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This discussion paper argues that both the use of Cronbach’s alpha as a reliability estimate and as a
measure of internal consistency suffer from major problems. First, alpha always has a value, which cannot
be equal to the test score’s reliability given the interitem covariance matrix and the usual assumptions
about measurement error. Second, in practice, alpha is used more often as a measure of the test’s internal
consistency than as an estimate of reliability. However, it can be shown easily that alpha is unrelated to
the internal structure of the test. It is further discussed that statistics based on a single test administration
do not convey much information about the accuracy of individuals’ test performance. The paper ends with
a list of conclusions about the usefulness of alpha.
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1. Introduction

Probably no other statistic has been reported more often as a quality indicator of test scores
than Cronbach’s (1951) alpha coefficient, and presumably no other statistic has been subject to so
much misunderstanding and confusion. Two problems concerning alpha continue to be pervasive
in test construction and test use. The first problem is twofold. Alpha is a lower bound to the
reliability, in many cases, even a gross underestimate, and alpha cannot have a value that could
be the reliability based on the usual assumptions about measurement error. Better alternatives
to alpha exist but are hardly known, let alone used to assess reliability. Thus, by continuing to
use alpha as the estimate of reliability test constructors and test users do themselves injustice
until they recognize the availability of better alternatives. The second problem is that alpha is
persistently and incorrectly taken to be a measure of the internal structure of the test, and hence
as evidence that the items in the test “measure the same thing.” However, alpha does not provide
the researcher with this sort of information. The result of this misinterpretation of alpha is that
due to a high alpha value, trait validity (Campbell, 1960) often is taken for granted when, in fact,
it has not been investigated at all.

Because alpha continues to be so important, in particular to practical researchers, and be-
cause alpha continues to be the subject of so much misinterpretation, there appears to be a strong
need to settle some issues and provide suggestions for the practical estimation of test score reli-
ability and the assessment of what the test measures. The goal of this paper is to illuminate the
flaws and fallacies that surround both the “common” knowledge base and the practical use of
Cronbach’s alpha, and to provide alternatives. This paper is also meant to invite debate on topics
that psychometricians often seem to overlook and test constructors and test practitioners tend to
take for granted. The paper only uses knowledge that has been around for a while, but somehow
has failed to come through well enough.

The paper is organized as follows. First, some historical facts about Cronbach’s alpha are
discussed. Second, the definitions of test score reliability, the greatest lower bound (glb; e.g.,
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Woodhouse & Jackson, 1977) to the reliability, and alpha are discussed, and the relationships
between alpha, the glb, and the reliability are outlined. Third, the application to real data of alpha,
the greater lower bound Guttman’s (1945) λ2, and the glb is discussed, and it is shown that also
in real data both alpha and λ2 can be considerably smaller than the glb. Fourth, it is explained
how alpha came to be misunderstood as a measure of internal consistency and it is shown that, in
general, alpha does not convey information on the internal structure of the test. Fifth, it is argued
that reliability estimates based on a single test administration, like alpha, may not convey much
information about the accuracy of individual test performance. This contribution ends with five
conclusions about the usefulness of alpha and alternative reliability estimation procedures.

2. Historical Facts

As happens so often, great inventions do not carry the name of their inventor, but instead of
the researcher who was most successful in outlining its favorable properties in such a way that all
of a sudden everything seemed to fall into place. It is no different with Cronbach’s alpha. To avoid
misunderstandings, Cronbach (1951) himself did not claim alpha to be his invention, but at great
length credited results with respect to alpha to other authors. These authors include Kuder and
Richardson (1937), who published a version of alpha for dichotomous items that went under the
name of KR20. Another author is Hoyt (1941), who proposed a method for estimating reliability
based on an analysis-of-variance decomposition of the data, which for dichotomous items gives
the same results as KR20. Guttman (1945) derived alpha, denoted by the indexed Greek lower
case λ3, as the third in a series of six coefficients each of which was shown to be a lower bound
to the reliability (also, see Jackson & Agunwamba, 1977). The derivation of alpha and the other
coefficients used continuous random variables for item scores, and thus include dichotomous
and ordered polytomous scoring as special cases. For dichotomously scored items, KR20, and
to some extent a computationally convenient approximation denoted KR21—notice there were
no computers in those days—actually gained quite some fame, but they were gradually pushed
aside as alpha conquered territory.

Ever since its publication in 1951 in Psychometrika, Cronbach’s famous paper has been
a landmark to psychometricians, test constructors and test practitioners. Today, the paper
still is one of the most downloaded papers from Psychometrika’s website (accessible via
http://www.springer.com). Web of Science reports over 6,500 citations, which is a crushing num-
ber compared to the already very respectable 400+ citations for Kuder and Richardson (1937)
and 200+ citations for Guttman (1945). For what it is worth (perhaps biological articles become
outdated quicker than psychometric articles), it even outranks Watson and Crick’s famous 1953
Nature article in which they describe the discovery of the double helix structure of DNA. Almost
no psychological test or inventory is published without alpha being reported (usually without
reference to Cronbach’s paper), often for each interesting subgroup separately. Also, alpha con-
tinues to receive interest in psychometric research. For example, Van Zyl, Neudecker, and Nel
(2000), Kistner and Muller (2004), and Hayashi and Kamata (2005) in different ways addressed
the distribution of alpha; Ten Berge and Sočan (2004) discussed the relationship between alpha
and other lower bounds and test unidimensionality; and Zinbarg, Revelle, Yovel, and Li (2005)
compared alpha with several other methods for estimating test score reliability. Each of these
papers was published in Psychometrika, but other papers have appeared recently in other main-
stream methodological journals (e.g., Raykov, 2001; Rodriguez & Maeda, 2006). Also, critical
discussions of uses and abuses of alpha have appeared in substantive journals (e.g., Cortina,
1993; Schmitt, 1996).
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3. Reliability, the Greatest Lower Bound, and Alpha

3.1. Test Score Reliability and the Greatest Lower Bound

The definition of reliability is based on parallel test forms (Novick, 1966; Novick & Lewis,
1967; also, see Lord & Novick, 1968). Let random variable Xj denote the score on item j ; for
example, Xj = 0,1 for incorrect/correct scoring typical of performance tests, and Xj = 0, . . . ,m

for ordered rating scales typical of behavior assessment. The test contains J items. A much-used
summary of the item scores is the total score or test score, which is defined as

X+ =
J∑

j=1

Xj .

Let respondents be indexed by i, such that X+i denotes respondent i’s total score.
Test score X+i is assumed to suffer from random measurement error. Thus, rather than

X+i , one would like to know respondent i’s test score without error. This error-free test score is
defined operationally, which means, technically and without reference to a situation in real life,
as the expectation of X+i across the propensity distribution of independent repetitions of the test
to individual i, that is, as ε(X+i ) (Lord & Novick, 1968, pp. 29–30). The expectation is better
known as the true score, Ti , such that

Ti = ε(X+i ).

Because the true score is a real number, it could never be the result of adding integer item scores;
thus, the + sign does not appear with T . In item response theory (IRT), the propensity distribution
appears in the stochastic subject formulation of response behavior at the level of individual items
(Holland, 1990).

The difference between a test score resulting from a single test administration and the true
score is defined to be the random measurement error,

Ei = X+i − Ti,

which is a real number and like T does not carry the + sign. Because measurement errors are
assumed to originate unpredictably from a random process, they correlate 0 with any other vari-
able unless they are part of that variable (such as X+i ). Also, in a population of respondents for
which only one test score is available, it is assumed that measurement errors correlate 0 with any
other variable unless they are part of that variable.

Parallel tests represent a mathematical definition of independent repetitions of the same test
under the same circumstances. Two tests, with test scores X+ and X′+, are parallel if

(1) Ti = T ′
i , for all i,

and, denoting variance by σ 2, if also

(2) σ 2
X+ = σ 2

X′+
.

Thus, (1) an individual has the same long-run test performance on both tests, and (2) the variance
of the test scores in the population is the same for both tests. It can easily be shown that these two
properties imply that parallel tests have exactly the same psychometric properties. For example,
the correlation of X+ and X′+ with any other independently measured variable Y is the same for
both tests, implying equal validity. The only difference resides in the test scores themselves: that
is, in general X+i �= X′+i , which is due to random measurement error.
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The reliability of the test score X+ in the population of interest is defined as the product-
moment correlation between the scores on X+ and the scores on a test parallel to this test with
scores denoted by X′+, and the reliability is denoted by ρX+X′+ . Because one test is parallel to the
other, the correlation between the test scores gives the reliability of both X+ and X′+ separately.
A well-known result is that 0 ≤ ρX+X′+ ≤ 1. It can further be shown that σ 2

X+ = σ 2
T + σ 2

E (and,

likewise, σ 2
X′+

= σ 2
T ′ + σ 2

E′), and that consequently for test score X+,

ρX+X′+ = σ 2
T

σ 2
X+

= 1 − σ 2
E

σ 2
X+

. (1)

Thus, three interchangeable ways of saying that reliability is higher, are that parallel test forms
correlate higher, true score variance is greater relative to test score variance, and error variance
is smaller relative to test score variance.

Equation (1) shows that the reliability can be estimated if two parallel versions of the test
are available or if the true score variance (or, equivalently, the error variance) is available on
the basis of one test administration. Because these possibilities are unattainable in practical test
research, many alternatives have been proposed (e.g., Guttman, 1945; Nunnally, 1978) that use
the data available from a single test administration. The most instructive method is the glb (e.g.,
Bentler & Woodward, 1980; Jackson & Agunwamba, 1977; Woodhouse & Jackson, 1977). Ten
Berge and Sočan (2004) explain the glb as follows. The interitem covariance matrix for observed
item scores, CX , is decomposed into the sum of the interitem covariance matrix for item true
scores, CT , and the interitem error covariance matrix CE : CX = CT + CE . The interitem error
covariance matrix CE is diagonal with error variances on the main diagonal and off-diagonal
zeroes reflecting that errors correlate zero with any other variable in which they are not included.
All three matrices are positive semidefinite (psd; i.e., they do not have negative eigenvalues). The
glb problem is solved by finding the nonnegative matrix CE for which CT = CX − CE is psd
that minimizes

rX+X′+ = 1 − tr(CE)

S2
X+

.

This is the glb because it represents the smallest reliability possible given observable covariance
matrix CX under the restriction that the sum of error variances is maximized for errors that
correlate 0 with other variables. Thus, the data obtained from one test administration restrict the
real reliability to the interval [glb, 1]. This means that when the glb is found to be 0.8, the true
reliability has a value in the interval [0.8; 1]. Thus, data from a single test administration restrict
the reliability to an interval, whereas data from two parallel tests would yield a point estimate of
the reliability. Algorithms for solving the glb problem are discussed by Bentler and Woodward
(1980) and Ten Berge, Snijders, and Zegers (1981).

3.2. Definition of Alpha

Let σ 2
j denote the variance of item score Xj and σjk the covariance between item scores Xj

and Xk . Alpha is defined as

alpha = J

J − 1

[
1 −

∑J
j=1 σ 2

j

σ 2
X+

]
,

or equivalently as

alpha = J

J − 1

∑∑
j �=k σjk

σ 2
X+

. (2)
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This latter form proves to be useful later on. It may be noted that c ≤ alpha ≤ 1, with c < 0 if the
mean interitem covariance among the J items is negative. This is known to happen sometimes
due to accidentally coding both positively and negatively worded personality or attitude items in
the same direction.

3.3. Relationship Between Alpha, the glb, and Reliability

Guttman (1945, p. 274) proved that alpha—his λ3 coefficient—is a lower bound to the reli-
ability, that is, he proved that for J items,

alpha ≤ ρX+X′+ .

Novick and Lewis (1967, Theorem 3.1) proved that alpha = ρX+X′+ holds if and only if the
items in the test are essentially τ -equivalent (τ is sometimes used to denote the true score, i.e.,
τ = T ). Essential τ -equivalence is another mathematical definition of the similarity of different
tests (here, items are considered as 1-item tests) that is less restrictive than parallelism. For items
j and k, and constant ajk , essential τ -equivalence is defined as

Tj = Tk + ajk, for all item pairs j �= k.

Essential τ -equivalence implies that interitem covariance σjk is the same for all item pairs
(j �= k), and that covariance σjY is the same for all items (j = 1, . . . , J ) and any independently
measured variable Y . Like parallelism, essential τ -equivalence is not a realistic condition in test
data, so that in real data we have that alpha < ρX+X′+ .

The glb relates to alpha and the reliability as

alpha ≤ glb ≤ ρX+X′+ . (3)

Equation (3) is true because alpha ≤ glb (Jackson & Agunwamba, 1977), and by definition glb ≤
ρX+X′+ . We know that alpha = ρX+X′+ if and only if the items are essentially τ -equivalent. Also,
glb = ρX+X′+ if the items are essentially τ -equivalent but equality can also be obtained under
other conditions. For example (Ten Berge, personal communication), one may use covariance
matrix

CX =
[1 1 2

1 2 3
2 3 5

]
(4)

and (7b) from Ten Berge and Sočan (2004) to verify that glb = 1. This result implies that glb =
ρX+X′+ even though the covariances in (4) are unequal, which violates essential τ -equivalence.
Thus, it follows that CX = CT (also, see Ten Berge & Sočan, 2004, (5), first part) and CE = 0.
Also, notice that in this example alpha = 0.9.

Equation (3) shows that for real data alpha is not in the interval [glb, 1] of admissible values,
and the conclusion can only be that for any observable covariance matrix CX alpha provides
a value that cannot be a possible value of the reliability based on the knowledge provided by
one test administration. One could argue that it does not hurt to use a small lower bound like
alpha in practice, because unnecessary low reliability estimates may have the positive effect of
stimulating the researcher to do all (s)he can to construct a high-quality test. Much as this is true,
following this same line of reasoning accepting an even smaller lower bound such as Guttman’s
(1945) λ1 coefficient (λ1 < alpha for finite test length) would even boost that effect. Perhaps
it is more reasonable to ask why one would report an estimate of the reliability in the face of
much better alternatives, the most prominent one being the glb. Schmitt (1996) warns that lower
bounds like alpha may produce gross overestimates of the correlation between test scores when
they are corrected for attenuation. The real-data example reported in the next subsection shows
that using the glb instead of alpha or another lower bound can make a difference indeed.
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3.4. Alternatives for Alpha

Borsboom (2006) noted that the degree to which a statistical method is used in empirical
research very much depends on its availability in SPSS. Alpha is in SPSS, and so are the other
five lower bounds proposed by Guttman (1945). One of them is known under the name of λ2,
and is sometimes reported instead of alpha. Guttman (1945) proved that alpha ≤ λ2. Alpha and
λ2 are the first two terms of an infinite series of lower bounds in which they are denoted by μ0
and μ1 (Ten Berge & Zegers, 1978), respectively. Ten Berge and Zegers (1978) concluded that
computing lower bounds from their series beyond λ2 usually does not produce increases that are
worthwhile reporting.

Coefficient λ2 relates to alpha, the glb, and the reliability as

alpha ≤ λ2 ≤ glb ≤ ρX+X′+ . (5)

In (5), we have that λ2 ≤ glb (Jackson & Agunwamba, 1977). Except for the relationship be-
tween glb and ρX+X′+ , (5) contains equalities if and only if the items are essentially τ -equivalent.
Equality between glb and ρX+X′+ can also be obtained under different conditions; see (4) for an
example. Information about the sampling characteristics of lower bounds is available from sev-
eral sources (e.g., Feldt, Woodruff, & Salih, 1987). The glb estimate may be biased positively
even for samples as large as 1,000 cases, but bias seems to be rather small as the number of items
is smaller than 10 (Ten Berge & Sočan, 2004).

The three lower bounds alpha, λ2, and the glb were computed for a real-data example. The
data came from a questionnaire that consists of eight rating scale items, scored 0, 1, 2, 3, by
828 respondents. Each item asked respondents who lived in the vicinity of a malodorous factory
how they coped with industrial malodors (Cavalini, 1992). The dimensionality of the data was
investigated using principal components analysis (PCA). Researchers typically use PCA to in-
vestigate the dimensionality of the data, but better methods may be available to be discussed later
on. Alpha, λ2, and PCA and Varimax rotation were computed by means of SPSS 14.0 (2006),
and the glb was computed by means of the program MRFA2.exe (Ten Berge & Kiers, 2003) that
can be downloaded from http://www.ppsw.rug.nl/~kiers/.

PCA resulted in eigenvalues for the inter-item correlation matrix RX of 3.213, 1.103, and the
next six each smaller than 1. The second component showed the contrasts typically suggesting
that a rotated 2-factor solution would better explain the correlation structure despite only one
eigenvalue being markedly greater than 1. Indeed, Varimax rotation of the first two components
resulted in one set of three items with loadings on the first factor greater than 0.7, and another
set of four items with loadings on the second factor greater than 0.6 (Table 1). One item had a
loading of approximately 0.5 on both factors, but based on content it went better with the items
loading highest on the first factor.

For all eight items considered to be in one scale, alpha is 0.007 smaller than λ2, but λ2
is 0.067 smaller than the glb (Table 2). The lower bound values for the first of the two 4-item
scales resulting from the PCA were nearly as high as those found for the 8-item scale, but the
lower bounds for the second 4-item set were smaller by approximately 0.15. Still, λ2 was 0.074
smaller than the glb in the first scale, and 0.052 smaller than the glb in the second scale. The gap

TABLE 1.
Factor loadings for eight items measuring coping styles.

Factor Item No.
3 5 6 7 9 11 13 14

I 0.17 0.54 0.21 0.75 0.85 0.70 0.15 0.10
II 0.64 0.49 0.60 0.18 0.07 0.24 0.74 0.70
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TABLE 2.
Lower bounds alpha, λ2, and the glb, Total Observed Variance (TotObsVar), Total Common Variance (TotComVar), and
Explained Common Variance (ECV) for an 8-item scale and two 4-item scales.

No. Items (J )

8 4 (set 1) 4 (set 2)

alpha 0.778 0.736 0.640
λ2 0.785 0.746 0.644
glb 0.852 0.820 0.696

TotObsVar 8 4 4
TotComVar 4.2294 2.3616 1.6283
ECV 65.39 79.57 85.42

TABLE 3.
Covariance matrix for eight items. Items 5, 7, 9, 11 are in Set 1; and items 3, 6, 13, 14 are in Set 2. Interitem covariance
within these sets in bold face.

Item No. 3 5 6 7 9 11 13 14

3 1.110
5 0.385 0.894
6 0.203 0.259 0.510
7 0.169 0.203 0.122 0.395
9 0.152 0.240 0.096 0.246 0.490

11 0.223 0.453 0.177 0.191 0.293 0.858
13 0.264 0.234 0.204 0.141 0.145 0.186 0.622
14 0.263 0.245 0.140 0.127 0.124 0.192 0.287 0.706

between alpha/λ2 and the glb was caused by the spread in the interitem covariances (Table 3).
This violation of a necessary condition for essential τ -equivalence prevented the three lower
bounds from being equal.

The differences reported here are believed to be of practical interest to test constructors and
researchers who report a reliability estimate for their test or questionnaire. Moreover, in this data
set, there is no convincing reason to report unnecessary small reliability estimates.

4. Alpha as Measure of Internal Consistency

4.1. Drifting Away From Reliability to Internal Consistency

When Cronbach published his classical article in 1951, it was already known that alpha was
a lower bound to the reliability, but it is important to realize that at that time several definitions
of test score reliability, true score, and random measurement error existed next to one another.
The widely accepted foundation of classical test theory as provided later on by Novick (1966)
and Lord and Novick (1968) was unknown then. Thus, Cronbach (1951, p. 299) could write: “It
has generally been stated that α (i.e., Cronbach’s alpha; the author) gives a lower bound to the
“true reliability”—whatever that means to that particular writer.” As a result, the concept of a
lower bound did not seem as compelling to Cronbach as it is nowadays and, instead, much of
Cronbach’s paper was not about alpha as a lower bound but about analyzing the relationships
of alpha with correlations between similar test forms (“similar” is different here from parallel),
test-retest correlation, and split-half correlation, and with the factorial composition of the test.
This produced several interesting results that were picked up by many psychologists and led to
the interpretation of alpha as a measure of the internal consistency of a test. It is safe to say
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that the interpretation of alpha as a measure of internal consistency has gained more foothold in
practical test construction and test use than the lower bound interpretation. Before I try to explain
this preference, I first ask what internal consistency is.

Schmitt (1996) distinguishes internal consistency from homogeneity, and claims that inter-
nal consistency refers to the interrelatedness of a set of items, and homogeneity to the unidimen-
sionality of a set of items. However, this distinction does not convincingly solve terminological
confusion. To start with, unidimensionality is not a unitary concept. The concept plays a role
both in factor analysis and IRT, and has been defined in different ways. There are similarities,
however. Lord and Novick (1968, p. 374, Theorem 16.8.1) proved that if J dichotomous items
originate from different dichotomizations of J normal distributions of latent continuous item
scores, which have a rank 1 covariance matrix, then the regression of each item on the latent trait
is a 2-parameter normal ogive. Takane and De Leeuw (1987) studied the relationship between the
factor model and normal ogive IRT models in a more general framework. Independent of factor
models, within the class of different unidimensional logistic IRT models such as the 1-, 2-, and
3-parameter models, each model imposes different restrictions on the data, and each model may
be seen as representing another definition of unidimensionality. Thus, it seems that in general
the concept of unidimensionality is tied to a particular model and in this sense it is clear what
unidimensionality means under that particular model.

Internal consistency has not been defined that explicitly, far from it. For example, Cronbach
(1951, p. 320) used internal consistency and homogeneity synonymously (cf. Schmitt, 1996),
and noted that an internally consistent test is “psychologically interpretable” although this does
not mean “that all items be factorially similar.” In the jargon of test construction internal consis-
tency often refers to the items “being interrelated” (Schmitt, 1996) but other interpretations are
also used regularly. In practical test construction, the use of alpha often goes hand-in-hand with
PCA (e.g., Cavalini, 1992; De Hooge, Zeelenberg, & Bruegelmans, 2007). A pervasive albeit in-
formal interpretation of the test’s internal consistency is that the first eigenvalue of the interitem
correlation matrix is high relative to the second eigenvalue but exactly how high is unclear. This
interpretation indeed is different from equating internal consistency with a 1-factor solution or
with IRT unidimensionality and leaves open the possibility that different items have varying
patterns of factor loadings if more than one factor is retained. This comes close to Cronbach’s
remark that items need not be factorially similar for the test to be internally consistent. But what
this analysis does best is underline the vagueness of the internal consistency concept.

This vagueness has not stopped alpha from becoming a landmark for internal consistency.
Remarkably, however, is that a glance at alpha shows that all other things kept equal, its value
depends only on the sum of the interitem covariances (2). Thus, all that alpha can reveal about
the “interrelatedness of the items” is their average degree of “interrelatedness” provided there
are no negative covariances, and keeping in mind that alpha also depends on the number of items
in the test (Nunnally, 1978, pp. 227–228). Because this says very little if anything about internal
consistency no matter how it is defined, one wonders why the internal consistency interpretation
of alpha is so persistent. I believe that there are two related reasons.

The first reason is that while several studies have well illuminated the relationships of al-
pha to other quantities (e.g., Cortina, 1993; Green, Lissitz, & Mulaik, 1977; also see Cronbach,
1988), in particular the factor structure of the test, they have also conveyed the impression that
because alpha has something to do with the test’s factor structure, its value therefore must ex-
press characteristics of this factor structure. This conclusion is logically incorrect and usually not
intended by these studies, but it probably has been too compelling to many test constructors and
test practitioners to resist. A single number—alpha—that expresses both reliability and internal
consistency—conceived of as an aspect of validity that suggests that items “measure the same
thing”—is a blessing for the assessment of test quality. In the meantime, alpha “only” is a lower
bound to the reliability and not even a realistic one.
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The second reason is that after the 1950s, psychometrics has developed to become more
mathematically and statistically oriented while psychologists primarily have remained psychol-
ogists. One can argue whether psychologists should become better statisticians or whether psy-
chometricians should become better psychologists (Borsboom, 2006), but it is a fact that the two
worlds have drifted apart more than anyone should wish. Thus, while much of Cronbach’s paper
was and still is accessible to many psychologists, the work by Lord, Novick, and Lewis and many
others since may have gone unnoticed by most psychologists. This is truly an example of the gap
that has grown between psychometrics and psychology and that prevents new and interesting
psychometric results, including those that relate alpha to the glb and the test’s factor structure, to
seep into mainstream psychology.

4.2. Alpha and Internal Test Structure

There is no clear and unambiguous relationship between alpha and the internal structure of
a test. This can be demonstrated in a simple way. First, it is shown that a 1-factor test may have
any alpha value. Thus, it may be concluded that the value of alpha says very little if anything
about unidimensionality. Second, it is shown that different tests of varying factorial composition
may have the same alpha value. Thus, it may be concluded that alpha says very little if anything
about multiple-factor item structures.

Alpha and Unidimensionality Equal item variances, equal interitem covariances and, con-
sequently, equal interitem correlations are necessary (but not sufficient) for parallel items. Ten
Berge and Kiers (1991) advocated the use of minimum rank factor analysis (MRFA) for assess-
ing closeness of the covariance/correlation matrix to unidimensionality. For a 1-factor solution,
MRFA determines the diagonal uniquenesses covariance matrix CE , which produces the small-
est sum of the J −1 smallest eigenvalues of the difference matrix CX −CE . Thus, the amount of
common variance that is left unexplained when the last J − 1 factors are ignored is minimized,
and as a result, the 1-factor solution is the “most-unidimensional” factor solution.

Closeness of the 1-factor solution to unidimensionality is assessed by means of the ratio
of the first eigenvalue of CX − CE and the sum of all J eigenvalues of CX − CE (Ten Berge
& Sočan, 2004). After transforming this ratio to a percentage, the explained common variance
(ECV) is obtained. Instead of MRFA and the ECV, test constructors often use PCA and the
percentage of observed variance (POV) corresponding to the first eigenvalue extracted by PCA
from the correlation matrix RX . It should be noted that PCA is based on CE = 0, and thus
provides the “least-unidimensional” factor solution in terms of eigenvalues corresponding to
CX − CE .

A 1-factor item structure was operationalized in each of seven tests, each test consisting of
six items (J = 6) with item variances all equal to σ 2

j = 0.25 (j = 1, . . . ,6) and equal positive
interitem covariances σjk . Across tests, from a practical point of view covariances varied from
high (σjk = 0.15; corresponding to pm-correlation ρjk = 0.6) to low (σjk = 0.01; corresponding
to pm-correlation ρjk = 0.04). For each of the seven interitem correlation matrices, MRFA was
done by means of the program MRFA2.exe (Ten Berge & Kiers, 2003), and PCA was done
by means of SPSS 14.0 (2006) syntax code. MRFA.2.exe also produces the glb. Alpha was
computed by means of SPSS 14.0 syntax code, and was compared to the glb.

ECV is 100% for all seven interitem correlation matrices but POV, which is the quantity
that most test constructors use for assessing unidimensionality, starts at 66.67% and then drops
gradually to 20% (Table 4). Thus, ECV indicates perfect unidimensionality whereas POV sug-
gests factor solutions that move away from unidimensionality. This conclusion is amplified if one
also takes the eigenvalues of correlation matrix RX (PCA) into consideration. Many researchers
probably would take the last two or three sets of eigenvalues (Table 4) as evidence of multidimen-
sionality (i.e., the items each correspond to unique factors) instead of unidimensionality. Because
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TABLE 4.
Eigenvalues (EV) of observable correlation matrix RX , percentage of observed variance (POV) explained by the first
principal component, ECV, alpha, and glb, for tests with J = 6, σ 2

j
= 0.25 (j = 1, . . . ,6), and σjk/ρjk constant per test

and variable across tests.

σjk/ρjk

0.15/0.60 0.12/0.48 0.09/0.36 0.06/0.24 0.03/0.12 0.02/0.08 0.01/0.04

No. EV 1 4.00 3.40 2.80 2.20 1.60 1.40 1.20
2 0.40 0.52 0.64 0.76 0.88 0.92 0.96
3 0.40 0.52 0.64 0.76 0.88 0.92 0.96
4 0.40 0.52 0.64 0.76 0.88 0.92 0.96
5 0.40 0.52 0.64 0.76 0.88 0.92 0.96
6 0.40 0.52 0.64 0.76 0.88 0.92 0.96

POV 66.67 56.67 46.67 36.67 26.67 23.33 20.00
ECV 100 100 100 100 100 100 100
alpha 0.90 0.85 0.77 0.65 0.45 0.34 0.20
glb 0.90 0.85 0.77 0.65 0.45 0.34 0.20

the covariance matrices are typical of essential τ -equivalence, it follows that alpha = glb. Table 4
also shows that as inter-item covariance drops while keeping everything else constant, alpha and
the glb drop from 0.90 to 0.20, that is, from high to low.

The seven examples in Table 4 each represent cases of unidimensionality: From left to right,
the signal becomes weaker while the noise (due to unique factors and measurement error) be-
comes stronger. But all the time there is one signal—unidimensionality—correctly identified by
ECV = 100. The reliability quantifies the degree to which test scores can be repeated under the
same circumstances. As the signal in the data becomes weaker, alpha and the glb become smaller,
as they should.

Alpha and Multidimensionality Multidimensionality was operationalized by means of
three tests, again each consisting of six items (J = 6), with item variances equal to σ 2

j =
0.25 (j = 1, . . . ,6), and interitem covariances σjk such that: (1) they were positive and equal
within clusters of items; (2) they were zero between items from different clusters; and (3) the
sum of all J (J − 1) covariances was constant across different matrices CX . Condition 3 implies
the same alpha for each covariance matrix. Table 5 shows the lower triangles of the covariance
matrices CX with three 2-item clusters, two 3-item clusters, and one 6-item cluster, respectively.

The first two sets of eigenvalues from RX each suggest the correct dimensionality of the
tests, while the ECV shows that RX is remote from unidimensionality. The third set of eigenval-
ues would probably lead several researchers to conclude that there is one common albeit weak
factor, but the ECV suggests perfect unidimensionality. Coefficient alpha equals 0.533 for all
three covariance matrices, irrespective of dimensionality. Interestingly, the glb is highest for the
3-factor case and lowest for the 1-factor case (in the latter case, the glb coincides with alpha
because CX satisfies a necessary condition for essential τ -equivalence; also, see Table 4). More
important, alpha does not provide information on the internal structure of the test as it is so often
claimed.

Going back to the real-data example discussed previously, it is interesting to see (Table 2)
that ECV for the 8-item scale suggests that the scale is remote from unidimensionality. Both
4-item scales have high ECV values suggesting near-unidimensionality, but once more it is clear
that unidimensionality or lack thereof has nothing to do with reliability.

Moreover, alpha depends on the number of items J , and our examples can be adapted simply
to show that alpha grows as J grows (Cortina, 1993; Green et al., 1977). For example, for J =
12, σ 2

j = 0.25 (j = 1, . . . ,12), and covariance structures with three 4-item clusters (σjk = 0.20
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TABLE 5.
Covariance matrices CX , EVs based on corresponding correlation matrix RX , ECV, glb, and alpha.

CX EV RX ECV glb alpha

0.25 1.8 33.33 0.889 0.533
0.20 0.25 1.8
0.00 0.00 0.25 1.8
0.00 0.00 0.20 0.25 0.2
0.00 0.00 0.00 0.00 0.25 0.2
0.00 0.00 0.00 0.00 0.20 0.25 0.2

0.25 1.8 50.00 0.667 0.533
0.10 0.25 1.8
0.10 0.10 0.25 0.6
0.00 0.00 0.00 0.25 0.6
0.00 0.00 0.00 0.10 0.25 0.6
0.00 0.00 0.00 0.10 0.10 0.25 0.6

0.25 1.80 100.00 0.533 0.533
0.04 0.25 0.84
0.04 0.04 0.25 0.84
0.04 0.04 0.04 0.25 0.84
0.04 0.04 0.04 0.04 0.25 0.84
0.04 0.04 0.04 0.04 0.04 0.25 0.84

within clusters), two 6-item clusters (σjk = 0.12) and one 12-item cluster (σjk = 0.0545454)

such that each time
∑∑

j �=k σjk = 7.2, alpha = 0.770 in all three cases.

5. Is There a Future for Alpha?

Lord and Novick (1968) discussed reliability as repeatability of individual test performance
described by the individual’s propensity distribution. The propensity distribution shows the in-
fluence of random measurement error across an infinite number of parallel test administrations.
However, due to the practical impossibility to administer the same test to the same individuals
repeatedly—even twice is nearly impossible—one has to resort to a random sample of individ-
uals who have been administered the test once, and then estimate the reliability on the basis of
this single administration. The glb shows that such data limit the range of possible reliability
values to [glb, 1] but also that a perfect reliability cannot be ruled out one the basis of one test
administration. An interesting question is whether single-administration test data can provide
information about individuals’ propensity distributions at all.

Molenaar (2004; also, see Borsboom, 2005, pp. 68–81) noted that in general a single-
administration sample of test scores does not contain information about the individuals’
propensity distributions unless both types of distributions—between individuals as in single-
administration data and within individuals as in propensity distributions—obey restrictive distri-
butional properties. He contended that most psychological phenomena do not agree with these
assumptions. Other authors also noticed that statements about individuals are problematic when
only single-administration data are available. For example, Ellis and Van den Wollenberg (1993)
showed that IRT models do not hold for individuals unless the assumption of local homogeneity
is added to the models. Molenaar (2004) reported that a (Big) 5-factor personality structure that
was found at the group level on the basis of a sample of observations collected at one point in
time did not correspond to the different factorial structures characteristic of different individuals
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who were repeatedly tested by means of the same personality inventory (Molenaar, 2004). This
result seems to have relations to the phenomenon that particular individuals are insensitive to cer-
tain personality traits, which has become known as lack of traitedness (Tellegen, 1988). Lack of
traitedness may be the cause of atypical patterns of scores on items from personality inventories
(Reise & Waller, 1993).

Likewise, there is no reason whatsoever to assume that the propensity distributions of dif-
ferent persons must be identical to one another and to the between-persons distribution based on
single-administration data. This means that single-administration test data may contain little or
no information about propensity distributions. The use of the standard measurement error,

σE = σX

√
1 − ρX+X′+,

in the practice of psychological testing was born out of this inherent limitation of single-
administration test data. The application of the standard measurement error assumes that each
individual was tested with the same accuracy but classical test theory does not make this assump-
tion nor is there much reason to expect a priori that people would produce the same propensity
distributions when given the opportunity. Indeed, Lord (1960) studied distributions of measure-
ment errors that varied across the true score level, and IRT uses the Fisher information function to
estimate a standard error dependent on the scale of measurement. Such improvements recognize
the improbability of the same accuracy of measurement for every tested individual but cannot be
considered realistic as long as their assumptions have not been put to the test in real data. That
is, one needs to study real propensity distributions to find out how standard errors are related to
the scale of measurement, and until then the results provided by Lord and IRT are properties of
statistical models, not of real behavior.

The problem with discussions like this one is that while (I believe) they make a good point,
the practical test user needs to make decisions about the treatment of individual clients or patients
and cannot afford to sit back and wait until science comes up with the final solution. Thus, it
seems best to end with a number of conclusions about alpha and reliability, and find out what is
the next best thing for alpha and reliability in the absence of available propensity distributions.

6. Conclusions

On the basis of the previous discussion, the following five conclusions seem to be in order:

1. In practice, alpha attains values that are outside the range of possible values of the reliability
that can be derived from a single test administration. Comparing alpha with the glb gives
an impression of the degree to which alpha is wrong. The difference can easily be tenths
depending on the exact properties of the test under consideration.

2. Many lower bounds exist between alpha and the glb, and the lower bounds proposed by
Guttman (1945) are all in SPSS thus eliminating the “not in SPSS” argument often heard in
practice. It is difficult to defend convincingly using one of the smallest lower bounds, alpha,
given the availability of many greater lower bounds and the glb. The only reason to report
alpha is that top journals tend to accept articles that use statistical methods that have been
around for a long time such as alpha. Reporting alpha in addition to a greater lower bound
may be a good strategy to introduce and promote a better reliability estimation practice.

3. The best lower bound and the only one attaining a realistic value, however, is the glb. The glb
is available from several sources and easy to obtain (Ten Berge & Sočan, 2004). Because the
glb can be seriously positively biased for lower reliability values, samples smaller than, say,
1,000 cases, and test lengths exceeding, say, 10 items, more work on bias correction is badly
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needed (e.g., Shapiro & Ten Berge, 2000; Verhelst, 1998) and psychometrics might spend
more energy in favor of this just cause. Once a good bias correction is found, one cannot get
around the glb anymore to replace alpha (and all other lower bounds).

4. Alpha is not a measure of internal consistency. Neither is it a measure of the degree of uni-
dimensionality (also, see Ten Berge & Sočan, 2004). Alpha has been shown to correlate with
many other statistics and much as these results are interesting, they are also confusing in the
sense that without additional information, both very low and very high alpha values can go
either with unidimensionality or multidimensionality of the data. But given that one needs the
additional information to know what alpha stands for, alpha itself cannot be interpreted as a
measure of internal consistency.

5. Statistical results based on a single test administration convey little if any information about
individuals’ measurement accuracy reflected by their propensity distributions. This does not
seem to be an insurmountable problem when a test is used for comparing mean scores between
different groups or correlations between variables in a nomological network, but even then one
has to be aware that “averaging out” the individual causes the means and correlations to lose
their psychological meaning (Borsboom, 2005). For drawing conclusions about individuals
on the basis of test scores, the best one can do is to use tests that consist of many items and
have a reliability—be it estimated by Cronbach’s alpha—that pushes 1. More generally, it
is recommended to use as much information about the individual as possible (e.g., Emons,
Sijtsma, & Meijer, 2007).
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