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INTERSECTIONS OF FINITELY GENERATED
FREE GROUPS

PETER NICKOLAS

A result of Howson is that two finitely generated subgroups U

and 7 of a free group have finitely generated intersection. Hanna

Neumann showed further that, if m, n and N are the ranks of

U, V and U n V respectively, then N 5 2(m-l)(n-l) + 1 , and

Burns strengthened this, showing that N 5 2{m-l){n-l) - m + 2

(if m 5 n ). This paper presents a new and simple proof of

Burns' result. Further, the graph-theoretical ideas used provide

still stronger bounds in certain special cases.

1. Introduction

Let U and V be subgroups of a free group F , with U and V of

finite ranks m and n respectively. Howson [4] showed that U n V is

also finitely generated, and gave a bound on its rank N in terms of m

and n . Neumann [7, S] subsequently sharpened Howson's bound, showing

that N s 2(m-l)(n-l) + 1 . On the other hand, if U or V is of finite

index in F , then the stronger bound N S (m-l)(n-l) + 1 holds (Burns

[/]), and most writers on the subject seem to believe that this bound

should hold in all-cases. (Howson [4] has examples showing that no bound

lower than this is possible.)

The strongest bound known to hold in general, however, is due to Burns
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[2], who shows that N 2 2(m-l)(«-l) - m + 2 (taking m £ n ). Our

purpose in this paper is to examine the problem again, obtaining some

detailed information (§2) from which Burns1 bound in particular follows.

We approach the problem graph-theoretically, as do most other writers

on the subject [3]-[J0]. (Servatius [9] has recently shown how Burns'

argument in [2] may be rewritten graph-theoretically.) Our main argument

takes the form of a simple graph-theoretical algorithm. The information

obtained from this not only yields Burns' result, but also enables us to

obtain better bounds in two interesting special cases. The first of these

is when m = 2 : here the presumed optimal bound W 2 (m-l)(n-l) + 1

reduces simply to N £ n and we are able to show that, for a given U of

rank 2 , this bound holds for (in some sense) most subgroups V . The

second special case considered is when V is a conjugate of U : here, of

o
course, m - n , and we show that N 5 2(m-l) - 3m + 5 •

The reader will find it useful to have some familiarity with the use

of graphs in combinatorial group theory, as, for example, in [5].

2. A graph-theoretical algorithm

2.1 . We assume without loss of generality that U and V are

subgroups of F = F(a, b) , the free group on generators a and b . For

any finitely generated subgroup, say U , of F , a standard construction

[6] yields a finite graph T(U) as follows. First let Y.. be the graph

with vertices the distinct cosets Ux (x € F) , and edges all pairs

(llx, y) > for x € F and y € {a, b} , and where (Ux, y) runs from Ux

to Uxy • (Of course, r is a quotient graph of the Cayley graph [5] of

F with respect to {a, b} .) Then T(.U) is the smallest subgraph of I\,

containing all cycles; that is (following [JO]), the core of V' . Since

U is finitely generated, T(U) is finite. (Note that T(U) need not

contain the vertex U .) Informally, we think of T(U) as a directed,

labelled graph with labels chosen from [a, b} . In particular we may

represent T{F) as
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Clearly, all vertices of T{U) are of degree 2,3 or k and, as in

[9], we may suppose them to tie of degrees 2 and 3 only.

(isomorphically embed F into F(a, 6) via the map a *—*• af? ,

b >—*• 3 , and take graphs relative to the new generators a, 3 .) We refer

to vertices of degree 3 as branch points.

2.2. The crucial fact now is that T(U n V) may be identified with

the core of a connected component of the graph T(U) x T(V) , obtained as a

pullback in the diagram

v(v)

r(t/) •* r(f)

in the category of directed, {a, £>}-labelled graphs, and where the maps

into T(F) are the obvious projections. (We still think of T{F) in the

form drawn in 2.1, though T{U) and T(V) now have no vertices of degree

* •)

In a graph such as T(U) , with vertices of degrees 2 and 3 only,

we see easily that the cyclomatic number is 1 plus one-half the number of

branch points. Since the rank of the subgroup is the cyclomatic number of

its graph, to obtain bounds on the rank N of U n V , we need to bound

the number of branch points in the core of T(U) x T(V) .

2.3. There are four possible labellings of the edges incident with a

branch point, as follows:

•b a

We refer to vertices so labelled, respectively, as b-sources, b—sinks,

a-sources, and a-sinks. (Here of course a loop contributes an inward-

and an outward-going edge.)

2.4. Consider any two branch points X in T(£/) and Y in T(V) .

There are exactly three (reduced) paths p , p2, p beginning at X and
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ending at the first branch point encountered; and q , q , q are

similarly defined at Y . There is also a natural pairing of each p .

with some q. ; for, at least two of the labels of the edges at X are
0

equal to those of edges at Y ; we pair those paths beginning with

similarly labelled edges, and then, if two remain unpaired we pair them.

Suppose for convenience that p. is paired with q. , i = 1, 2, 3 • Then

we say that p- and q. are compatible if there is a path p in

T(U) x1 T(V) from (X, Y) to a vertex (X', Y') , where X' and Y' are

branch points in T(U) and T(V) respectively, and where the projections

of p. and q. into T(F) are both initial segments of the projection of

p . The branch points X and Y are compatible if p. and q. are

compatible for each i . (Incompatible, of course, will mean not

compatible.)

Now it is easy to see that whenever (X, Y) is a branch point in the

core of T{U) x T(V) , X and Y must be compatible. Since, as mentioned

in 2.2, our concern is to bound the number of branch points in the core, it

therefore suffices to bound the number of such compatible pairs. Our main

result, which we now state, enables us to do this; its proof occupies the

remainder of §2.

THEOREM 2.5. Given U, V 5 F of ranks at least 2 , there is a

partition of the branch points of T{U) u r(V) (where T(U) and T(v)

are taken as disjoint] into two non-empty sets P. and P2 , with the

following property: all branch points of P n Till) are incompatible

with those of P^ n ?(V) , and all branch points of Pg n T(il) are

incompatible with those of P^ n T(v) .

2.6. If among the branch points of T{U) u T(V) two or more distinct

labelling types occur (2.3), put all vertices of one fixed type in P ,

and the others in P : the conclusion of the theorem clearly holds.

2.7. Otherwise, suppose that all labelling types of branch points in

T(U) u T(V) are the same. For concreteness, let us assume all branch

points to be i>-sources (2.3). We lose no generality by doing so, since
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any type of branch point can be converted into a £>-source by systematic

relabelling; that is, performing throughout T{U) and T{V) a suitably

chosen sequence of the following steps:

replace all a labels by b labels, and vioe versa;

reverse all edges labelled a ;

reverse all edges labelled b .

2.8. Let rQ = T{U) and AQ = T{V) , so that rQ and AQ are

directed, {a, b}-labelled graphs, with vertices of degree 2 and 3

only, and with all branch points being b-sources. Additionally, because

of the group-theoretical origin of F and A , no paths of the forms

. i . ; . . 9 . H . . H . 3 . . $ . b. .

ever occur.

We now describe an algorithm which, from the pair [V , A ) ,

successively produces pairs (r , A J, ... of graphs of exactly the same

type, except that, for some k , IY and A, will contain branch points

of two distinct kinds, at which point the algorithm will terminate.

2.9. The operation which transforms P. n and A. , into T. and
t-1 t-1 ^

A. is accomplished in the following steps, governed by the rule given

below,

(l) In P. and A. . replace all (maximal) paths of the form

(2) If paths of the form • — • — • — » — • — * — • appear, replace

them all by • — * — • , invoke the rule below and go to step

(3). Otherwise, go to step (U).

(3) Repeat step (2).

/ i \ b CL

(h) If paths of the form •—»—•—»—• appear, replace them
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, and invoke the rule.

(5) Set F. and A. equal to the transformed graphs.

RULE. If all branch points are £>-sources, take no action.

If all branch points are of some one fixed type, but are

not £>-sources, relabel the graphs (2.7) and restart the

algorithm at step (l).

If two distinct branch point labelling types occur, place

all branch points of one type in P and all the others

in Po , set T. and A. equal to the transformed
C. Is Is

graphs, and stop.

2.10. We make the following assertions, giving an indication of the

proofs in parentheses.

(1) The algorithm is well-defined. [Distinct paths chosen for

contraction in any one step are edge-disjoint, so that the instruction to

contract such paths is unambiguous; and these paths never pass through

branch points (except perhaps at their ends), so that the action of

replacing them by • — • — • is well-defined.)

(2) T. and A. are of exactly the same type (2.8) as F. and
Is Is 1s~\.

A. (with the possible exception of branch point labellings). (The only

a ci
point requiring checking is that paths such as • — • — • — < — • and so on

cannot appear. Step (2), for example, could only produce such a path

(necessarily of the form • — » — • — • — • J if a contracted path

• — » — • » • — « — • were contained in a longer path

• — * — • — * — • — * • * — • — • , and this is impossible, as paths such as

b b , .
•—• • — • — • have been eliminated by step (1). Similar arguments apply
to the other contractions.)

(3) The numbers of branch points in F. and A. are exactly
T.—X t—1

preserved in an application of the algorithm. (Obvious.)

CO The number of branch points in the core of T- x A. is at least
1- u
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as large as the number in the core of F. x A. . (This follows from

the obvious fact that compatibility of paired paths is preserved by the

algorithm, and from the relationship between branch points and

compatibility (see 2.k).}

(5) The algorithm terminates, and does so only when two types of

labelling appear. (Since we strictly decrease the number of edges with

each application of the algorithm, the algorithm must stop. It will do so

if two types of labelling appear, or if no paths exist of the kinds

contracted by the algorithm. The latter is easily seen to be impossible,

given that all branch points are £>-sources.)

(6) P and P_ (strictly, the corresponding sets of vertices in

T(U) and T(V) ) are as claimed in the theorem. (This follows from the

fact ((U) above) that compatibility is preserved.)

The theorem is now proved.

3. Applications

3.1. Using the notation of the theorem, let u. and v. be the
If If

cardinalities of P. n T(U) and P. n T(V) respectively, for i = 1, 2 .
Is Is

Then from the theorem, and the relation (2.1*) between branch points and

compatibility, we have the

COROLLARY. In the core of T(U) "x T(V) there are at most

U-.V. + M2
U2 krawefc points.

THEOREM 3.2 (Burns [2]). if U, V 2 F have ranks m, n

respectively, and 1 5 m 2 n , then the rank N of U n V satisfies

N 5 2(m-l)(n-l) - m + 2 .

Proof. The result is trivial if m = 1 , so let m 2 2 . By 2.2,

T{U) and T(V) have 2(m-l) and 2(n-l) branch points respectively, so,

in the notation of the corollary, u + u = 2(m-l) and V + y = 2(n-l) .

Therefore u V + u v = h(m-X)(n-l) - (u v +w Up) . But from the fact

that the sets P and P given by the main theorem are non-empty, we see

easily that uov-\ + uiV2 ~ 2("i-l) » and so
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u v + u y 5 U(m-l)(n-l) - 2(m-l) , from which the desired result follows

"by 2.2 and the corollary.

3.3. The first of the special cases mentioned in the introduction is

where the subgroup U has rank m = 2 , and T(U) contains just two

branch points.

First, consider the application of the algorithm to two disjoint

copies of r(f) . Denote the branch points in the first copy of Till) by

X and Y , and the corresponding branch points in the second copy by X'

and Y' . Then it is easy to see that one of the sets P , P produced by

the algorithm must contain X and X' , and the other Y and Y' . From

3.1 we therefore see that the core of T(U) x T{U) contains at most two

branch points; and since the component of the core containing (X, X')

certainly has two branch points (corresponding to the fact that

U n U = U ), the number is exactly two.

In particular, (X, Y') and (X', Y) have degree at most 2 in the

core, and hence there exist edges x at X and y at Y (or,

strictly, 7' ), belonging to paired paths (2.U), and such that no path in

the core at {X, Y') commences with the edge (x , t/.) .

LEMMA. There is a largest integer I > 0 for which there are reduced

paths XyZ? ''' xl an<^ ^1^2 "' ^1 a* ^ an<^ ^ (respectively), having

equal projections in T(F) .

Proof. If no such largest I exists, there is a path

(x , y ) (x , y ) ... in T(U) "x T(U) which may be extended to any length.

Since T(U) * T(U) is finite, this path must contain a cycle. If the

cycle contains (X, Y') , then there is a path in the core containing

(X, Y') and commencing with (x , y ) , a contradiction. If (X, Y') is

not in the cycle, the cycle contains a branch point, which must clearly be

{X', Y) . By symmetry, there is also a cycle containing (X, Y') and not

{X', Y) , and since a path starting with (i , y_] joins the two cycles,

this path is in the core, also giving a contradiction. Thus the integer I

exists as required.

It is now clear, given another subgroup V , that any path in T(V)
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of length greater than I , paired with the paths p and q containing

x and y , can be compatible with at most one of p and q . Therefore

we have the

PROPOSITION. Let V have rank n > 2 . If in T(V) all paths

paired with p and q are of length greater than I , then N £ n .

3.4. The second special case is as follows.

PROPOSITION. Let U be of rank m > 2 . Then for any x € F , the

rank N of U n x~ Ux satisfies

N 5 2(m-l)2 - yn + 5 •

Proof. Writing V = x~XUx , we see easily that T(U) and T(V) are

isomorphic. In an application of the algorithm to Y(U) and T{V) ,

therefore, any changes made to T(U) are made simultaneously to T{V) ,

and vice versa. It follows that (in the notation of the corollary)

u = v and u_ = v . Then, from the fact that the sets P and P

produced by the algorithm are non-empty, and since T(U) and T(V) have

2(m-l) branch points (2.2), we see easily that u-,v-i + uovp c a n ^e n o

greater than 1.1 + (2m-3)(2m-3) = km - 12m + 10 . Hence, by the

corollary, the core of T(U) x T{V) contains at most this number of branch

points. However, the component of the core corresponding to the inter-

section of U with itself already contains exactly 2(m-l) branch points,

o
so any other component can have at most km - ikm + 12 branch points.

The ranks of the intersections represented by such a component must

therefore be bounded as stated, by 2.2, and since also

2
m 5 2(m-l) - 3m + 5 when m > 2 , the result follows.
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