [ηt cosh (κm (η + h)) + iqx sinh (κm (η + h))
]

dx = 0, m ∈ Z \ {0},
(2.3a)

qt + 1
2

q2
x + gη − 1

2
(ηt + ηxqx)

2

1 + η2
x

= 0. (2.3b)

Throughout this work, we refer to (2.3a) and (2.3b) as the non-local and local equations,
respectively.

Moving to a travelling frame x → x − ct with velocity c and rescaling variables as in
Creedon et al. (2022), one arrives at the non-dimensional AFM equations∫ π

−π

e−imx [(ηt − cηx) cosh (m (η + α)) + iqx sinh (m (η + α))
]

dx = 0, m ∈ Z \ {0},
(2.4a)

qt − cqx + 1
2

q2
x + η − 1

2
(ηt − cηx + ηxqx)

2

1 + η2
x

= 0, (2.4b)

where α = κh is the aspect ratio of the depth of the water to the period of the surface
waves modulo 2π. These non-dimensionalized equations are equivalent to the dimensional
equations ((2.3a) and (2.3b)) in the travelling frame with κ = 1 and g = 1.
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REMARK 2.1. In infinitely deep water, the local equation (2.4b) is unchanged while the
non-local equation (2.4a) becomes

∫ π

−π

exp(−imx + |m|η)
[|m| (ηt − cηx) + imqx

]
dx = 0, m ∈ Z \ {0}. (2.5)

2.2. Small-amplitude Stokes waves
We seek time-independent solutions ηS = ηS(x) and qS = qS(x) of (2.4a) and (2.4b) that
satisfy:

(i) ηS and qS are infinitely differentiable with respect to x;
(ii) ηS and qS,x are 2π-periodic with respect to x, where qS,x represents the x-derivative

of qS;
(iii) ηS, qS,x and c depend analytically on a small parameter ε such that

ηS|ε=0 = 0 = qS,x|ε=0 and ‖ηS‖L2 = ε + O(ε2) as ε → 0; (2.6)

(iv) ηS and qS,x are even in x without loss of generality and c(ε) is even in ε; and
(v) ηS has zero average.

These solutions correspond to the small-amplitude Stokes waves discussed in § 1. Their
existence is proven by Levi-Civita (1925), Nekrasov (1921) and Struik (1926). Expansions
of ηS, qS and c as power series in ε are carried out by Creedon et al. (2022) using the AFM
equations (2.4a) and (2.4b). These expansions take the form

ηS(x; ε) = ε cos(x) +
∞∑

j=2

ηj(x)ε j, (2.7a)

qS(x; ε) = ε

c0
sin(x) +

∞∑
j=2

qj(x)ε j, (2.7b)

c(ε) = c0 +
∞∑

j=1

c2jε
2j, (2.7c)

where c2
0 = tanh(α). In what follows, we study right-travelling waves so that c0 =√

tanh(α) > 0.
The higher-order corrections of ηS and qS (for j > 1) take the form

ηj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

j∑
�=2

� even

N̂j,� cos(�x) for j even,

j∑
�=3
� odd

N̂j,� cos(�x) for j odd,

(2.8a)
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Asymptotics of the Benjamin–Feir instability spectrum

qj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Q̂j,0x +
j∑

�=2
� even

Q̂j,� sin(�x) for j even,

j∑
�=3
� odd

Q̂j,� sin(�x) for j odd,

(2.8b)

where N̂j,� and Q̂j,� depend only on the aspect ratio α. Explicit representations of these
coefficients as well as those for c are provided in Creedon et al. (2022) to O(ε4). Taking
their limits as α → ∞ gives the corresponding coefficients in infinite depth.

REMARK 2.2. The expansion of qS contains terms proportional to x due to the induced
mean flow of the travelling frame, so qS is not periodic in general. Despite this, qS,x is
periodic, which implies that the horizontal velocity at the surface is periodic.

REMARK 2.3. From our properties of Stokes waves above, we implicitly define the
small-amplitude parameter ε as the first Fourier cosine mode of ηS. Other authors, e.g.
Whitham (1974), may use a different convention for this parameter and, as a result,
derive seemingly different asymptotic expansions of the Stokes waves. Up to redefining
the small-amplitude parameter, however, the expansions are equivalent.

2.3. Stability spectrum of Stokes waves
Extending our periodic domain to the whole real line, we perturb the Stokes waves using(

η(x, t; ε, ρ)

q(x, t; ε, ρ)

)
=
(

ηS(x; ε)

qS(x; ε)

)
+ ρ

(
ηρ(x, t)
qρ(x, t)

)
+ O

(
ρ2
)

, (2.9)

where |ρ| � 1 is a parameter independent of ε, and ηρ and qρ are sufficiently smooth
functions of x and t that are bounded over the real line for each t ≥ 0. If (2.9) satisfies
the AFM equations to O(ρ), then, after separating time and space variables and using
Floquet–Bloch theory (Deconinck & Oliveras 2011; Creedon et al. 2022), the perturbations
applied to the Stokes waves must take the form(

ηρ(x, t)
qρ(x, t)

)
= exp(λt + iμx)

(N (x)
Q(x)

)
+ c.c., (2.10)

where c.c. denotes the complex conjugate of what precedes, μ ∈ (−1/2, 1/2] is the
Floquet exponent and w = (N ,Q)T is a sufficiently smooth, 2π-periodic eigenfunction
of the spectral problem

Lμ,εw(x) = λRμ,εw(x), (2.11)

with corresponding eigenvalue λ ∈ C. In general, the linear operators Lμ,ε and Rμ,ε

depend nonlinearly on ε and μ. Explicitly,

Lμ,ε =
(
L(1,1)

μ,ε L(1,2)
μ,ε

L(2,1)
μ,ε L(2,2)

μ,ε

)
, Rμ,ε =

(
R(1,1)

μ,ε 0
R(2,1)

μ,ε 1

)
, (2.12a,b)

956 A29-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
31

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1031


R.P. Creedon and B. Deconinck

L(1,1)
μ,ε [N (x)] =

∞∑
n=−∞

einxFn
[
c Cn+μDxN (x)+ (n + μ)

(
cSn+μηS,x − iCn+μqS,x

)N (x)
]
,

(2.13a)

L(1,2)
μ,ε [Q(x)] =

∞∑
n=−∞

einxFn
[−iSn+μDxQ(x)

]
, (2.13b)

L(2,1)
μ,ε [N (x)] = ηS,xζ

2DxN (x) − N (x), (2.13c)

L(2,2)
μ,ε [Q(x)] = −ζDxQ(x), (2.13d)

R(1,1)
μ,ε [N (x)] =

∞∑
n=−∞

einxFn
[Cn+μN (x)

]
, (2.13e)

R(2,1)
μ,ε [N (x)] = −ηS,xζN (x), (2.13f )

where ηS,x represents the x-derivative of ηS,

Ck = cosh(k(ηS + α)), Sk = sinh(k(ηS + α)), Dx = iμ + ∂x, ζ = qS,x − c

1 + η2
S,x

,

(2.14a–d)
and

Fn[ f (x)] = 1
2π

∫ π

−π

e−inxf (x) dx, (2.15)

for any f (x) ∈ L2
per(−π, π). The eigenvalues λ ∈ C of (2.11) correspond to the exponential

growth rates of the perturbations ηρ and qρ . Consequently, we define the stability spectrum
of a Stokes wave with amplitude ε as the union of these eigenvalues over μ ∈ (−1/2, 1/2].

REMARK 2.4. The eigenvalues of (2.11) for fixed μ ∈ (−1/2, 0) are conjugate to the
eigenvalues with Floquet exponent −μ, so we may restrict μ ∈ [0, 1/2] without loss of
generality.

REMARK 2.5. In infinite depth,

L(1,1)
μ,ε [N (x)] =

∞∑
n=−∞

einxFn

[
e|n+μ|ηS |n + μ| (cDxN (x)

+ (cηS,x|n + μ| − i(n + μ)qS,x
)N (x)

)]
, (2.16a)

L(1,2)
μ,ε [Q(x)] =

∞∑
n=−∞

einxFn

[
e|n+μ|ηS (−i(n + μ)DxQ(x))

]
, (2.16b)

R(1,1)
μ,ε [N (x)] =

∞∑
n=−∞

einxFn

[
e|n+μ|ηS |n + μ|N (x)

]
. (2.16c)

All other operators remain the same as above.

For generic choices of ε and μ, the spectral problem (2.11) can only be solved
numerically, see Deconinck & Oliveras (2011), for example. However, in the special case
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Asymptotics of the Benjamin–Feir instability spectrum

ε = 0, (2.11) reduces to a constant-coefficient problem,(
ic0(μ + D) cosh(α(μ + D)) (μ + D) sinh(α(μ + D))

−1 ic0(μ + D)

)
w0(x)

= λ0

(
cosh(α(μ + D)) 0

0 1

)
w0(x), (2.17)

with D = −i∂x. We solve (2.17) to find

λ0 = −iΩσ(μ + n), σ = ±1, n ∈ Z, (2.18)

for

Ωσ(k) = −c0k + σω(k), ω(k) = sgn(k)
√

k tanh(αk). (2.19)

Equation (2.19) is the linear dispersion relation of the non-dimensional AFM equations in
a frame travelling at velocity c0. The parameter σ specifies the branch of this dispersion
relation. Since both branches are real-valued, all eigenvalues λ0 are imaginary and the
zero-amplitude Stokes waves are spectrally stable.

For almost all μ and n, (2.18) is a simple eigenvalue with one-dimensional eigenspace
spanned by

w0(x) =
⎛
⎝ 1

−iσ
ω(μ + n)

⎞
⎠ einx. (2.20)

For λ0 to enter the right-half plane and give rise to an instability for 0 < ε � 1, it must
be non-simple. That is, at least two eigenvalues must collide at λ0 for the eigenvalues to
leave the imaginary axis (MacKay & Saffman 1986; Deconinck & Trichtchenko 2017).
There are a countably infinite number of pairs (μ, n) for which this occurs (Creedon et al.
2021a). Most of these pairs correspond to eigenvalues away from the origin in the complex
spectral plane that generate high-frequency instabilities for 0 < ε � 1 (Deconinck &
Trichtchenko 2017; Creedon et al. 2022; Hur & Yang 2022). The pairs (0, −1), (0, 0)

and (0, 1), however, correspond to the eigenvalue at the origin. This eigenvalue generates
the Benjamin–Feir instability in sufficiently deep water for 0 < ε � 1 (Bridges & Mielke
1995; Hur & Yang 2022; Nguyen & Strauss 2020; Berti et al. 2021, 2022).

REMARK 2.6. In infinite depth, (2.17) becomes(
ic0(μ + D)|μ + D| (μ + D)2

−1 ic0(μ + D)

)
w0(x) = λ0

(|μ + D| 0
0 1

)
w0(x). (2.21)

The corresponding eigenvalues take the form of (2.18) with

Ωσ(k) = −c0k + σω(k), ω(k) = sgn(k)
√

|k|. (2.22)

2.4. A spectral perturbation method for the Benjamin–Feir instability
To reveal the structure in our perturbation calculations, we denote the zero eigenvalue
of the ε = 0 spectrum and its corresponding zero Floquet exponent by λ0 and μ0,
respectively. However, since λ0 = 0 and μ0 = 0, one can omit these parameters in what
follows.
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R.P. Creedon and B. Deconinck

The eigenvalue λ0 is non-simple with algebraic multiplicity 4 and geometric multiplicity
3 (Bridges & Mielke 1995; Nguyen & Strauss 2020; Berti et al. 2021, 2022; Hur & Yang
2022). The corresponding eigenspace is spanned by

w0,−1(x) =
(

1
i/c0

)
e−ix, w0,0(x) =

(
0
1

)
, w0,1(x) =

(
1

−i/c0

)
eix. (2.23a–c)

The most general eigenfunction corresponding to λ0 is therefore

w0(x) = β0,−1w0,−1(x) + β0,0w0,0(x) + β0,1w0,1(x), (2.24)

where β0,ν for ν ∈ {0, ±1} are (for now) arbitrary constants. This eigenfunction gives the
leading-order behaviour of the spatial dependence of the perturbation applied to the Stokes
waves.

REMARK 2.7. The generalized eigenspace is spanned by (2.21) together with the
generalized eigenvector v0,0 = (1, 0)T. We mention this for completeness, but in practice,
we only need (2.23a–c) to approximate the unstable eigenvalues corresponding to the
Benjamin–Feir instability.

REMARK 2.8. Without loss of generality, one of the constants β0,ν can be set to 1 since
w0 is unique only up to a non-zero scalar. We retain all three constants in our calculations
for reasons that become clearer when we consider infinite depth.

We turn on the ε parameter and track the unstable eigenvalues near the origin for 0 <

ε � 1. These eigenvalues trace out a figure-eight curve centred at the origin, as mentioned
in § 1. To track these eigenvalues and their corresponding eigenfunctions, we formally
expand in powers of ε:

λ(ε) = λ0 +
∞∑

j=1

λjε
j, (2.25a)

w(x; ε) = w0(x) +
∞∑

j=1

wj(x)ε j. (2.25b)

As the curve deforms with ε, so too does its parametrization in terms of the Floquet
exponent. Hence, as in Creedon et al. (2022), we expand this parameter as well, writing

μ(ε) = μ0 + εμ1 (1 + r(ε)) , with r(ε) =
∞∑

j=1

rjε
j, (2.26)

where μ1 assumes an interval of values symmetric approximately zero and r(ε) captures
the higher-order deformations of this interval, see figure 4.

REMARK 2.9. For sufficiently large ε, the figure-eight curve separates from the origin
(figure 3), and thus, the parametrizing interval of Floquet exponents separates into two
disjoint intervals. Ansatz (2.26) cannot account for this effect, which limits our analysis of
the Benjamin–Feir instability spectrum to sufficiently small ε.

We proceed as follows. Expansions (2.25a), (2.25b) and (2.26) are substituted into the
full spectral problem (2.11). Powers of ε are equated, generating a hierarchy of linear
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Asymptotics of the Benjamin–Feir instability spectrum

εμ1 (1 + r (ε))

εμ1

ε

μ

Figure 4. Schematic of the parametrizing interval of Floquet exponents for the Benjamin–Feir figure-eight
curve as a function of ε. The grey-shaded region indicates the leading-order approximation of this interval
εμ1, where μ1 is an interval of values symmetric approximately zero. The blue-shaded region indicates the
true interval as a function of ε and is a uniform rescaling of the leading-order behaviour by a factor of 1 + r(ε),
where r is an analytic function of ε such that r(ε) = o(1) as ε ↘ 0. The boundaries of the true interval may be
subtended by curves that are concave up or down, depending on α.

inhomogeneous equations for the eigenfunction corrections wj. Each of these equations
is solvable only if the Fredholm alternative removes secular inhomogeneous terms. This
leads to a set of solvability conditions that impose constraints on the eigenvalue corrections
λj as well as corrections to the constants appearing in w0. Corrections to the Floquet
exponent require an additional constraint called the regular curve condition (Creedon
et al. 2021a,b, 2022), which ensures the eigenvalue corrections remain bounded as one
approaches the intersection of the figure-eight curve with the imaginary axis.

We present this method in more detail in the sections that follow, first in finite
depth and then in infinite depth, where more care is needed. Results of the method are
compared directly with numerical computations of the Benjamin–Feir instability using
methods presented by Deconinck & Kutz (2006) and Deconinck & Oliveras (2011). To
our knowledge, this is the first time that analytical and numerical descriptions of the
Benjamin–Feir figure-eight curve have been quantitatively compared.

3. The Benjamin–Feir spectrum in finite depth

3.1. The O(ε) problem
Substituting (2.25a), (2.25b) and (2.26) into the full spectral problem (2.11), terms of
O(ε0) necessarily cancel by our choice of λ0, w0 and μ0 above. At O(ε), we find

(L0 − λ0R0) w1 = −L1w0 + R0 (λ1w0) + R1 (λ0w0) , (3.1)

with

Lj = 1
j!

∂ j

∂ε jLμ(ε),ε, Rj = 1
j!

∂ j

∂ε jRμ(ε),ε. (3.2a,b)

The operator L0 − λ0R0 is not invertible for (λ0, μ0) = (0, 0). A solution w1 of (3.1)
exists only if the inhomogeneous terms are orthogonal to the nullspace of the adjoint of
L0 − λ0R0 by the Fredholm alternative. A direct calculation shows

Null((L0 − λ0R0)
†) = Span

{(
1

ic0

)
e−ix,

(
1
0

)
,

(
1

−ic0

)
eix
}

, (3.3)
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R.P. Creedon and B. Deconinck

where (L0 − λ0R0)
† denotes the adjoint operator with respect to the standard complex

inner-product 〈·, ·〉 on L2
per(−π, π) × L2

per(−π, π). From (3.3), we arrive at three
solvability conditions for (3.1):〈

−L1w0 + R0 (λ1w0) + R1 (λ0w0) ,

(
1

ic0

)
e−ix
〉

= 0, (3.4a)

〈
−L1w0 + R0 (λ1w0) + R1 (λ0w0) ,

(
1
0

)〉
= 0, (3.4b)

〈
−L1w0 + R0 (λ1w0) + R1 (λ0w0) ,

(
1

−ic0

)
eix
〉

= 0. (3.4c)

Simplifying (3.4a) and (3.4c) leads to

2β0,−1
(
λ1 + iμ1cg

) = 0, (3.5a)

2β0,1
(
λ1 + iμ1cg

) = 0, (3.5b)

respectively, where cg denotes the group velocity of Ω1 (2.19) evaluated at k = 1.
Explicitly,

cg = α(1 − c4
0) − c2

0
2c0

. (3.6)

In contrast to (3.4a) and (3.4c), (3.4b) reduces to a trivial equality and does not contribute
an additional solvability condition.

REMARK 3.1. If c0 > 0, a direct calculation shows that cg < 0 for α > 0.

If we require β0,ν /= 0 so that the eigenspace of λ0 remains three-dimensional, (3.5a)
and (3.5b) imply

λ1 = −iμ1cg. (3.7)

Since μ1 ∈ R, the unstable eigenvalues of the Benjamin–Feir instability are imaginary to
O(ε).

REMARK 3.2. If β0,ν = 0 for some ν, one recovers the imaginary spectrum near the
origin, as opposed to the figure-eight curve.

Before proceeding to O(ε2), we solve (3.1) subject to (3.7). The solution w1 decomposes
into a direct sum of a particular solution w1,p and a homogeneous solution w1,h:

w1(x) = w1,p(x) + w1,h(x). (3.8)

The particular solution can be written as

w1,p(x) =
2∑

j=−2

w1,jeijx, (3.9)

where w1,j = w1,j(α, β0,ν, μ1) ∈ C2. The homogeneous solution is

w1,h(x) = β1,−1w0,−1(x) + β1,0w0,0(x) + β1,1w0,1(x), (3.10)

coinciding with the eigenspace of λ0. The coefficients β1,ν represent first-order corrections
to the zeroth-order eigenfunction correction w0 and are undetermined constants at this
order.
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Asymptotics of the Benjamin–Feir instability spectrum

REMARK 3.3. The expressions for w1,j as well as for all other algebraic expressions that
are too cumbersome to include explicitly in this manuscript are found in our companion
Mathematica files available at https://doi.org/10.1017/ jfm.2022.1031.

3.2. The O(ε2) problem
At O(ε2), the spectral problem (2.11) takes the form

(L0 − λ0R0) w2 = −
2∑

j=1

Ljw2−j + R0

( 2∑
k=1

λkw2−k

)
+

2∑
j=1

Rj

⎛
⎝ 2−j∑

k=0

λkw2−j−k

⎞
⎠ .

(3.11)

Proceeding as above, we obtain three non-trivial solvability conditions for (3.11):

2β0,−1
(
λ2 + icgr1μ1

)+ β0,0S2,−1μ1 + i(U2,−1β0,1 + (T2,−1μ
2
1 + V2,−1)β0,−1) = 0,

(3.12a)

β0,0T2,0μ
2
1 + iS2,0μ1(β0,−1 + β0,1) = 0, (3.12b)

2β0,1(λ2 + icgr1μ1) + β0,0S2,1μ1 + i(U2,1β0,−1 + (T2,1μ
2
1 + V2,1)β0,1) = 0, (3.12c)

where the subscripted coefficients S, T , U and V are all real-valued functions of the aspect
ratio α. More explicitly, we have

S2,−1 = α + 5c2
0 − 2αc4

0 − c6
0 + αc8

0

4c2
0

, (3.13a)

T2,−1 = α2 − c2
0
(−1 + αc2

0
) (−2α + c2

0 + 3αc4
0
)

4c3
0

, (3.13b)

U2,−1 = 1 − 2N̂2,2c2
0
(
1 − 3c4

0
)− 8Q̂2,2c3

0 − 4c4
0 + c8

0

4c3
0

, (3.13c)

T2,0 = α2 − 2αc2
0 + (1 − 2α2) c4

0 − 2αc6
0 + α2c8

0

4c2
0

, (3.13d)

where N̂2,2 and Q̂2,2 are the second-order corrections of the Stokes waves, see § 2.2 and
Appendix A of Creedon et al. (2022) for more details. The remaining coefficients follow
from the identities

S2,−1 = −S2,1, T2,−1 = −T2,1, U2,−1 = −U2,1, V2,±1 = U2,±1, S2,−1 = c0S2,0,

(3.14a–e)
which hold for α > 0. The proofs of these identities are shown in the companion
Mathematica files.

THEOREM 3.4. For all α > 0, we have S2,−1 > 0, T2,−1 > 0 and T2,0 < 0.

Proof . Substituting c0 = √
tanh(α) in (3.13a), we arrive at

T2,−1 = 1
8

csch(α) sech3(α) (2α + 3 sinh(2α) + sinh(4α)) , (3.15)

from which S2,−1 > 0 follows immediately for α > 0.
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R.P. Creedon and B. Deconinck

Doing the same for (3.13b), we arrive at

T2,−1 = −1 − 4α2 + 8α2 cosh(2α) + cosh2(2α) − 4α sinh(2α)

16 tanh3/2(α) cosh4(α)
(3.16)

after some work. Rearranging terms in the numerator,

T2,−1 =
(−1 − 4α2 + cosh2(2α)

)+ 4α cosh(2α) (2α − tanh(2α))

16 tanh3/2(α) cosh4(α)
. (3.17)

Using the Taylor series of cosh, we have −1 − 4α2 + cosh2(2α) > 0 immediately. Using
the well-known bound tanh(|k|) < |k| for k ∈ R, we have 2α − tanh(2α) > 0. It follows
that T2,−1 > 0 for α > 0.

Lastly, for (3.13d),

T2,0 = − 1
64

csch(α) sech3(α)(e4α − (1 + 4α))(e−4α − (1 − 4α)), (3.18)

after some work. Using exp(k) > 1 + k for k > 0, we immediately conclude T2,0 < 0 for
α > 0, as desired. �

Equations (3.12a)–(3.12c) constitute a nonlinear system for the unknown variables λ2
and β0,±1. The first-order Floquet correction μ1 and first-order rescaling of the Floquet
interval r1 appear as parameters in this system. Because of the symmetry of the Floquet
interval corresponding to the Benjamin–Feir figure-eight curve, we consider μ1 > 0
without loss of generality, as mentioned before. Also appearing as a parameter in our
system is β0,0, the coefficient of the zeroth mode of w0. Without loss of generality,
we normalize the eigenfunction w so that β0,0 > 0. Under these assumptions, we solve
(3.12a)–(3.12c) for λ2. Using the identities listed in (3.14a–e) as well as the inequalities in
the claim above, we find

λ2 = λ2,R + iλ2,I, (3.19)

where

λ2,R = ±μ1

2

√√√√T2,−1

(
2
(
S2,−1S2,0 − U2,−1T2,0

)
T2,0

− T2,−1μ
2
1

)
, (3.20a)

λ2,I = −r1μ1cg. (3.20b)

Defining

e2 = 4T2,−1, eBW = S2,−1S2,0 − U2,−1T2,0

T2,0
and (3.21a)

�BW =
√

e2
(
8eBW − e2μ

2
1
)
, (3.21b)

(3.20a) simplifies to

λ2,R = ±μ1

8
�BW . (3.22)

For (3.22) to be non-zero, we must have eBW > 0. It is well-known (see, for instance, Berti
et al. 2022) that eBW > 0 only if α > αBW = 1.3627827567 . . ., the critical threshold for
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Asymptotics of the Benjamin–Feir instability spectrum

eBW

αBW

α

1

0

–1

–2

0.5 1.0 1.5 2.0 2.5 3.0

Figure 5. Plot of eBW versus α. The only root of eBW for α > 0 is αBW = 1.3627827567 . . ..

modulational instability originally found in Benjamin (1967) and Whitham (1967). A plot
of eBW as a function of α is shown in figure 5.

REMARK 3.5. The variables e2 and eBW are equal to the variables e22 and eWB in Berti
et al. (2022), respectively. Using the expressions for S2,−1, U2,−1, S2,0 and T2,0 above, we
obtain an explicit representation of eBW:

eBW = 1(−1 + 8α2 + cosh(4α) − 4α sinh(4α)
)

tanh3/2(α)

(
−4 + 8α2 + 8 cosh(2α)

+5 cosh(4α) + 2α
(
−9 coth(α) + 18α csch2(2α) − 2 sinh(4α) + 3 tanh(α)

))
.

(3.23)

The root of this expression for α > 0 is the critical threshold αBW.

Provided α > αBW , (3.22) has non-zero real part for

0 < μ1 < M, M =
√

8eBW

e2
. (3.24)

Inequality (3.24) together with the first-order eigenvalue correction (3.7) and second-order
eigenvalue corrections (3.20b) and (3.22) yield the leading-order parametrization for one
loop of the figure-eight curve. Because cg < 0 for all α > 0, this loop is in the upper-half
complex plane. The remaining loop is obtained if one repeats the analysis above for
μ1 < 0. One finds −M < μ1 < 0 necessarily, so that the parametrizing interval of Floquet
exponents for the entire figure-eight curve has the asymptotic expansion

μ ∈ ε (−M, M) (1 + r1ε) + O(ε3). (3.25)

REMARK 3.6. For the remainder of this work, we restrict to the positive branch of
(3.22) and, therefore, obtain a parametrization only for the half-loop of the figure-eight
curve in the first quadrant of the complex plane. By quadrafold symmetry of the stability
spectrum (2.11), we can recover a parametrization for the entire figure-eight curve from
this half-loop.

Both (3.20b) and (3.25) depend on the first-order rescaling parameter r1. This results
in ambiguity at O(ε2) in both the Floquet parametrization and imaginary part of the
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Figure 6. (a) Plot of the Benjamin–Feir figure-eight curve for a Stokes wave with amplitude ε = 10−3 and
aspect ratio α = 1.5. Numerical results are given by the blue dots, and the asymptotic results to O(ε2) are
given by the solid orange curve. (b) Floquet parametrization of the real (blue axis) and imaginary (orange axis)
part of the figure-eight curve on the left. The respective numerical results are given by the correspondingly
coloured dots, and the respective asymptotic results to O(ε2) are given by the correspondingly coloured curves.

figure-eight. We show at the next order that r1 = 0 using the regular curve condition. Using
this, we can assemble our expansions for the real and imaginary parts of the figure-eight
curve

λR = μ1

8
�BWε2 + O(ε3), (3.26a)

λI = −μ1cgε + O(ε3), (3.26b)

respectively. Dropping terms of O(ε3) and smaller and eliminating the μ1 dependence, we
obtain the algebraic curve

64c4
gλ

2
R = e2λ

2
I (8eBWc2

gε
2 − e2λ

2
I ), (3.27)

which is a lemniscate of Huygens (or Gerono) (Huygens 1905). This lemniscate represents
a uniformly accurate asymptotic approximation of the Benjamin–Feir figure-eight curve
to O(ε2) and is consistent with the low-order heuristic approximation presented by Berti
et al. (2022). For sufficiently small ε, this lemniscate agrees well with numerical results,
see figure 6.

Given the asymptotic expansion of λR in (3.26a) above, a direct calculation shows that
λR attains the maximum value

λR,∗ = eBW

2
ε2 + O(ε3), (3.28)

when μ1 is equal to

μ1,∗ = 2
√

eBW

e2
. (3.29)
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Figure 7. (a) Interval of Floquet exponents parametrizing the half-loop of the Benjamin–Feir figure-eight
curve for a Stokes wave with aspect ratio α = 1.5 and variable amplitude ε. The numerically computed
boundary of this interval is given by the blue dots, while the solid blue curve gives the asymptotic results
to O(ε2). The orange dots give the numerically computed Floquet exponents of the most unstable eigenvalue,
while the solid orange curves give the corresponding asymptotic results to O(ε). (b) Real (blue axis) and
imaginary (orange axis) part of the most unstable eigenvalue with α = 1.5 and variable ε. Numerical results
are given by the correspondingly coloured dots, and the asymptotic results for the real and imaginary part to
O(ε2) and O(ε), respectively, are given by the correspondingly coloured solid curves.

This gives an asymptotic expansion for the real part of the most unstable eigenvalue on the
half-loop. Its corresponding imaginary part and Floquet exponent are

λI,∗ = −cg

(
2
√

eBW

e2

)
ε + O(ε2), (3.30a)

μ∗ =
(

2
√

eBW

e2

)
ε + O(ε2), (3.30b)

respectively. These expansions agree with numerical computations up to ε = 10−2, see
figure 7.

REMARK 3.7. As we will see in § 3.4, the first-order Floquet correction μ1,∗
corresponding to the most unstable eigenvalue is given by a power series in ε. Equation
(3.29) gives the leading-order term in this series. At this point, we do not know the
higher-order corrections of this series and, as a result, are unable to predict the
second-order terms of (3.30a) and (3.30b). This is a common feature in our analysis of
the most unstable eigenvalue: λR,∗ is determined to one order higher in ε than λI,∗ and
μ1,∗.

To conclude our discussion of the O(ε2) problem, we solve for the remaining unknowns
in (3.12a)–(3.12c) and obtain

β0,−1 = (ie2μ1 ∓ �BW) T2,0β0,0

2e2S2,0
, (3.31a)

β0,1 = (ie2μ1 ± �BW) T2,0β0,0

2e2S2,0
. (3.31b)
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R.P. Creedon and B. Deconinck

Since we have chosen the positive branch of (3.20b), the negative branch is chosen
for (3.31a), and the positive branch is chosen for (3.31b). Both (3.31a) and (3.31b)
are determined up to the free parameter β0,0, which is determined upon choosing a
normalization for the eigenfunction w.

Finally, given the solutions λ2 and β0,±1 of (3.12a)–(3.12c), we solve the second-order
problem (3.11) and obtain

w2(x) =
3∑

j=−3

w2,jeijx + β2,−1w0,−1(x) + β2,0w0,0(x) + β2,1w0,1(x) (3.32)

for w2,j = w2,j(α, β0,0, β1,ν, μ1, r1) ∈ C2, see the companion Mathematica files for
details. The constants β2,ν ∈ C are undetermined at this order.

3.3. The O(ε3) problem
At O(ε3), the spectral problem (2.11) is

(L0 − λ0R0) w3 = −
3∑

j=1

Ljw3−j + R0

( 3∑
k=1

λkw3−k

)
+

3∑
j=1

Rj

⎛
⎝ 3−j∑

k=0

λkw3−j−k

⎞
⎠ .

(3.33)

Using the solvability conditions from previous orders, the solvability conditions of (3.33)
simplify to a 3 × 3 linear system

M
⎛
⎝β1,−1
λ3
β1,1

⎞
⎠ =

⎛
⎝f3,1

f3,2
f3,3

⎞
⎠ , (3.34)

with

M =
⎛
⎝2(λ2 + icgr1μ1) + iT2,−1μ

2
1 + iV2,−1 2β0,−1 iU2,−1

iS2,0μ1 0 iS2,0μ1
iU2,1 2β0,1 2(λ2 + icgr1μ1) + iT2,1μ

2
1 + iV2,1

⎞
⎠

(3.35)

and

f3,1 = −(β1,0S2,−1μ1 + β0,−1(2ir2μ1cg + μ1(A3,−1λ2 + iB3,−1r1μ1 + iC3,−1

+iD3,−1μ
2
1)) + β0,0(iE3,−1λ2 + F3,−1r1μ1 + G3,−1μ

2
1)), (3.36a)

f3,2 = −(β1,0T2,0μ
2
1 + β0,−1(A3,0λ2 + ir1μ1B3,0 + iC3,0μ

2
1) + μ1β0,0(iD3,0λ2

+E3,0r1μ1) + β0,1(A3,0λ2 + ir1μ1B3,0 − iC3,0μ
2
1)), (3.36b)

f3,3 = −(β1,0S2,1μ1 + β0,1(2ir2μ1cg + μ1(A3,1λ2 + iB3,1r1μ1 + iC3,1 + iD3,1μ
2
1))

+β0,0(iE3,1λ2 + F3,1r1μ1 + G3,1μ
2
1)). (3.36c)
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Asymptotics of the Benjamin–Feir instability spectrum

The capitalized coefficients in the expressions above are all real-valued functions of the
aspect ratio α. Explicitly,

A3,−1 = 1 + α

c2
0

− αc2
0, (3.37a)

B3,−1 = α(α − c2
0 + c6

0 − αc8
0)

c3
0

, (3.37b)

C3,−1 = 1

2c5
0
(−4c2

0 + ω2
2
)2
(

8αc16
0 + αω4

2 + c2
0ω

2
2

(
α − ω2

2

)
− c14

0

(
8 + 13αω2

2

)

+c6
0

(
56 + 17αω2

2 + 10ω4
2

)
+ c12

0

(
28α + 22ω2

2 − 4αω4
2

)
− 10c4

0 (2α

+ω2
2 + αω4

2

)
+ c8

0

(
−16α − 44ω2

2 + 13αω4
2

)
+ c10

0 (16

−5ω2
2

(
α + ω2

2

))
− 2c3

0

(
−α + c2

0 + αc4
0

) (
4c2

0 − ω2
2

)2 (
c2 − Q2,0

))
, (3.37c)

D3,−1 = 1
12c5

0
(3α2(α − c2

0) + αc4
0(3 + α2)(c4

0 − 1) + c6
0(3 + 6α2)

−3α2c10
0 (−1 + αc2

0)), (3.37d)

E3,−1 = 1 − c4
0

2c0
, (3.37e)

F3,−1 = 1
2

(
3 − c4

0

)
, (3.37f )

G3,−1 = α2 + 2αc2
0 − c4

0(3 + α2) − c8
0(α

2 − 1) − 2αc10
0 + α2c12

0

8c4
0

, (3.37g)

E3,0 = −α + c2
0 − αc4

0, (3.37h)

where Q2,0 is a second-order correction of the Stokes wave due to the travelling frame (see
§ 2.2) and ω2 = ω(2) for ω in (2.19). Analogous to (3.14a–e), the remaining coefficients
are determined by the following identities for α > 0:

A3,−1 = −A3,1, B3,−1 = −B3,1, C3,−1 = C3,1, D3,−1 = D3,1,

E3,−1 = −E3,1, F3,−1 = −F3,1, G3,−1 = G3,1, A3,0 = −E3,−1/c0,

B3,0 = F3,−1/c0, C3,0 = G3,−1/c0, D3,0 = c0A3,−1.

⎫⎪⎬
⎪⎭ (3.38)

In addition, we have a new identity

T2,0
(
S2,0

(
cgE3,−1 + F3,−1

)+ S2,−1
(−cgA3,0 + B3,0

))− S2,−1S2,0
(
cgD3,0 + E3,0

) = 0,

(3.39)

to be used momentarily. The proofs of (3.38) and (3.39) are found in the companion
Mathematica files.
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R.P. Creedon and B. Deconinck

Taking the positive branch of λ2 and corresponding branches of β0,±1, a direct
calculation shows

det(M) = β0,0T2,0�BWμ3
1, (3.40)

which is non-zero for μ1 satisfying (3.24). A similar result holds if the negative branch
of λ2 is chosen. Thus, (3.34) is an invertible linear system for all eigenvalues along the
figure-eight curve. Solving this system for λ3 on the half-loop, we find

λ3 = λ3,R + iλ3,I, (3.41)

where

λ3,R = 1
4

r1μ1

(
e2Λ3,R

�BW
− �BW

(
cgA3,−1 − B3,−1

)
e2

)
, (3.42a)

λ3,I = μ1

(
−r2cg + Λ3,I

32e2T2
2,0

)
, (3.42b)

and, after using (3.39) to simplify,

Λ3,R = μ2
1
(
cgA3,−1 − B3,−1

)
, (3.43a)

Λ3,I = −A3,−1�
2
BWT2

2,0 − 16e2T2,0
(−C3,0S2,−1 − G3,−1S2,0 + T2,0

(
C3,−1 + D3,−1

))
+e2

2

(
−2D3,0S2,−1S2,0 + T2,0

(
−2A3,0S2,−1 + 2E3,−1S2,0 + A3,−1T2,0μ

2
1

))
. (3.43b)

Solutions of (3.33) for β1,±1 are found in the companion Mathematica files.
It appears (3.42a) is singular as μ1 → M since �BW → 0. If r1 /= 0, this singularity is

not removable, as the following proposition shows.

THEOREM 3.8. Let Λ
(M)
3,R = limμ1→M Λ3,R. For α > αBW, Λ

(M)
3,R /= 0.

Proof . Taking the appropriate limit of Λ3,R yields

Λ
(M)
3,R = 8eBW

e2

(
cgA3,−1 − B3,−1

)
. (3.44)

Using explicit expressions for A3,−1, B3,−1 and cg, a direct calculation shows

cgA3,−1 − B3,−1 = −2T2,−1. (3.45)

Given e2 = 4T2,−1 by definition, we conclude

Λ
(M)
3,R = −4eBW < 0, (3.46)

for α > αBW . This proves the claim. �

Because Λ
(M)
3,R is non-zero for all α > αBW , (3.42a) is singular as μ1 → M, unless

r1 = 0. Since the Benjamin–Feir figure-eight curve consists of bounded eigenvalues that
have non-singular dependence on the Floquet exponent (Berti et al. 2022), the regular
curve condition (Creedon et al. 2021a,b, 2022) enforces the choice r1 = 0 to remove the
singularity, justifying our claim at the previous order.

With r1 = 0, λ3 is imaginary and depends on the second-order rescaling parameter r2.
To determine r2 and the next real correction to the figure-eight curve, we must proceed
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Asymptotics of the Benjamin–Feir instability spectrum

to O(ε4). This requires the solution of (3.33) subject to the solvability conditions above.
We obtain

w3(x) =
4∑

j=−4

w3,jeijx + β3,−1w0,−1(x) + β3,0w0,0(x) + β3,1w0,1(x), (3.47)

where w3,j = w3,j(α, β0,0, β1,0, β2,ν, μ1, r2) ∈ C2 while β3,ν ∈ C are undetermined
constants at this order, see the companion Mathematica files for details.

3.4. The O(ε4) problem
At O(ε4), the spectral problem (2.11) is

(L0 − λ0R0) w4 = −
4∑

j=1

Ljw4−j + R0

( 4∑
k=1

λkw4−k

)
+

4∑
j=1

Rj

⎛
⎝ 4−j∑

k=0

λkw4−j−k

⎞
⎠ .

(3.48)
The solvability conditions of (3.48) simplify to a 3 × 3 linear system

M
⎛
⎝β2,−1
λ4

β2,1

⎞
⎠ =

⎛
⎝f4,1

f4,2
f4,3

⎞
⎠ , (3.49)

where M is as before and

f4,1 = −
(
β2,0S2,−1μ1 + β1,−1

(
2
(
λ3 + ir2μ1cg

)+ μ1(A3,−1λ2 + iC3,−1 + iD3,−1μ
2
1)
)

+ β1,0

(
iE3,−1λ2 + G3,−1μ

2
1

)
+ β0,−1

(
2ir3μ1cg + μ1

(
A3,−1λ3 + iB3,−1r2μ1

+iμ3
1I4,−1 + μ1(H4,−1λ2 + iG0,−1

4,−1)
))

+ λ2E4,−1 + iJ0,−1
4,−1 − iλ2

2/c0

)
+ β0,0

(
iE3,−1λ3 + F3,−1r2μ1 + D4,−1μ

3
1 + μ1

(
iA4,−1λ2 + C4,−1

))
+iβ0,1

(
μ2

1G0,1
4,−1 + J0,1

4,−1

))
, (3.50a)

f4,2 = −
(
β2,0T2,0μ

2
1 + β1,−1

(
A3,0λ2 + iC3,0μ

2
1

)
+ iβ1,0D3,0μ1λ2

+ β1,1

(
A3,0λ2 − iC3,0μ

2
1

)
+ β0,−1

(
A3,0λ3 + iB3,0r2μ1 + μ1

(
D4,0λ2 + iF4,0

+iG4,0μ
2
1

))
+ β0,0

(
μ1(iD3,0λ3 + E3,0r2μ1 + H4,0μ

3
1 + C4,0μ1) − λ2

2

)
+β0,1

(
A3,0λ3 + iB3,0r2μ1 + μ1(−D4,0λ2 + iF4,0 + iG4,0μ

2
1)
))

, (3.50b)
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f4,3 = −
(
β2,0S2,1μ1 + β1,1

(
2
(
λ3 + ir2μ1cg

)+ μ1(A3,1λ2 + iC3,1 + iD3,1μ
2
1)
)

+ β1,0

(
iE3,1λ2 + G3,1μ

2
1

)
+ β0,1

(
2ir3μ1cg + μ1

(
A3,1λ3 + iB3,1r2μ1

+iμ3
1I4,1 + μ1(H4,1λ2 + iG0,1

4,1)
))

+ λ2E4,1 + iJ0,1
4,1 + iλ2

2/c0

)
+ β0,0

(
iE3,1λ3 + F3,1r2μ1 + D4,1μ

3
1 + μ1

(
iA4,1λ2 + C4,1

))
+iβ0,−1

(
μ2

1G0,−1
4,1 + J0,−1

4,1

))
. (3.50c)

As before, the capitalized coefficients above are all real-valued functions of α.
The interested reader can consult the companion Mathematica files for the explicit
representations of these functions. One can show that

A4,−1 = A4,1, C4,−1 = −C4,1, D4,−1 = −D4,1, E4,−1 = E4,1,

G0,1
4,−1 = −G0,−1

4,1 , G0,−1
4,−1 = −G0,1

4,1, H4,−1 = H4,1, I4,−1 = −I4,1,

J0,1
4,−1 = −J0,−1

4,1 , J0,−1
4,−1 = −J0,1

4,1, J0,−1
4,−1 = J0,1

4,−1,

D4,0 = −A4,−1/c0, F4,0 = C4,−1/c0,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.51)

for α > 0, analogous to (3.14a–e) and (3.38) from the previous orders. Solving (3.49) for
λ4 on the half-loop yields

λ4 = λ4,R + iλ4,I, (3.52)

with

λ4,R = μ1

256T3
2,0

(
Λ

(1)
4,R

T2,0�BW
− �BWΛ

(2)
4,R

c0e2
2

)
, (3.53a)

λ4,I = −r3μ1cg. (3.53b)

The coefficients Λ
(j)
4,R in (3.53a) decompose as

Λ
(j)
4,R = Λ

(j,1)

4,R r2 + Λ
(j,2)

4,R , j ∈ {1, 2}. (3.54)

An application of (3.39) shows

Λ
(1,1)
4,R = 64e2T4

2,0μ
2
1
(
cgA3,−1 − B3,−1

)
, (3.55)

Λ
(2,1)
4,R = 64c0e2T2

2,0
(
cgA3,−1 − B3,−1

)
. (3.56)

The remaining coefficients Λ
(j,2)

4,R are explicit functions of α and μ2
1. These coefficients as

well as the solutions β2,±1 of (3.49) are found in the companion Mathematica files.
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9
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α

Figure 8. Plot of r2 versus α. For all α > αBW , r2 is well defined. As α ↘ αBW or α → ∞, r2 becomes
singular. The singular behaviour as α ↘ αBW is arrested by the factor of μ1 in front of (3.42b) and (3.53a).
The singular behaviour as α → ∞ remains, showcasing the breakdown of compactness in finite versus infinite
depth, see Berti et al. (2022) and Nguyen & Strauss (2020) for further discussion.

Similar to the previous order, the real part of λ4 is singular as μ1 → M. To remove this
singular behaviour, we require

r2 = −Λ
(1,2,M)
4,R

Λ
(1,1,M)
4,R

, (3.57)

using the regular curve condition, where

Λ
(1,j,M)

4,R = lim
μ1→M

Λ
(1,j)
4,R , j ∈ {1, 2}. (3.58)

The rescaling parameter r2 is well defined for any fixed α > αBW , since Λ
(1,1,M)
4,R /= 0 over

this interval by arguments similar to those in Proposition 3.3.1. However, r2 is unbounded
as α ↘ αBW or α → ∞, see figure 8. Both limits suggest potentially unbounded growth in
the imaginary part of the figure-eight curve at O(ε3) (3.42b) and the real part of the curve
at O(ε4) (3.53a). Because μ1 appears as a factor in both of these expressions, the apparent
singular behaviour as α ↘ αBW is arrested since μ1 → 0 in this limit.

The same cannot be said as α → ∞. The culprits for this growth are the expressions
for β0,±1 obtained at O(ε2), see (3.31a) and (3.31b). In particular, β0,±1 both share a
factor of T2,0 in their respective numerators that becomes unbounded as α → ∞. This
singular behaviour is inherited by r2 and ultimately affects the real and imaginary parts of
the figure-eight curve at O(ε4) and O(ε3), respectively. This provides a first glimpse into
the breakdown of compactness that distinguishes the Benjamin–Feir instability spectrum
in finite and infinite depth, as discussed in more detail by Berti et al. (2022); Nguyen &
Strauss (2020). This difference will become even more clear when we consider the infinite
depth case in § 4.

REMARK 3.9. The singular behaviour of r2 as α ↘ αBW and α → ∞ also affects the
parametrizing interval of Floquet exponents (2.26) at O(ε3). For similar reasons as above,
this singular behaviour is avoided as α ↘ αBW but remains as α → ∞.
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In general, (3.52) has non-zero real part, and we have found a higher-order
approximation to the figure-eight curve. This curve is parametrized by Floquet exponents

μ ∈ ε (−M, M)

(
1 − Λ

(1,2,M)
4,R

Λ
(1,1,M)
4,R

ε2 + r3ε
3

)
+ O

(
ε5
)

. (3.59)

The real part along a half-loop of this curve has asymptotic expansion

λR = μ1

8
�BWε2 + μ1

256c0�BWΛ
(1,1,M)
4,R e2

2T4
2,0

(
c0e2

2

(
Λ

(1,1,M)
4,R Λ

(1,2)
4,R − Λ

(1,2,M)
4,R Λ

(1,1)
4,R

)

−T2,0�
2
BW

(
Λ

(1,1,M)
4,R Λ

(2,2)
4,R − Λ

(1,2,M)
4,R Λ

(2,1)
4,R

))
ε4 + O

(
ε5
)

, (3.60)

for 0 < μ1 < M, and its corresponding imaginary part is

λI = −μ1cgε + μ1

(
cgΛ

(1,2,M)
4,R

Λ
(1,1,M)
4,R

+ Λ3,I

32e2T2
2,0

)
ε3 − r3μ1cgε

4 + O
(
ε5
)

. (3.61)

Quadrafold symmetry of the stability spectrum (2.11) extends (3.60) and (3.61) to a full
parametrization of the higher-order approximation of the figure-eight curve.

At this order, r3 is undetermined, leading to ambiguities in the Floquet parametrizing
interval (3.59) and the imaginary part (3.61). Proceeding to O(ε5), one can show via
the regular curve condition that r3 = 0. Dropping terms of at least O(ε5) in (3.60) and
(3.61) and eliminating μ1 leads, in theory, to a new algebraic curve that uniformly
approximates the Benjamin–Feir figure-eight to O(ε4). In practice, eliminating μ1 from
(3.60) and (3.61) is too cumbersome, and we leave this curve in its parametrized form
on the half-loop. Figure 9 compares our higher-order approximation of the figure-eight
with numerical results and the lower-order approximation of the figure-eight, obtained
above. Both figure-eight approximations match numerical computations well for ε � 0.1.
Around ε = 0.1, the lower-order approximation deviates from numerical results, while
the higher-order approximation maintains excellent agreement, giving confidence in our
higher-order asymptotic expansions.

In addition to a higher-order description of the figure-eight curve, we can estimate its
most unstable eigenvalue by examining the critical points of (3.60) with respect to μ1.
For ease of notation, let λ2,R and λ4,R denote the second- and fourth-order corrections of
(3.60), respectively, and let μ1,∗ denote the critical points. Then

∂

∂μ1

(
λ2,R(α, μ1)ε

2 + λ4,R(α, μ1)ε
4 + O

(
ε5
))∣∣∣∣

μ1,∗
= 0. (3.62)

Dropping terms of O(ε5) and smaller, we arrive at an algebraic equation for the critical
points:

λ′2,R(α, μ1,∗) + λ′4,R(α, μ1,∗)ε2 = 0, (3.63)

where primes denote differentiation with respect to μ1. When ε = 0, (3.63) has positive
solution

μ1,∗0 = 2
√

eBW

e2
, (3.64)

coinciding with the first-order correction of the most unstable Floquet exponent (3.29).
When 0 < ε � 1, we expect μ1,∗ to bifurcate smoothly from μ1,∗0 . Since the small
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Figure 9. (a) Plot of the Benjamin–Feir figure-eight curve for a Stokes wave with amplitude ε = 0.1 and
aspect ratio α = 1.5. Numerical results are given by the blue dots, while asymptotic results to O(ε2) and O(ε4)

are given by the solid orange and green curves, respectively. (b) Floquet parametrization of the real (blue
axis) and imaginary (orange axis) part of the figure-eight curve on the left. Numerical results are given by the
correspondingly coloured dots. The asymptotic parametrizations of the real part to O(ε2) and O(ε4) are given
by the solid blue and light blue curves, respectively, while those for the imaginary part are given by the solid
orange and red curves, respectively.

parameter in (3.63) appears as ε2, we expand μ1,∗ in ε2, yielding

μ1,∗ = μ1,∗0 + ε2μ1,∗2 + O
(
ε4
)

. (3.65)

Substituting (3.65) into (3.63),

μ1,∗2 = −λ
′
4,R(α, μ1,∗0)

λ′′2,R(α, μ1,∗0)
(3.66)

at O(ε2). To simplify notation further, we drop the functional dependencies above,
denoting λ′4,R(α, μ1,∗0) and λ′′2,R(α, μ1,∗0) instead by λ′4,R,∗ and λ′′2,R,∗, respectively.
Substituting (3.66) into (2.26), we arrive at an asymptotic expansion for the Floquet
exponent of the most unstable eigenvalue on the higher-order half-loop:

μ∗ =
(

2
√

eBW

e2

)
ε −

(
2
Λ

(1,2,M)
4,R

Λ
(1,1,M)
4,R

√
eBW

e2
+ λ

′
4,R,∗
λ′′2,R,∗

)
ε3 + O

(
ε4
)

. (3.67)

If instead we substitute (3.65) into (3.60), we obtain an asymptotic expansion for the real
part of the most unstable eigenvalue. Using our simplified notation above,

λR,∗ = λ2,R,∗ε2 + (λ′2,R,∗μ1,∗2 + λ4,R,∗
)
ε4 + O

(
ε5
)

. (3.68)

Unpacking this notation, we obtain the more explicit expansion

λR,∗ = eBW

2
ε2 + eBW

256c0Λ
(1,1,M)
4,R e2

2T4
2,0

(
c0e2

(
Λ

(1,1,M)
4,R Λ

(1,2)
4,R,∗ − Λ

(1,2,M)
4,R Λ

(1,1)
4,R,∗

)

−4
T2,0

eBW

(
Λ

(1,1,M)
4,R Λ

(2,2)
4,R,∗ − Λ

(1,2,M)
4,R Λ

(2,1)
4,R,∗

))
ε4 + O

(
ε5
)

, (3.69)
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Figure 10. (a) Interval of Floquet exponents parametrizing the half-loop of the Benjamin–Feir figure-eight
curve for a Stokes wave with aspect ratio α = 1.5 and variable amplitude ε. The numerically computed
boundary of this interval is given by the blue dots, while the solid blue and light blue curves give the asymptotic
results to O(ε) and O(ε3), respectively. The orange dots give the numerically computed Floquet exponents of
the most unstable eigenvalue, while the solid orange and red curves give the corresponding asymptotic estimates
to O(ε) and O(ε3), respectively. (b) Real (blue axis) and imaginary (orange axis) part of the most unstable
eigenvalue on the half-loop with α = 1.5 and variable ε. Numerical results are given by the correspondingly
coloured dots. The asymptotic approximations of the real part to O(ε2) and O(ε4) are given by the solid blue
and light blue curves, respectively. The asymptotic approximations of the imaginary part to O(ε) and O(ε3) are
given by the solid orange and red curves, respectively.

where Λ
(j,�)
4,R,∗ denotes Λ

(j,�)
4,R evaluated at μ1 = μ1,∗0 . A similar calculation determines the

asymptotic expansion for the imaginary part of this eigenvalue. After some work,

λI,∗ = −2cgε

√
eBW

e2
+
(

−cg

(
λ′4,R,∗
λ′′2,R,∗

)
+ 2
√

eBW

e2

(
cgΛ

(1,2,M)
4,R

Λ
(1,1,M)
4,R

+ Λ3,I,∗
32e2T2

2,0

))
ε3 + O

(
ε4) ,
(3.70)

where Λ3,I,∗ denotes Λ3,I evaluated at μ1 = μ1,∗0 . Expansions (3.67), (3.69) and (3.70)
for the most unstable eigenvalue on the figure-eight match numerical computations to
excellent agreement, even for sizeable values of ε of the order of 0.2. These expansions
also improve upon results obtained at O(ε2), see figure 10.

REMARK 3.10. For sufficiently small ε, the dominant wavenumbers of the most unstable
perturbation to the Stokes waves are μ∗ and μ∗ ± 1. The growth rate of the perturbation
is λ∗ = λR,∗ + iλI,∗.

3.5. Comparison of the Benjamin–Feir and high-frequency instabilities
High-frequency instabilities of Stokes waves were first explored numerically by Deconinck
& Oliveras (2011). Unlike the Benjamin–Feir instability, these instabilities give rise to
unstable spectra away from the origin in the complex spectral plane (figure 2), resulting in
high-frequency spatial oscillations that are not commensurate or nearly commensurate
with the fundamental period of the Stokes waves. A complete asymptotic analysis of
high-frequency instabilities has been explored by the authors with Trichtchenko (Creedon
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∗/
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Figure 11. Real part of the most unstable eigenvalue (modulo ε2) on the largest high-frequency instability
(orange) and the Benjamin–Feir instability (blue) as a function of α. Numerical results using ε = 10−3 are given
by the correspondingly coloured dots. The asymptotic results (3.71) and (3.73) are given by the correspondingly
coloured solid curves. We observe three regimes for the periodic water wave problem: (i) α < αBW ; (ii) αBW <

α < αDO; and (iii) α > αDO, where αBW is the root of (3.23) and αDO is the root of (3.74). This agrees with
the numerical results in figure 11 of Deconinck & Oliveras (2011).

et al. 2022). Since then, Hur & Yang (2022) has validated some of these formal asymptotic
results rigorously.

For sufficiently small ε, the largest high-frequency instability is closest to the origin. As
shown in Creedon et al. (2022), its most unstable eigenvalue has asymptotic expansion

λ
(HF)
R,∗ = |S2|

2
√

ω(k0)ω(k0 + 2)
ε2 + O

(
ε4
)

, (3.71)

where S2 is a complicated, but explicit, function of the aspect ratio α, ω is given by (2.19)
and k0 is an implicit function of α defined as the unique solution of

Ω1(k0) = Ω−1(k0 + 2), (3.72)

for Ωσ in (2.19). The leading-order behaviour of this instability is O(ε2), similar to the
Benjamin–Feir case:

λ
(BFI)
R,∗ = eBW

2
ε2 + O

(
ε4
)

. (3.73)

By comparing coefficients of the leading-order terms in (3.71) and (3.73), we can directly
compare the largest growth rates of the high-frequency and Benjamin–Feir instabilities for
all α > 0, see figure 11. To our knowledge, this is the first time the growth rates of these
two instabilities have been compared using analytical methods. A numerical comparison
is available in Deconinck & Oliveras (2011).

For shallow water, α < αBW , only high-frequency instabilities are present. For
deep water, α > αBW , we have two distinct behaviours. When αBW < α < αDO, the
high-frequency instabilities dominate the Benjamin–Feir instabilities. When α > αDO, the
Benjamin–Feir instability dominates. The critical threshold αDO that distinguishes these
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behaviours in deep water is well approximated by the implicit solution of

|S2|√
ω(k0)ω(k0 + 2)

= eBW , (3.74)

for k0 defined in (3.72). If we solve (3.74) numerically, we find αDO = 1.4308061674 . . .,
matching the numerical result presented in Deconinck & Oliveras (2011) to four significant
digits.

REMARK 3.11. If the O(ε4) corrections are included in expansions (3.71) and (3.73), then
αDO = αDO(ε), where αDO(0) = 1.4308061674 . . .. Using dominant balance, we argue
that the next correction of αDO appears at O(ε2), but obtaining this correction explicitly
is a computational challenge.

4. Benjamin–Feir spectrum in infinite depth

4.1. A few remarks about infinite depth
Our analysis so far applies to the Benjamin–Feir instability spectrum in water of finite
depth. In this section, we consider the special case of infinite depth, when α → ∞.
Unfortunately, it is not possible to let α → ∞ using the expressions obtained in § 3.
Indeed, we have already seen that this limit is singular in the eigenfunction coefficients
β0,±1, which affects the description of the figure-eight curve at O(ε3) and subsequent
orders. The peculiarities of this limit are what cause the failure of the proof by Bridges
& Mielke (1995) in infinitely deep water, necessitating the alternative proof by Nguyen &
Strauss (2020). This also leads to the qualitative differences in the exact representations of
the figure-eight curve in finite and infinite depth, as seen by Berti et al. (2021, 2022).

In this section, we outline the steps of our spectral perturbation method applied to
the Benjamin–Feir instability in infinite depth, starting with the unperturbed problem.
Replacing the finite-depth operators in the spectral problem (2.11) with their infinite-depth
equivalents, see § 2.3, we find the following spectral data at O(ε0):

λ0 = 0, μ0 = 0 and (4.1a)

w0(x) = β0,−1w0,−1(x) + β0,0w0,0(x) + β0,1w0,1(x), (4.1b)

where β0,j ∈ C are undetermined at this order and

w0,−1(x) =
(

1
i

)
e−ix, w0,0(x) =

(
0
1

)
and w0,1(x) =

(
1
−i

)
eix. (4.2a–c)

A direct calculation shows that w0 above is in fact the limit of w0 in finite depth (2.24) as
α → ∞.

To proceed to higher order, we expand the infinite-depth operators as power series in ε.
Some of these operators involve expressions of the form |n + μ|, where n ∈ Z. When we
expand μ using (2.26), it becomes necessary to expand |n + μ| as well. To obtain these
expansions, we exploit the following identity:

|a + b| = |a| + sgn(a)b, (4.3)

provided a ∈ R \ {0} and b ∈ R such that |b| < |a|. Substituting (2.26) into |n + μ|,
equating μ0 = 0 and applying (4.3) for sufficiently small ε yields

|n + μ| =
{

|n| + sgn(n)εμ1(1 + r(ε)), n /= 0,

|εμ1|(1 + r(ε)), n = 0.
(4.4)
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Asymptotics of the Benjamin–Feir instability spectrum

Consequently, all infinite-depth operators involving |n + μ| require two expansions: one
for n /= 0 and one for n = 0.

4.2. The O(ε) problem
The O(ε) problem in infinite depth takes the same form as (3.1) with the finite-depth
operators replaced by their infinite-depth equivalents and the expansions of these operators
carried out appropriately. Three solvability conditions are obtained from this problem. One
results in a trivial equality, similar to finite depth, and the remaining two are

β0,−1

(
λ1 − i

μ1

2

)
= 0, (4.5a)

β0,1

(
λ1 − i

μ1

2

)
= 0. (4.5b)

Imposing β0,± /= 1 as in finite depth, we obtain

λ1 = i
μ1

2
, (4.6)

which is consistent with (3.7), since cg → −1/2 as α → ∞.
Having satisfied the solvability conditions, we solve the O(ε) problem for the first-order

eigenfunction correction in infinite depth,

w1(x) = w1,p(x) + β1,−1w0,−1(x) + β1,0w0,0(x) + β1,1w0,1(x), (4.7)

where the coefficients β1,j ∈ C are undetermined at this order and

w1,p(x) = β0,−1

(
1
i

)
e−2ix + 1

2
iμ1β0,−1

(
0
1

)
e−ix + 1

2
iμ1β0,0

(
1
0

)

+1
2

iμ1β0,1

(
0
1

)
eix + β0,1

(
1
−i

)
e2ix, (4.8)

which coincides with the α → ∞ limit of the corresponding particular solution in finite
depth.

4.3. The O(ε2) problem
Similar to (3.11) in finite depth, this problem has three non-trivial solvability conditions

2β0,−1

(
λ2 − i

1
2

r1μ1

)
+ i
(

−β0,1 +
(

1
4
μ2

1 − 1
)

β0,−1

)
= 0, (4.9a)

β0,0μ
2
1 = 0, (4.9b)

2β0,1

(
λ2 − i

1
2

r1μ1

)
+ i
(

β0,−1 +
(

−1
4
μ2

1 + 1
)

β0,1

)
= 0. (4.9c)

Equations (4.9a) and (4.9c) are the limits of their respective equations (3.12a) and (3.12c)
in the finite-depth case, since

S2,−1 → 0, T2,−1 → 1
4
, U2,−1 → −1, V2,−1 → −1, (4.10a–d)
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as α → ∞. The same is true for the second equation (4.9b) if one divides the finite-depth
equation (3.12b) by T2,0 first. Then, because

S2,0 → 1, T2,0 → −∞, (4.11a,b)

as α → ∞, the rescaled (3.12b) tends to (4.9b). The unbounded growth of T2,0 as α → ∞
is the reason for the differences between the finite depth and infinite depth calculations, as
mentioned in § 3.3.

Equation (4.9b) implies μ1 = 0 or β0,0 = 0. Both numerical (Deconinck & Oliveras
2011) and rigorous results (Nguyen & Strauss 2020; Berti et al. 2021) suggest μ1 /= 0, and
we choose β0,0 = 0.

REMARK 4.1. We avoided normalizing w at the start of our analysis because β0,0 = 0 in
infinite depth. Indeed, had we chosen a non-zero normalization for β0,0, we would need to
renormalize our asymptotic expansions in infinite depth to avoid inconsistencies at higher
order.

The remaining solvability conditions (4.9a) and (4.9c) form a nonlinear system of two
equations in the three unknowns λ2 and β0,±1. Without loss of generality, we choose β0,−1
as a free parameter and solve for λ2 and β0,1. As in finite depth, we restrict our analysis to
μ1 > 0. Solving for λ2,

λ2 = λ2,R + iλ2,I, (4.12)

with

λ2,R = ±μ1

8

√
8 − μ2

1, (4.13a)

λ2,I = 1
2

r1μ1. (4.13b)

Equations (4.13a) and (4.13b) are the limits of (3.20a) and (3.20b), respectively, since

e2 → 1, eBW → 1, (4.14a,b)

and cg → −1/2 as α → ∞. For λ2 to have a non-zero real part, we must have

0 < μ1 < 2
√

2, (4.15)

which is consistent with (3.24) as α → ∞. Floquet exponents satisfying (4.15) parametrize
a single loop of the Benjamin–Feir figure-eight curve in the upper-half complex plane.
If we repeat our analysis with μ1 < 0, we find −2

√
2 < μ1 < 0, which parametrizes

the remaining loop of the figure-eight. Combined, the full parametrizing interval of the
figure-eight curve in infinite depth is

μ ∈ ε(−2
√

2, 2
√

2)(1 + r1ε) + O(ε3). (4.16)

To simplify the remaining analysis, we restrict to a half-loop of the figure-eight curve by
choosing the positive branch of (4.13a), as in finite depth.

The imaginary correction (4.13b) and Floquet parametrization (4.16) depend on the
first-order rescaling parameter r1, similar to infinite depth. Using the regular curve
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Figure 12. (a) Plot of the Benjamin–Feir figure-eight curve for a Stokes wave with amplitude ε = 10−3 in
infinite depth. Numerical results are given by the blue dots, and the asymptotic results to O(ε2) are given by
the solid orange curve. (b) Floquet parametrization of the real (blue axis) and imaginary (orange axis) part of
the figure-eight curve on the left. The respective numerical results are given by the correspondingly coloured
dots, and the asymptotic results for the real and imaginary part to O(ε2) and O(ε), respectively, are given by
the correspondingly coloured curves.

condition at the next order, we find r1 = −√
2. Assembling our expansions for the real

and imaginary parts of the half-loop in infinite depth,

λR = μ1

8
ε2
√

8 − μ2
1 + O(ε3), (4.17a)

λI = 1
2
μ1ε − 1√

2
μ1ε

2 + O(ε3). (4.17b)

These expansions agree well with numerical computations for sufficiently small ε, see
figure 12. Dropping O(ε2) terms in these expansions and eliminating the μ1 dependence
yields the curve

4(−1 + 4
√

2ε − 12ε2 + 8
√

2ε3 − 4ε4)λ2
R = 2ε2(−1 + 4

√
2ε − 4ε2)λ2

I + λ4
I , (4.18)

which is a lemniscate of Huygens, similar to finite depth. The coefficients of this
lemniscate have additional dependence on ε since r1 /= 0, in contrast with the finite-depth
case.

REMARK 4.2. The low-order approximation of the true figure-eight curve obtained by
Berti et al. (2021) matches the real component of our lemniscate (4.18) exactly. Our
lemniscate also captures the second-order behaviour of the imaginary component of the
true figure-eight curve, which is absent in the approximation obtained by Berti et al.
(2021), see figure 13 for more details.
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Figure 13. Plot of the Benjamin–Feir figure-eight curve for a Stokes wave with amplitude ε = 2.5 × 10−2 in
infinite depth. Numerical results are given by the blue dots and the asymptotic results to O(ε2) are given by the
solid green curve. The solid orange curve gives the approximation of Berti et al. (2021). This approximation is
not asymptotic in the imaginary part of the figure-eight curve to O(ε2).

REMARK 4.3. The Floquet parametrization of the Benjamin–Feir instability in finite depth
is

μ ∈ εμ1(1 + r2(α)ε2) + O(ε4), (4.19)

while in infinite depth,

μ ∈ εμ1(1 − ε
√

2) + O(ε3). (4.20)

For these parametrizations to be consistent, the corrective term r2(α)ε2 in finite depth
must be promoted an order of magnitude in ε as α → ∞. Since ε can be made arbitrarily
small, the only way this is possible is if |r2| → ∞ as α → ∞, which is precisely what we
observed in § 3.3.

A direct calculation shows that (4.17a) attains a maximum value of

λR,∗ = 1
2
ε2 + O

(
ε3
)

, (4.21)

when μ1,∗ = 2. Hence, (4.21) gives an asymptotic expansion for the real part of the
most unstable eigenvalue on the half-loop. Its corresponding imaginary part and Floquet
exponent are

λI,∗ = ε + O
(
ε2
)

, (4.22a)

μ∗ = 2ε + O
(
ε2
)

, (4.22b)

respectively. These expansions are consistent with those in finite depth (§ 3.2) as well as
numerical results (figure 14).

Continuing our analysis of the O(ε2) problem, we solve (4.9a) and (4.9b) for β0,1
(assuming μ1 > 0). After some work, we find

β0,1 = 1
4

(
μ2

1 − 4 ∓ 4iμ1

√
8 − μ2

1

)
β0,−1. (4.23)

Since we chose the positive branch of λ2,R (4.13a) without loss of generality, we choose the
negative branch of (4.23). In finite depth, |β0,±1| → ∞ as α → ∞, which is inconsistent
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Figure 14. (a) Interval of Floquet exponents parametrizing the half-loop of the Benjamin–Feir figure-eight
curve for a Stokes wave with an infinite depth and variable amplitude ε. The numerically computed boundary
of this interval is given by the blue dots, while the solid blue curve gives the asymptotic results to O(ε2). The
orange dots give the numerically computed Floquet exponents of the most unstable eigenvalue, while the solid
orange curves give the corresponding asymptotic results to O(ε). (b) Real (blue axis) and imaginary (orange
axis) part of the most unstable eigenvalue in infinite depth with variable ε. Numerical results are given by the
correspondingly coloured dots, and the asymptotic results for the real and imaginary part to O(ε2) and O(ε),
respectively, are given by the correspondingly coloured solid curves.

with (4.23). However, a direct calculation shows that the ratio β0,1/β0,−1 in finite depth
tends to (4.23) as α → ∞, re-establishing consistency between the two results.

Before we proceed to the next order, we solve the O(ε2) problem subject to the
solvability conditions (4.9a) and (4.9b). We find

w2(x) = w2,p(x) + β2,−1w0,−1(x) + β2,0w0,0(x) + β2,1w0,1(x), (4.24)

where β2,j ∈ C are undetermined at this order and

w2,p(x) =
3∑

j=−3

w2,jeijx, (4.25)

where w2,j = w2,j(β0,−1, β1,ν, r1) ∈ C2, see the companion Mathematica files for details.

4.4. The O(ε3) problem
The solvability conditions of the O(ε3) problem form a 3 × 3 linear system

M
⎛
⎝β1,0
λ3

β1,1

⎞
⎠ =

⎛
⎝f3,1

f3,2
f3,3

⎞
⎠ , (4.26)

where M is given by

M =

⎛
⎜⎝

μ1 2β0,−1 −i
−μ2

1 0 0

−μ1 2β0,1 − i
4

(−4 + 8iλ2 + 4r1μ1 + μ2
1
)
⎞
⎟⎠ (4.27)
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and

f3,1 = i
4
β1,−1

(
4 + 8iλ2 + 4r1μ1 − μ2

1

)
, (4.28a)

f3,2 = −iμ2
1
(
β0,−1 + β0,1

)
, (4.28b)

f3,3 = −i
(

β1,−1 + 1
4
β0,1μ1

(
6 − 4r2 + 4iλ2 + μ2

1

))
. (4.28c)

If we substitute expressions for λ2 and β0,1 on the half-loop into (4.27), we find

det (M) = μ3
1β0,−1

√
8 − μ2

1, (4.29)

implying (4.26) has a unique set of solutions for 0 < μ1 < 2
√

2, as desired. The solution
for λ3 is

λ3 = λ3,R + iλ3,I, (4.30)

with

λ3,R = −μ1
(
2μ1 + r1

(−4 + μ2
1
))

4
√

8 − μ2
1

, (4.31a)

λ3,I = − 1
16

μ1

(
16 − 8r2 + μ2

1

)
. (4.31b)

To avoid singular behaviour in λ3,R as μ1 → 2
√

2, we choose r1 such that

lim
μ1→2

√
2

(
2μ1 + r1(−4 + μ2

1)
)

= 0, (4.32)

according to the regular curve condition. We find r1 = −√
2, justifying our prior claim.

Given r1 = −√
2, we see that (4.31a) and (4.31b) are non-zero for generic choices

of 0 < μ1 < 2
√

2. Hence, we have obtained a higher-order correction to both the real
and imaginary parts of the figure-eight curve in infinite depth. This contrasts with the
finite-depth case, where an imaginary correction only was found at O(ε3).

To characterize this higher-order correction, it is necessary to determine the value of
the second-order rescaling parameter r2 appearing in (4.31b). We show at the next order
that r2 = 13/8, using the regular curve condition. Assuming this for now, we assemble our
expansions for the real and imaginary parts along a half-loop of this higher-order curve:

λR = 1
8
μ1ε

2
√

8 − μ2
1

(
1 +

(
2(−2μ1 + √

2(−4 + μ2
1))

8 − μ2
1

)
ε

)
+ O

(
ε4
)

, (4.33a)

λI = 1
2
μ1ε

(
1 −

√
2ε − 1

8

(
3 + μ2

1

)
ε2
)

+ O
(
ε4
)

, (4.33b)

respectively. The interval of Floquet exponents for the entire curve has asymptotic
expansion

μ ∈ ε
(
−2

√
2, 2

√
2
)(

1 −
√

2ε + 13
8

ε2
)

+ O
(
ε4
)

. (4.34)

These expansions agree well with numerical computations for sufficiently small ε, see
figure 15. In theory, one could eliminate the dependence of μ1 from (4.33a) and (4.33b) to
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Figure 15. (a) Plot of the Benjamin–Feir figure-eight curve for a Stokes wave with amplitude ε = 0.1 in
infinite depth. Numerical results are given by the blue dots, while asymptotic results to O(ε2) and O(ε3)

are given by the solid orange and green curves, respectively. (b) Floquet parametrization of the real (blue
axis) and imaginary (orange axis) part of the figure-eight curve on the left. Numerical results are given by the
correspondingly coloured dots. The asymptotic parametrizations of the real part to O(ε2) and O(ε3) are given
by the solid blue and light blue curves, respectively, while those for the imaginary part are given by the solid
orange and red curves, respectively.

obtain an algebraic curve that approximates the true figure-eight to O(ε3), but this process
is cumbersome and provides little insight into the behaviour of the true figure-eight curve.

Proceeding as in § 3.4, we can derive an asymptotic expansion for the most unstable
eigenvalue on this figure-eight curve and for its corresponding Floquet exponent. In
particular, if we let μ1,∗ denote a critical point of (4.33a), then

∂

∂μ1

(
1
8
μ1ε

2
√

8 − μ2
1

(
1 +

(
2(−2μ1 + √

2(−4 + μ2
1))

8 − μ2
1

)
ε

)
+ O

(
ε4
))∣∣∣∣∣

μ1=μ1,∗

= 0.

(4.35)

Dropping terms of O(ε4) and smaller, we arrive at the following equation for μ1,∗:

32 − 12μ2
1,∗ + μ4

1,∗ − ε
(

32
√

2 + 32μ1,∗ − 24μ2
1,∗

√
2 − 2μ3

1,∗ + 2μ4
1,∗

√
2
)

= 0.

(4.36)

When ε = 0, the only positive solution of (4.36) is μ1,∗0 = 2, which coincides with
(4.22b) from the previous order. When 0 < ε � 1,

μ1,∗ = μ1,∗0 + εμ1,∗1 + O
(
ε2
)

, (4.37)

since ε appears as the small parameter in (4.36). Substituting (4.37) into (4.36), we find at
O(ε) that μ1,∗1 = −3 + 2

√
2. Thus, the Floquet exponent of the most unstable eigenvalue

on the figure-eight has asymptotic expansion

μ∗ =
(

2 + (−3 + 2
√

2)ε + O
(
ε2
))

ε

(
1 − ε

√
2 + 13

8
ε2 + O

(
ε3
))

, (4.38)

which simplifies to

μ∗ = 2ε − 3ε2 + O
(
ε3
)

. (4.39)
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Figure 16. (a) Interval of Floquet exponents parametrizing the half-loop of the Benjamin–Feir figure-eight
curve for a Stokes wave in infinite depth with variable amplitude ε. The numerically computed boundary of
this interval is given by the blue dots, while the solid blue and light blue curves give the asymptotic results to
O(ε) and O(ε3), respectively. The orange dots give the numerically computed Floquet exponents of the most
unstable eigenvalue, while the solid orange and red curves give the corresponding asymptotic estimates to O(ε)

and O(ε2), respectively. (b) Real (blue axis) and imaginary (orange axis) part of the most unstable eigenvalue
on the half-loop in infinite depth with variable ε. Numerical results are given by the correspondingly coloured
dots. The asymptotic approximations of the real part to O(ε2) and O(ε3) are given by the solid blue and light
blue curves, respectively. The asymptotic approximations of the imaginary part to O(ε) and O(ε2) are given by
the solid orange and red curves, respectively.

Substituting (4.37) into (4.33a) and (4.33b), we obtain asymptotic expansions

λR,∗ = 1
2
ε2 − ε3 + O

(
ε4
)

, (4.40a)

λI,∗ = ε − 3
2
ε2 + O

(
ε3
)

, (4.40b)

for the real and imaginary part of this most unstable eigenvalue on the half-loop,
respectively. These expansions agree well with numerical computations (figure 16),
although not to the same degree as the corresponding results in finite depth. This is a
result of resolving the higher-order figure-eight curve in infinite depth at O(ε3) as opposed
to O(ε4). To complete our analysis of the solvability conditions (4.26), we report solutions
for β1,0 and β1,1 on the half-loop with r1 = −√

2. We find

β1,0 = μ1β0,−1

(√
8 − μ2

1 + i
4
μ1

)
, (4.41a)

β1,1 = 1
8

(
μ1

(
−4 − 4μ1

√
2 + 3μ2

1

)
β0,−1 + 2

(
−4 + μ2

1

)
β1,−1

)

+ iμ1

8
√

8 − μ2
1

((
16

√
2 + μ1

(
−16 − 4μ1

√
2 + 3μ2

1

))
β0,−1 + 2

(
−8 + μ2

1

)
β1,−1

)
,

(4.41b)

where β0,−1 and β1,−1 depend on the normalization of w.
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Asymptotics of the Benjamin–Feir instability spectrum

Finally, we solve the O(ε3) problem subject to the solvability conditions (4.26), arriving
at an expression for the third-order eigenfunction correction

w3(x) =
4∑

j=−4

w3,jeijx + β3,−1w0,−1(x) + β3,0w0,0(x) + β3,1w0,1(x), (4.42)

where w3,j = w3,j(β0,−1, β1,−1, β2,ν, r2) ∈ C2 while β3,j ∈ C are undetermined constants
at this order, see the companion Mathematica files for more details.

4.5. The O(ε4) problem
The solvability conditions at O(ε4) also form a 3 × 3 linear system

M
⎛
⎝β2,0
λ4

β2,1

⎞
⎠ =

⎛
⎝f4,1

f4,2
f4,3

⎞
⎠ , (4.43)

where M is the same as before and

f4,1 = −
(

β2,−1

(
2λ2 + i

4

(
−4 + μ14

√
2 + μ2

1

))
+ β1,−1

(
2λ3 + μ1

4
(−4ir2 + 4λ2

+i
(

6 + μ2
1

)))
− 1

4
μ1β1,0

(
4
√

2 + μ1

)
+ β0,−1

(
−2i − iλ2

2 + λ3μ1 + λ2μ
2
1

− i
8
μ1

(
12

√
2 + 8r3 + μ1

(
3 + 2μ1

(√
2 − μ1

))))
+ iβ0,1

(
−2 + 3

16
μ2

1

))
,

(4.44a)

f4,2 = −iμ2
1

(
β1,−1 − i

4
β1,0

(
8
√

2 + μ1

)
+ β1,1 − 1

2
β0,−1

(
4
√

2 + μ1

)
− 2β0,1

√
2
)

,

(4.44b)

f4,3 = −
(

iβ2,−1 + μ1β1,0

(√
2 − 1

4
μ1

)
+ β1,1

(
2λ3 + i

4
μ1

(
6 − 4r2 + 4iλ2 + μ2

1

))

+ iβ0,−1

(
2 − 3

16
μ2

1

)
+ β0,1

(
2i + iλ2

2 + λ2μ
2
1 − i

8
μ1

(
12

√
2 + 8r3 − 8iλ3

+μ1 (−3 + 2μ1

(√
2 + μ1

)))))
. (4.44c)

Solving for λ4 on the half-loop, we find

λ4 = λ4,R + iλ4,I, (4.45)

with

λ4,R = μ1

⎛
⎜⎜⎜⎜⎝

−2176 + 32r2
(
32 − 12μ2

1 + μ4
1
)

+μ1

(
1024

√
2 + μ1

(
432 − 64μ1

√
2 − 92μ2

1 + 5μ4
1

))
128
(
8 − μ2

1
)3/2

⎞
⎟⎟⎟⎟⎠ , (4.46a)

λ4,I = 1
16

μ1

(
16

√
2 + 8r3 + μ1

(
8 + 3μ1

√
2
))

. (4.46b)
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For ease of notation, let Λ4,R denote the numerator of (4.46a). A direct calculation shows
that Λ4,R factors as follows:

Λ4,R = μ1

(
2
√

2 − μ1

) (
−544

√
2 + 240μ1 + 168μ2

1

√
2 + 52μ3

1 − 10μ4
1

√
2 − 5μ5

1

−32r2

(
2
√

2 + μ1

) (
−4 + μ2

1

))
. (4.47)

It appears that (4.46a) already satisfies the regular curve condition, since Λ4,R → 0 as
μ1 → 2

√
2. However, the factor of 8 − μ2

1 in the denominator of (4.46a) is one power
larger than at the previous order (4.31a). Thus, we cannot guarantee regular behaviour of
λ4,R if only the first factor of (4.47) tends to zero as μ1 → 2

√
2. We must also impose

similar behaviour on the second factor:

lim
μ1→2

√
2

(
−544

√
2 + 240μ1 + 168μ2

1

√
2 + 52μ3

1 − 10μ4
1

√
2 − 5μ5

1

−32r2

(
2
√

2 + μ1

) (
−4 + μ2

1

))
= 0. (4.48)

Solving (4.48) for r2 gives us the desired result r2 = 13/8. As a consequence, the final
expression for the fourth-order real part correction (4.46a) becomes

λ4,R = μ1

⎛
⎝−512 + μ1

(
1024

√
2 + μ1

(
−192 + μ1

(
−64

√
2 + 5μ1

(−8 + μ2
1
))))

128
(
8 − μ2

1
)3/2

⎞
⎠ .

(4.49)

Since (4.46b) and (4.49) are generically non-zero for 0 < μ1 < 2
√

2, we have found
another higher-order approximation to a half-loop of the figure-eight curve in infinite
depth, up to the unknown third-order rescaling parameter r3. Presumably, one can
determine this value at O(ε5) using the techniques presented in this section. We stop here,
since we have already obtained a higher-order approximation to the figure-eight curve at
the previous order.

REMARK 4.4. For the sake of completeness, the final expressions of β2,0 and β2,1 solving
(4.43) are found in the companion Mathematica files.

5. Conclusions

Building on work by Akers (2015) and collaborations with Trichtchenko (Creedon et al.
2021a,b, 2022), we have developed a formal perturbation method to compute high-order
asymptotic approximations of the Benjamin–Feir figure-eight curve, present in the stability
spectrum of small-amplitude Stokes waves in water of sufficient depth. Unlike traditional
methods in spectral perturbation theory (Kato 1966), this method allows us to approximate
the entire curve at once.

Using our method, we are able to determine:

(i) the Floquet exponents that parameterize the figure-eight curve;
(ii) the real and imaginary parts of the most unstable eigenvalue on the figure-eight

curve; and
(iii) algebraic curves asymptotic to the figure-eight curve.
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Asymptotics of the Benjamin–Feir instability spectrum

We compare these expressions directly with numerical computations of the figure-eight
curve using methods presented by Deconinck & Oliveras (2011). To our knowledge, this is
the first time numerical and analytical descriptions of the Benjamin–Feir instability have
been compared. Excellent agreement between these descriptions is found in finite and
infinite depth, even for modest values of the Stokes wave amplitude ε. Our expressions
are also consistent with the rigorous results of Berti et al. (2021, 2022) and their heuristic
approximations of the figure-eight curve.

In addition, our asymptotic results elucidate key differences between the behaviour
of the Benjamin–Feir instability spectrum in finite and infinite depth. In particular, the
first-order rescaling parameter r1 for the Floquet parametrization of the figure-eight curve
vanishes in finite depth, while r1 = −√

2 in infinite depth. Consequently, the second-order
rescaling correction r2 is singular in finite depth as one approaches infinitely deep water,
i.e. as α → ∞. This singularity propagates to the imaginary part of the figure-eight curve
at third order and to the real part of the figure-eight curve at fourth order. Thus, the limit
as α → ∞ is singular for the Benjamin–Feir instability, illustrating the breakdown of
compactness mentioned by Berti et al. (2022), Bridges & Mielke (1995) and Nguyen &
Strauss (2020).

Using asymptotic results in this work and in Creedon et al. (2022), we are able to
compare the Benjamin–Feir instability and the most unstable high-frequency instability
for the first time analytically. Our analysis suggests three natural regimes for the water
wave problem:

(i) shallow water, which occurs when κh < αBW = 1.3627827567 . . . and only
high-frequency instabilities are present;

(ii) intermediate water, which occurs when αBW < κh < αDO(ε) = 1.4308061674 . . . +
O(ε2) and both instabilities are present, but high-frequency instabilities dominate;
and

(iii) deep water, which occurs when κh > αDO(ε) and both instabilities are present, but
the Benjamin–Feir instability dominates.

Here, κ is the wavenumber of the Stokes wave and h is the depth of the water. These
regimes are supported by numerical computations of Deconinck & Oliveras (2011).
We conclude that Stokes waves of all depths and all wavenumbers are unstable to the
Benjamin–Feir instability, high-frequency instabilities or both.

Supplementary material. Supplementary materials are available at https://doi.org/10.1017/jfm.2022.
1031. The asymptotic expressions derived in this work can be found in the companion Mathematica files
wwp_bf_fd.nb (for finite depth) and wwp_bf_id.nb (for infinite depth).
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