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Zonal jets and inertia–gravity waves are ubiquitous on planets such as Earth, Jupiter and
Saturn. Motivated by the modification of energy flux of balanced flow by inertia–gravity
waves, this paper studies the impact of near-inertial waves (NIWs) on zonal jets on
a β-plane. Using a two-dimensional quasi-geostrophic and NIW coupled system on a
β-plane (Xie & Vanneste, J. Fluid Mech., vol. 774, 2015, pp. 143–169), we find NIWs
catalytically impact several features of zonal jets. The NIWs inhibit jet formation due to
the waves’ catalytic induction of downscale mean energy flux. As the strength of NIWs
increases, a critical point exists beyond which zonal jets are annihilated. The jet spacing is
captured by the Rhines scale L ∼ √

U/β with U estimated from the upscale energy flux
induced by the mean flow alone, which again shows that the NIWs’ impact is catalytic.
Also, the temporal asymmetry of NIWs leads to the spatial asymmetry of jet dynamics.
The jet profiles are asymmetric with a stronger shear on the left flank. And similar to the
left turning of vortex dipole under the impact of NIWs, the NIW-modified jets migrate
poleward. The NIWs also show a catalytic role in jet migration: the net momentum flux
directly induced by NIWs is of secondary importance in the zonal mean momentum
dynamics and impedes jet migration, while the advective effect of NIW-modified mean
flow dominates the jet migration velocity.

Key words: quasi-geostrophic flows, waves in rotating fluids, geostrophic turbulence

1. Introduction

Rotation and stratification strongly impact geostrophic flows and lead to two distinctive
motions: slow large-scale balanced flows and fast small-scale inertia–gravity waves
(IGWs) (Smith & Waleffe 2002; Vallis 2006). The variation of the Coriolis effect with
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latitude, the β-effect, leads to east–west flows with alternating directions, so-called zonal
jets, which are ubiquitous on planets such as Jupiter, Saturn and Earth (Feldstein 1998;
Sanchez-Lavega & Rojas 2000; García-Melendo 2001; Uppala et al. 2005). On Jupiter,
the zonation of clouds shows the existence of jet streams (Vasavada & Showman 2005).
On Earth, zonal jets play an important role in transporting energy, momentum and scalar
quantities such as heat and salt, which impact the pattern of atmospheric and oceanic
flows and living creatures (Rhines 1994). Nonlinear interactions between IGWs and mean
flows have long been studied in geostrophic fluid dynamics (Lighthill 1978; Bühler 2009).
Following this spirit, this paper focuses on the impact of IGWs on the formation, spacing,
profile and dynamics of β-plane zonal jets.

Jet formation can be understood from turbulence phenomenology by matching the
characteristic time scales of inverse cascade (Kraichnan 1967) and Rossby waves, whose
anisotropic dispersion relation leads to an anisotropic barrier of upscale energy flux and
favours jets (Vallis & Maltrud 1993). In a weakly nonlinear regime, Manfroi & Young
(1999) showed that large-scale instability leads to the formation of slowly evolving jets.
In a baroclinic model, Berloff, Kamenkovich & Pedlosky (2009) found that jets form
through the secondary instability of the baroclinically unstable primary modes. From
the points of the material conservation of potential vorticity, zonal jets arise inevitably
because of the quasi-horizontal mixing of the background gradient of potential vorticity
by nonlinear eddy motions over limited latitudinal regions (Dritschel & McIntyre 2008;
Scott & Dritschel 2012; Galperin & Read 2019). In the quasi-linear approximation, where
the inverse cascade is absent, the mechanisms of stochastic structural instability (Farrell
& Ioannou 2003) and zonostrophic instability (Srinivasan & Young 2012) are proposed to
explain jet formation.

What determines jet spacing is a long-lasting question. The Rhines scale (Rhines 1975)
LRh = √

U/β, where U is the root-mean-square (r.m.s.) velocity, is found to determine jet
spacing in many circumstances (Williams 1978; Rhines 1979, 1994; Danilov & Gurarie
2000; Galperin et al. 2006; Chemke & Kaspi 2015a). Nevertheless, there is freedom
in choosing the characteristic velocity U. For instance, Dritschel & McIntyre (2008)
used the vortex-peak velocity and Scott & Dritschel (2012) calculated the r.m.s. velocity
from the energy balance between the upscale energy flux of two-dimensional (2-D)
turbulence and the frictional dissipation. Based on the characteristic scales of inverse
cascade and Rossby wave, Maltrud & Vallis (1991) introduced the spectral Rhines scale,
which describes the transition scale between turbulent and wavelike regimes. Dunkerton
& Scott (2008) calculated the geometrical Rhines scale from the conservation of absolute
angular momentum on a sphere for a jet’s latitudinal spacing. However, the Rhines scale
does not always predict the jet spacing when other characteristic scales such as the Rossby
deformation radius LD exist (Okuno & Masuda 2003; Smith 2004; Dritschel & McIntyre
2008).

Zonal jets have interesting asymmetric velocity profiles. García-Melendo (2001) and
Sánchez-Lavega et al. (2008) observed asymmetric zonal jets on Jupiter, where the
eastward jets form cusps at the maximum velocity while westward flows are smooth. This
asymmetry is explained by the diagnostic relation between zonal velocity and potential
vorticity staircases (Marcus & Lee 1998; Dritschel & McIntyre 2008). Woillez & Bouchet
(2019) asymptotically derived the eastward zonal jets’ velocity profile on a β-plane, and
they showed that the potential vorticity staircase is an idealized approximation and the
actual jet velocity profile is also controlled by the effects of friction, forcing and β.
Lemasquerier, Favier & Le Bars (2021) experimentally found that zonal jets with a weak
forcing can exist instantaneously even without the process of potential vorticity mixing.
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Among the rich dynamics of zonal jets (cf. Galperin & Read 2019; Lemasquerier et al.
2021), one interesting phenomenon is their meridional migration. In the atmosphere, jets
are found to migrate poleward in both observations (Riehl, Yeh & La Seur 1950; Dickey,
Marcus & Hide 1992) and numerical simulations (James & Dodd 1996; Chemke & Kaspi
2015b), while jets’ equatorward migration was observed in ocean models (Chan, Plumb
& Cerovecki 2007; Ashkenazy & Tziperman 2016). Using a semi-hemisphere zonally
re-entrant ocean model, Chan et al. (2007) found the primary jet oscillates meridionally
and inconspicuously propagates poleward over a short range, and the secondary jets
systematically migrate equatorward slowly from high latitudes and eventually merge with
the primary jet. Besides, Williams (2003) described a similar equatorward jet migration
in a model of Jupiter’s atmosphere. Apart from gradual migration, abrupt jet transitions
are also observed in forced-dissipative 2-D quasi-geostrophic (QG) systems (Bouchet &
Venaille 2012; Rolland & Simonnet 2015; Bouchet, Marston & Tangarife 2018; Bouchet,
Rolland & Simonnet 2019).

Among the wide range of frequency of IGWs, near-inertial waves (NIWs) contain
around 50 % of the total wave energy in the ocean (Fu 1981; Ferrari & Wunsch 2009);
therefore, we pay special attention to the effects of NIWs on zonal jets in this paper. The
interaction between NIWs and balanced flow is twofold. When propagating in balanced
flows, NIWs are affected by advection, refraction and dispersion, and they are trapped by
anticyclones of balanced flow (Kunze, Schmitt & Toole 1995; Elipot, Lumpkin & Prieto
2010; Joyce et al. 2013; Thomas et al. 2020). Because the negative vorticity shifts the
lower bound of the internal waveband to a frequency slightly below the Coriolis frequency
f , NIWs with frequency less than f concentrate in anticyclones (Kunze 1985). The NIWs
trapped in anticyclones are also found to propagate downward to the deeper ocean, which is
called the inertial chimney phenomenon (Lee & Niiler 1998). Considering the comparable
horizontal scales of NIWs and balanced flow, Young & Ben Jelloul (1997) asymptotically
derived an amplitude equation (YBJ equation) of first-order accuracy in the Burger number
of the NIWs. Asselin & Young (2019) further proposed the YBJ+ equation, which captures
the second-order effect of the linear dispersion relation of IGWs. Danioux, Vanneste &
Bühler (2015) applied the YBJ model to explain the concentration of NIWs in anticyclones
based on conserved quantities. Using the three-dimensional YBJ equation, Asselin et al.
(2020) studied the weakly dispersive NIWs’ wavevector impacted by refraction and strain,
which is justified by observation (Thomas et al. 2020).

With large horizontal and small vertical scales, NIWs are weakly dispersive and
potentially have a strong impact on the balanced flow. With O(1) Rossby number, Gertz
& Straub (2009) and Taylor & Straub (2016) numerically found that NIWs provide an
effective energy sink for wind-driven ocean gyres. Spontaneous generation of IGWs (cf.
Vanneste (2013), and references therein) is thought to be important for energy sink for
the balanced flow, which is exponentially weak in the regime of small Rossby number
(Vanneste 2008), and it can be effective when the Rossby number is of O(1), which was
shown in numerical simulations (Danioux et al. 2012; Plougonven & Snyder 2007) and
by analytical solutions (Zeitlin 2008; Thomas 2012; Whitt & Thomas 2015; Grisouard
& Thomas 2016). However, the strength of the NIW sink may be overestimated, as a
considerable amount of wave energy can be reabsorbed by the mean flow (Nagai et al.
2015; Shakespeare & McC. Hogg 2018). Stimulated loss of balance (Xie & Vanneste 2015;
Wagner & Young 2016; Rocha, Wagner & Young 2018) is also proposed as a mechanism
to absorb energy from balanced flow by NIWs. Based on a generalized Lagrangian mean
framework (Andrews & Mcintyre 1978; Soward & Roberts 2010; Salmon 2013), this
mechanism implies that the decrease of NIW horizontal scale by mean-flow advection and

962 A33-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.310


L.-F. Zhang and J.-H. Xie

refraction leads to energy conversion from balanced motions to NIWs. Weakened balanced
flows, in turn, enfeeble wave refraction and thus halt the drainage of waves into the interior
ocean (Asselin & Young 2020). Using the coupled QG–YBJ model (Xie & Vanneste 2015)
with initially uniform NIWs, Kafiabad, Vanneste & Young (2021) calculated the NIW
frequency shift that is linearly proportional to wave kinetic energy.

The presence of NIWs also catalyses other processes in mean flows. With linear
analytical solutions, Thomas (2012) found that IGWs play a catalytic role when fronts
lose balance to ageostrophic motions in frontogenesis. By analysing frequency-space
filtered numerical data, Barkan, Winters & McWilliams (2017) and Barkan et al. (2021)
found that NIWs catalyse energy transfer from mesoscale to submesoscale. By studying
a Galerkin-truncated 2-D model of rotating stratified flow, Thomas & Arun (2020) found
that high-energy NIWs can transfer energy to barotropic flow and impel a forward energy
cascade of the balanced flows that assists the forward energy cascade of waves in turn.
By studying a 2-D model derived asymptotically in Xie & Vanneste (2015), in statistically
steady states with external forcing and dissipation, Xie (2020) proposed that based on the
conservations of energy, wave action and potential enstrophy, NIWs catalyse a downscale
energy transfer of QG mean flows.

This paper studies the impact of NIWs on jet dynamics on a β-plane, which is motivated
by ubiquitous waves and jets and the impact of NIWs on the energy flux of mean flows.
The rest of this paper is organized as follows. In § 2, we first present the coupled model of
QG mean flows and NIWs following Xie & Vanneste (2015). In § 3, we show the impact of
NIWs on the energy evolution, the energy spectra of mean flow and NIWs and qualitatively
analyse the catalytic effect of NIWs from the perspective of the mean-flow energy flux.
In § 4, we quantitatively study the impact of NIWs on jet formation and find that NIWs
weaken jets. In § 5, we study the dependence of jet spacing on NIW strength. A modified
Rhines scale estimated using the advective upscale mean energy flux alone captures the jet
spacing well. This indirect impact of NIWs again shows a catalytic effect. In § 6, we find
that NIWs break jets’ spatial symmetry by introducing asymmetric jet flank and leading to
jets’ poleward migration. In studying the jet migration from the mean momentum balance,
the NIWs’ direct impact is much weaker than that of the asymmetric mean flow, which
shows the third NIW catalytic effect. Finally, in § 7, we summarize and discuss our results.

2. Coupled model of NIW–mean flow interaction on a β-plane

For simplicity and numerical efficiency and to capture the key feature of wave–mean flow
interaction, we study the interaction between a single-vertical-mode NIW and a barotropic
QG mean flow using the 2-D model derived by Xie & Vanneste (2015) on a β-plane:

∂tq + J(ψ, q) = 0, (2.1a)

∂tφ + J(ψ, φ)+ ig( y)φ − if0
2

L2φ + i
2
∇2ψφ = 0, (2.1b)

where

q = ∇2ψ + g( y)+ if0
2

J(φ∗, φ)+ f0
4

∇2|φ|2 (2.2)

is the NIW-modified quasi-geostrophic potential vorticity (QGPV). Here, ψ is the
Lagrangian mean streamfunction and the horizontal velocity of QG mean flows
is (u, v) = (−∂yψ, ∂xψ); f0 = const. is the local Coriolis frequency; and φ is the
complex wave amplitude and links to the two horizontal velocities (u0, v0) through
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u0 + iv0 = −if0φ e−if0t+imz with m the vertical wavenumber of the single-vertical-mode
NIW. The asterisk denotes the complex conjugate and J(a, b) = axby − aybx is the
Jacobian. Also, g( y) is the variation of the Coriolis parameter f in the meridional direction
such that f = f0 + g( y); therefore, the β-effect is captured by β = ∂yg. This model consists
of the equation describing the material-invariant QGPV (2.1a) and the linear equation
capturing the slow modulation of NIW amplitude (Young & Ben Jelloul 1997). In (2.1b)
we consider a modified dispersion (Asselin & Young 2019) with the operator

L2 = ∇2

f 2
0

N2 m2 − 1
4
∇2

, (2.3)

where N is the buoyancy frequency. Here, the Laplacian operator in the denominator
should be understood in the spectral space. This modified dispersion term captures
the high-order corrections of the NIW dispersion relation and improves the numerical
efficiency by bounding the frequency as the wavenumber increases.

For simplicity, we introduce a modified meridional-dependent β-effect, β( y), which
is periodic in y instead of the traditional choice of a constant, to perform numerical
simulations in a periodic domain. Practically, to extend the region with a constant β, we
prescribe

β( y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

β0
elby − e−lby

elby + e−lby , 0 ≤ y < Ly/4,

β0
elb(Ly/2−y) − e−lb(Ly/2−y)

elb(Ly/2−y) + e−lb(Ly/2−y) , Ly/4 ≤ y < 3Ly/4,

β0
elb(−Ly+y) − e−lb(−Ly+y)

elb(−Ly+y) + e−lb(−Ly+y) , 3Ly/4 ≤ y < Ly,

(2.4)

where β0 = const., lb is a constant that controls the range of the variation in β and Ly is
the domain size in the meridional direction. Our analysis uses the data obtained from the
region ≈ [1/lb, Ly/2 − 1/lb], where β is almost a constant. The other half of the domain is
only introduced for numerical simulation, and it is unphysical because β should be positive
in the northern hemisphere. We use the current periodic set-up mainly because of its
simplicity and computational efficiency. The expressions of β( y) and g( y) are illustrated
in figure 1. An alternative set-up is to consider a constant-β system in a channel, which is
widely used. For example, Abernathey, Marshall & Ferreira (2011) numerically simulated
a β-plane channel with a sponge layer at the northern boundary to study the Antarctic
Circumpolar Current.

The coupled system (2.1) conserves energy, potential enstrophy and wave action, which
reads

E =
∫ ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2
|∇ψ |2︸ ︷︷ ︸
EQG

+ 1
2

f0g( y)|φ|2︸ ︷︷ ︸
Eβ

+ f 2
0
4

|Lφ|2︸ ︷︷ ︸
ENIW

⎫⎪⎪⎪⎬⎪⎪⎪⎭ dx, (2.5a)

P =
∫

q2 dx, (2.5b)

A =
∫

|φ|2 dx. (2.5c)
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Figure 1. Illustration of (a) β( y) and (b) g( y) with Ly = 2π and lb = 10 in (2.4).

Here we decompose the total energy into three components corresponding to the mean,
β-effect and wave potential energy for convenience of later discussion.

In this paper, we focus on the statistically steady states of the NIW–mean flow coupled
system with external forcing and dissipation. Following Xie (2020), for a straightforward
quantification of energy injection rate to the mean and wave components, forcing and
dissipation are added to the mean vorticity equation instead of the QGPV equation and the
wave amplitude equation. Therefore we obtain the system

∂t∇2ψ + N (ψ, φ) = D1∇2ψ + MFk1/2
f F1, (2.6a)

∂tφ + J(ψ, φ)+ ig( y)φ − if0
2

L2φ + i
2
∇2ψφ = D2φ + RMF

m

2Nk3/2
f

F2, (2.6b)

where the artificial dissipation operators take the form of D1 = −α1 + ν1∇6 and D2 =
α2∇−2 + ν2∇6 with constants αi and νi (i = 1, 2). The external forcings Fi (i = 1, 2),
which are white-noise in time, are isotropic in space and centre around wavenumber |k| =
kf , where k = (k, l) is the 2-D wavenumber vector in spectral space. Therefore,

〈Fi(x1, t1)Fi(x2, t2)〉 = C0J0(kf |x1 − x2|)δ(t1 − t2), (2.7)

where 〈·〉 is an ensemble average, C0 is the covariance and J0 is the zeroth-order
Bessel function. Here MF and R control the external forcing magnitude and k1/2

f and

m/(Nk3/2
f ) are the normalized coefficients. Combining (2.5a) and (2.6), we estimate

the energy injection rates of QG mean flow and NIW as εQG ∼ M2
F/2 and εNIW ∼

R2M2
Ff 2

0 m2/(16f 2
0 m2 + 4N2k2

f ). Therefore, we define the ratio between energy injection
rates of NIW and mean flow as

λ = R2m2f 2
0

8m2f 2
0 + 2N2k2

f
. (2.8)

Here, the denominator is consistent with the modification by Asselin & Young (2019), and
when this modification is absent, λ = R2/8.
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Figure 2. A snapshot of QG mean flow vorticity fields in the statistically steady state of the NIW-free
simulation with εQG = 8 × 10−5.

We decompose the nonlinear term N (ψ, φ) in (2.6a) into different components for
convenience in later discussions as

N (ψ, φ) = Nβ(ψ)+ Nm(ψ)+ NW(ψ, φ), (2.9)

where

Nβ(ψ) = gyψx + f0
2

gy(φ
∗
xφ + φ∗φx), (2.10a)

Nm(ψ) = J(ψ,∇2ψ), (2.10b)

NW(ψ, φ) = −f 2
0

4
(J(φ∗, L2φ)− J(L2φ∗, φ))− if 2

0
8

∇2(φL2φ∗ − φ∗L2φ)

− f0
2

∇ · J(∇ψ, |φ|2). (2.10c)

3. Basic properties of the NIW–QG coupled system on a β-plane

We run the numerical simulations using a Fourier pseudospectral method with 2/3
dealiasing in space and a resolution of 512 × 512 in a domain size of 2π × 2π. We apply
a fourth-order explicit Runge–Kutta temporal scheme (cf. Cox & Matthews 2002) where
the linear terms are solved by an integrating factor method, and the nonlinear terms are
explicitly approximated. We choose β0 = 80 and f0m/N = 32 in all simulations. The QG
mean flows and NIWs are driven by external forcing at a forcing wavenumber kf = 32. We
vary two parameters MF and R to create a matrix of results. Thus, the energy injection rates
are εQG = 8 × 10−5, 3.2 × 10−4, 7.2 × 10−4 with MF = 1000, 2000, 3000. Parameter R
ranges from 0 to 3.6, and the energy injection ratio of NIWs to mean flows λ varies from
0 to 1.296 by (2.8).

We first run numerical simulations without NIWs as references to study the wave effect.
Figure 2 shows a snapshot of the vorticity field ∇2ψ of a NIW-free simulation with εQG =
8 × 10−5 at a statistically steady state when jets form. Then we use this vorticity field as
the initial condition for other NIW-involved simulations with non-zero λ.

In this section, we focus on qualitative descriptions of characteristic features and leave
quantitative studies to §§ 4–6.
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Figure 3. Evolutions of (a) QG mean, (b) β-related, (c) NIW and (d) total energy (cf. (2.5a)) in simulations
with λ = 0.016, 0.144, 0.4, 0.784, 1.296. In (b), for clarity we vertically shift the curves following Eβ(λ =
0.144)+ 0.02, Eβ(λ = 0.4)+ 0.05, Eβ(λ = 0.784)+ 0.1, Eβ(λ = 1.296)+ 0.15. The legend in (a) applies to
all four panels.

3.1. Energy evolution and statistically steady states
In this subsection, we run the coupled system into statistically steady states. We display
NIWs’ impact on the total, wave and mean energy evolution. Figure 3(a) shows the
evolution of mean energy with different energy injection ratios λ. When NIWs are injected,
the mean energy EQG decreases and gradually reaches a statistically steady state. With a
stronger NIW energy injection rate, the steady value of EQG becomes weaker, and the
relaxation time to reach the statistically steady states increases and then decreases. This
non-monotonic dependence implies the existence of a phase transition associated with
the disappearance of the jet (cf. figure 4d). In figure 3(b), the β-related NIW energy, Eβ ,
oscillates around zero and the amplitude of oscillation increases as λ increases. Compared
with EQG, Eβ is relatively small. Figure 3(c) shows that the evolution of wave potential
energy ENIW has three stages. First, there is a sudden wave energy adjustment at a short
time interval, then the wave energy increases in a comparable time scale to the mean
energy changes and, finally, a statistically steady state is reached. Since Eβ and ENIW are
small compared with EQG, figure 3(d) shows that the total energy E is dominated by EQG
but with stronger fluctuations.

Snapshots of statistically steady QG mean flow vorticity field ∇2ψ are presented
in figure 4. When the energy injection rate of NIWs is weak (figure 4a with λ =
0.144), zonal jets remain similar in magnitude and shape compared with those in the
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Figure 4. Snapshots of QG mean vorticity fields, ∇2ψ , at statistically steady states with (a) λ = 0.144,
(b) λ = 0.4, (c) λ = 0.784 and (d) λ = 1.296. The mean energy injection rate is εQG = 8 × 10−5.

NIW-free case. As the energy injection ratio of NIW to mean flows increases (λ = 0.4 and
0.784 shown in figures 4b and 4c), jets weaken and the jet spacing increases. When the
energy injection ratio is large enough (figure 4d with λ = 1.296), jets disappear. Compared
with the vorticity field without NIWs in figure 2, zonal jets are weakened by NIWs and
their geometries are modified, which we study quantitatively in §§ 4–6.

3.2. Energy spectra
To present the impact of NIWs on the spectrum of QG mean flow and, in particular, the
jets, based on the 2-D energy spectrum

E(k) = 1
2
|k|2ψ̂(k)ψ̂∗(k), (3.1)

where the hat ·̂ denotes the Fourier transform, we define the one-dimensional spectra of
the total mean energy, the jet energy and the perturbation energy as

ET(K) =
K+1/2∑

|k|=K−1/2

E(k), (3.2a)

EZ(K) =
K+1/2∑

|k|=K−1/2

E(0, l), (3.2b)

ER(K) =
K+1/2∑

|k|=K−1/2

E(k /= 0, l). (3.2c)

962 A33-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.310


L.-F. Zhang and J.-H. Xie

100 101 102
102

104

106
E(K )

108

K

EZ

K–5/3

K–5K–4

ER
ET

Figure 5. The QG mean energy spectrum without NIWs at a statistically steady state with εQG = 8 × 10−5.

Here, ET(K) = EZ(K)+ ER(K). In the classic 2-D β-plane turbulence, the jet and
perturbation energy spectra follow the scalings EZ(K) = CZβ

2K−5 and ER(K) =
CKε

2/3K−5/3, where ε is the viscous dissipation rate (Galperin, Sukoriansky &
Dikovskaya 2010). The 2-D potential energy spectrum of NIWs is defined as

EW(K) = f 2
0
4

K+1/2∑
|k|=K−1/2

L̂φ(k)L̂φ∗
(k). (3.3)

First, we show the spectra of the statistically steady state in the NIW-free simulation in
figure 5. At scales between the spectral peak and the forcing wavenumber, the mean and
perturbation energy spectra follow K−5/3 and K−4 scalings, respectively. This K−4 scaling
was derived by Danilov & Gurarie (2004) with consideration of a sawtooth profile of zonal
mean vorticity, making it different from the classic K−5 scaling proposed by Rhines (1975).
To show the wave effect, we present energy spectra with different energy injection ratios
λ in figure 6. From figure 6(a), we find that as λ increases from 0 to 1.024, the peaks of
EZ(K) move to smaller wavenumber; in the intermediate scale between spectral peak and
the energy injection scale, the jet energy drops but keeps the K−4 scaling. However, when
λ = 1.296, jets disappear and EZ(K) deviates from the classic K−5 scaling. Figure 6(b)
shows that as the NIW energy injection rate gradually becomes comparable with the mean
energy injection rate, the perturbation energy drops at the large scale and increases at
the small scale; the peak of ER(K) also moves to larger wavenumbers; and the range of
the perturbation energy spectrum with the K−5/3 scaling shortens and finally disappears.
When jets completely disappear with λ = 1.296, for wavenumbers smaller than kf , ER(K)
follows a K scaling. The combination of jet and perturbation energy spectra, EZ(K) and
ER(K), respectively, explains the variation of total energy spectrum scaling from K−4 to
K−5/3 and finally to K under the influence of increasing energy injection ratio λ, which is
shown in figure 6(c). However, when the NIW energy injection rate is large enough, such as
λ = 1.296, figures 6(a)–6(c) show that at scales between the spectral peak and the forcing
wavenumber, the jet and perturbation spectra differ from the scalings in the theories
without wave impact. As to the potential energy spectrum of NIWs in figure 6(d), as the
energy injection ratio λ increases, for wavenumbers smaller than the forcing wavenumber,
it reaches its largest value when λ = 1.024, corresponding to jet disappearance. If we
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Figure 6. The NIW-modified QG mean and NIW energy spectra at statistically steady states with λ ranging
from 0 to 1.296: (a) EZ(K), (b) ER(K), (c) ET (K) and (d) EW (K). The legend in (c) applies to all four
panels. The black dash-dotted lines are power functions for reference. The black arrows show the direction of
increasing λ.

treat the jet strength as an order parameter and the NIW as a perturbation, the increase in
perturbation strength implies the existence of a phase transition, which we study in § 4.

3.3. Energy flux across scales
Since the energy flux of the QG mean flows across scales relates to jet formation (Rhines
1975; Vallis & Maltrud 1993; Chekhlov et al. 1996; Sukoriansky, Dikovskaya & Galperin
2007), this subsection focuses on the QG mean energy flux influenced by NIWs to explain
jet weakening and annihilation observed in vorticity fields and mean energy spectra. The
spectral energy flux of QG mean flow is defined as

FQG(K) =
K∑

|k|=0

−|k|2
2

(ψ̂N̂ ∗ + c.c.), (3.4)

and the positive and negative values of FQG correspond to downscale and upscale fluxes,
respectively.

To show the influence of mean flow and NIWs separately, we decompose the energy
flux of mean flow as follows:

FQG = Fm
QG + FNIW

QG , with (3.5a)
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Figure 7. The QG mean energy flux without NIWs at a statistically steady state with kf = 32 and εQG = 8 ×
10−5. The negative and positive values denote the upscale and downscale energy fluxes, respectively.

Fm
QG =

K∑
|k|=0

1
2
(ψ̂N̂ ∗

m + c.c.), (3.5b)

FNIW
QG =

K∑
|k|=0

1
2
(ψ̂N̂ ∗

NIW + c.c.), (3.5c)

where the superscripts ‘m’ and ‘NIW’ denote the effects of mean flow and NIWs,
respectively.

When NIWs are absent, the coupled system (2.1) is identical to the 2-D turbulence
system on a β-plane; therefore, the mean energy should transfer upscale with a constant
value, which is shown in figure 7. Here, the finite hyperviscosity brings about a weak
downscale flux.

In figure 8 we present the energy flux of mean flow with different energy injection rates
of NIWs. The NIWs induce bidirectional flux of mean-flow energy, and as λ increases,
the portion of downscale flux increases, as shown in figures 8(a)–8(c). Therein, both the
energy flux induced by mean flow, Fm

QG, and the energy flux induced by NIWs, FNIW
QG ,

increase and the cancellation of these two parts leaves a bidirectional mean-flow energy
flux. When λ is large enough (cf. figure 8d), all the mean energy transfers downscale.
The presence of mean-flow inertial ranges with constant energy fluxes above and below
the forcing wavenumber implies negligible conversion between QG mean flow and NIWs,
which is consistent with the catalytic effect of NIWs on the mean energy flux (Xie 2020;
Barkan et al. 2021).

4. Dependence of jet magnitude on the strength of NIWs

In this section, we study the dependence of jet strength on the strength of NIWs, which
λ parametrizes. We define jet energy as Ejet = ∫

ū2/2 dx, where ū is the zonal-averaged
zonal QG mean velocity. Figure 9(a) shows the dependence of Ejet/EQG on λ at statistically
steady states with different mean energy injection rates. When the mean energy injection
rate, εQG, is fixed, there exists a critical value λc: when 0 < λ < λc, Ejet/EQG is almost
a constant, and when λ goes across the critical points λc, it abruptly drops to a value
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Figure 8. Energy flux of QG mean flow in NIW-containing cases of (a) λ = 0.144, (b) λ = 0.4,
(c) λ = 0.784 and (c) λ = 1.296 with kf = 32 and εQG = 8 × 10−5.

close to 0. Therefore, as the NIW energy injection rate increases from 0, the QG–NIW
coupled system experiences a first-order phase transition, across which jets suddenly
disappear.

Next, we explore the dependence of QG mean energy injection rate εQG on critical
values λc. Since near the critical point the jet magnitude is small, in the mean
vorticity equation (2.6a), by ignoring the mean-flow impact, we obtain the quasilinear
balance between nonlinear wave term in (2.10c) and the external forcing, i.e. NW ∼
MFk1/2

f F1, leading to |φ|2 ∼ MFk−1/2
f f −2

0 . The wave magnitude can be estimated by

|φ| ∼ RMFmN−1f −1
0 k−3/2

f from the wave equation (2.6b). Combining them we obtain

R2 ∼ k3/2
f N2M−1

F m−2. Since λ ∼ R2 and εQG ∼ M2
F, the critical value scales as λc ∼

ε
−1/2
QG N2kf f −1/2

0 m−2. Therefore in figure 9(b), we introduce a normalized parameter λ̃ =
λ(εQG/ε

0
QG)

1/2 with ε0
QG = 8 × 10−5 to collapse data with different mean energy injection

rates. Hence, we find that the quasilinear dynamics controls the phase transition of the
NIW–QG coupled system.

Figure 10 shows the λ dependence of the ratio between the upscale mean energy flux
and mean energy injection rate, εup/εQG. Here, εup = maxK<kf |FQG| is the upscale mean
energy flux. In figure 10(a), we present the results with three mean energy injection rates.
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Figure 10. Ratio between the upscale energy flux and the total mean energy injection rate with different
mean energy injection rates. In (b), the horizontal coordinate is normalized as λ̃ = λ(εQG/ε
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The upscale energy flux ratio gradually decreases as λ increases and finally shows a
second-order phase transition across λc, which contrasts with the behaviour of Ejet/EQG
shown in figure 9, but these two quantities share the same critical values. This behaviour
is similar to that on an f -plane (Xie 2020). Figure 10(b) shows that after normalizing λ
by ε−1/2

QG , curves with different mean energy injection rates collapse. This implies that
the above-mentioned quasilinear argument controls the phase transition of the NIW–QG
coupled system. The concurrence of the disappearance of jet and upscale energy flux
implies that we can understand jet annihilation from the perspective of NIW-modified
mean energy flux. The injection of NIWs induced downscale flux of mean energy (Xie
2020); therefore, the upscale energy flux decreases and the jets weaken. Thus, from the
same perspective, other properties, such as jet spacing, should also be controlled by
upscale energy flux, which we study in detail in § 5.
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5. Jet spacing

Another important character of jets is their spacing, Ljet. We may define Ljet from the jet
energy spectrum:

Ljet =

∫
EZ(k) dk∫
kEZ(k) dk

. (5.1)

Proposed by Rhines (1975), jet spacing can be captured by a characteristic scale LRh =√
U/β, which is named the Rhines scale. By choosing the r.m.s. of jet velocity, Ujet =√
2Ejet, as the characteristic velocity, the Rhines scale can be expressed as

LRh = (2Ejet)
1/4

β1/2 . (5.2)

In 2-D β-plane turbulence, energy transfers upscale, and with further frictional damping,
the kinetic energy can be obtained from the balance between energy injection and
dissipation as E = ε/(2α) in a statistically steady state. In our system, the QG mean
energy transfers bidirectionally. Since the jet is a large-scale structure, one may propose
that the upscale energy flux εup is important for jets (cf. Scott & Dritschel 2012). Therefore,
following the above-mentioned classic 2-D turbulence argument, we obtain a characteristic
scale:

Lα = ε
1/4
up

α1/4β1/2 . (5.3)

We further consider that in the NIW–QG coupled system, QG mean energy flux FQG can
be decomposed into the mean part Fm

QG and the NIW-related flux FNIW
QG (cf. (3.5)). Since

a jet is a zonal-mean quantity, we conjecture that only Fm
QG is relevant to the jet spacing.

Therefore, we propose a characteristic scale estimated by the upscale energy flux induced
by mean flow only, εadv = maxK<kf |Fm

QG|:

Ladv = ε
1/4
adv

α1/4β1/2 . (5.4)

When no NIWs are injected into the coupled system (i.e. λ = 0), Ladv equals Lα since
εup = εadv .

We show the normalized jet spacing and three normalized characteristic scales in
figure 11(a) with λ ranging from 0 to λc. As λ increases, jet spacing increases. However,
both LRh and Lα decrease, so they cannot describe jet spacing. Interestingly, even though
the presence of NIWs reduces the upscale flux of the mean energy, the jet spacing increases
with λ increasing. In contrast, Ladv increases as λ increases, which can be seen from the
increase of Fm

QG (cf. figure 6). Figure 11(b) shows that the jet spacing is well described by
Ladv , which implies that the upscale energy flux induced by mean advection controls jet
formation. Thus, by measuring the mean quantities only, we can capture the jet spacing
using the classic Rhines scale as if the NIW is absent, which again points out the catalytic
role of NIWs.

6. Near-inertial-wave-induced symmetry breaking

The NIWs break the temporal symmetry by rotating in the direction opposite to that of the
background rotation. This temporal symmetry breaking leads to spatial asymmetry, which
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Figure 11. (a) Jet spacings and different definitions of Rhines scale with kf = 32, εQG = 8 × 10−5 and varying
λ. The tilde denotes the scale normalized by NIW-free jet spacing (λ = 0). (b) Comparison between the
numerically obtained jet spacing L̃jet and the mean-advection-related Rhines scale L̃adv with different λ. In
these simulations εQG = 8 × 10−5.

we study in this section from the perspectives of mean-velocity profile and jet meridional
migration.

6.1. Mean-velocity profile
In this subsection, we focus on the mean-velocity profile of zonal jets. We show the jet
velocity profile ū obtained by taking a zonal average of zonal velocity u in figure 12(a).
Similar to the classic β-plane jet profile, the zonal velocity has an east–west asymmetry:
the east jets have cusps while the west jets are smooth. In figure 12(a), the presence
of NIWs introduces an additional asymmetry of the jet with steeper left flanks (red
rectangles) than the right flanks (blue rectangles). This asymmetry manifests itself in the
asymmetric profile of zonal-mean vorticity Q̄ = −ūy with a greater magnitude of positive
vorticity, which is shown in figure 12(b). Figure 12(c) shows that the zonal-mean wave
action |φ̄|2 concentrates around regions with negative vorticity, Q̄ < 0, which is consistent
with NIW concentration on anticyclones (Kunze 1985; Danioux et al. 2015). Since NIWs
concentrate on the right flank with negative vorticity, the intensity of NIW–QG interaction
there should be more potent than that at the left flank with positive vorticity. The NIW–QG
interaction induces a downscale mean-energy flux and increases dissipation at small scales
(cf. § 3). Therefore, the mean shear on the left flank is stronger than that on the right flank.

To show the impact of NIW strength on mean-velocity profiles, in figure 13 we compare
jet profiles with different λ by moving the profiles to the same peak location. It shows
that the asymmetry of jet flanks enhances as λ increases. Since jets are annihilated when
λ > λc, we only study the jet profile in the parameter regime with λ < λc.

To quantify the jet flank asymmetry, we study the skewness of the zonal-mean vorticity

Q̄. We define Q3 = 〈Q3〉 and Q2 = 〈Q2〉, and use the skewness Sk = Q3/Q
3/2
2 to quantify

the asymmetry. We present Sk with different εQG and λ in figure 14(a). The skewness
of the mean vorticity first increases with λ due to NIWs concentrating on the negative
vorticity, and then it suddenly drops as λ reaches λc because jets are annihilated. Similar to
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Figure 12. Zonal-mean profiles of (a) zonal velocity, (b) vorticity and (c) wave action with εQG = 8 ×
10−5, λ = 0.4 at t = 2000. The blue and red rectangles denote the regions with positive and negative vorticity,
respectively.
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Figure 13. Jet velocity profiles with εQG = 8 × 10−5 and changing λ. Here, ũ denotes the moved profiles

sharing the same peak location for comparison; ỹ denotes the moved meridional coordinate.

figures 9(b) and 10(b), figure 14(b) shows that the same normalization λ̃ = λ(εQG/ε
0
QG)

1/2

also works for Sk, which again reveals the significance of quasilinear dynamics (cf. § 4).
Taken together, these results suggest that the mean flow on the right flank is reduced

more than that on the left flank due to NIWs concentrating on the right flanks, where
anticyclones reside and NIW–mean interaction grows. Therefore, NIWs catalyse the
asymmetry of jet flanks. Besides, in the current parameter regime, we find that the Stokes
drift (Bühler 2009) is negligible compared with the Lagrangian mean velocity. Details are
presented in Appendix A.
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Figure 15. Hovmöller diagram of the zonal-mean zonal velocity with εQG = 8 × 10−5 and λ = 0.4.

6.2. Jet migration
In this subsection, we focus on the impact of NIWs on jet migration. We show the
Hovmöller diagram of the zonal-mean zonal velocity, ū, with λ = 0.4 and εQG = 8 × 10−5

in figure 15, where jets migrate with a constant speed in the meridional direction. From
this Hovmöller diagram, we can define a jet migration speed V = δy/δt, where δy is the
latitudinal shift and δt is the elapsed time.

Figure 16 shows the dependence of the measured jet migration speed on the energy
injection ratio. The zonal jets without NIWs stay static, and as the NIW energy injection
rate increases, jet meridional migration speed gradually increases. To find the mechanism
behind zonal jet migration, we start from the zonal-mean momentum equation derived
from (2.6a):

∂tū + ∂yu′v′ − Λ̄ = −α1ū + ν1
∂6ū
∂y6 , (6.1)
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Figure 16. Dependence of jet migration speed V on λ with εQG = 8 × 10−5.

where (u′, v′) is the fluctuation with respect to the zonal-mean velocity (cf. Chemke &
Kaspi 2015b). Parameter Λ is derived from the wave-related term in (2.10c) with Λ̂ =
−iN̂NIW/l in Fourier space. Using Taylor’s identity

− ∂y(u′v′) = v′Q′, (6.2)

equation (6.1) becomes

∂tū = v′Q′ + Λ̄− α1ū + ν1
∂6ū
∂y6 . (6.3)

Here, Q′ = Q − Q̄. Assuming that jets migrate in the meridional direction with a constant
speed, we consider a frame of reference moving with jets by introducing a coordinate
ϕ = y − V∗t with V∗ the jet migration speed. Thus (6.3) becomes

− V∗ dū
dϕ

= v′Q′ + Λ̄− α1ū + ν1
∂6ū
∂y6︸ ︷︷ ︸

T (ϕ)

, (6.4)

where we introduce the momentum flux convergence T for convenience.
In figure 17, we show the NIW-induced asymmetric jet profile (cf. § 6.1) and its

corresponding momentum flux convergence T . We define the width of the jet flank as
the meridional range with ū > 0, i.e. ϕ+

0 − ϕ−
0 , and ϕjet is the latitude of the maximum

zonal-mean zonal velocity ūmax. Integrating (6.4) from ϕ−
0 to ϕjet and ϕjet to ϕ+

0 and then
subtracting the resultant equations, the jet migration speed V∗ is expressed as

V∗ = 1
2ūmax

(∫ ϕ+
0

ϕjet

T dϕ −
∫ ϕjet

ϕ−
0

T dϕ

)
. (6.5)

To find the dominant effect on jet migration, we introduce the following decomposition:∫ ϕ+
0

ϕjet

T dϕ −
∫ ϕjet

ϕ−
0

T dϕ = Iadv + INIW + Iα + Iν, (6.6)

962 A33-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.310


L.-F. Zhang and J.-H. Xie

–0.5

ϕ0
–

ϕjet

ϕ0
+

0 0.5
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Figure 17. Profiles of the normalized zonal-mean velocity ū/ūmax and the normalized momentum flux
convergence T /Tmax with εQG = 8 × 10−5 and λ = 0.4.

where

Iadv =
∫ ϕ+

0

ϕjet

v′Q′ dϕ −
∫ ϕjet

ϕ−
0

v′Q′ dϕ, (6.7a)

INIW =
∫ ϕ+

0

ϕjet

Λ̄ dϕ −
∫ ϕjet

ϕ−
0

Λ̄ dϕ, (6.7b)

Iα =
∫ ϕ+

0

ϕjet

−α1ū dϕ +
∫ ϕjet

ϕ−
0

α1ū dϕ, (6.7c)

Iν =
∫ ϕ+

0

ϕjet

ν1
∂6ū
∂ϕ6 dϕ −

∫ ϕjet

ϕ−
0

ν1
∂6ū
∂ϕ6 dϕ. (6.7d)

Figure 18(a) shows the λ dependence of these terms. We observe that the total
net momentum flux, Itotal = Iadv + INIW + Iα + Iν , increases with λ. Therein, the
dissipation-related net momentum fluxes, Iα and Iν , are negligible. The advection-related
net momentum flux, Iadv , is dominant and increases with λ, while the wave-related net
momentum flux, INIW , has an opposite sign to Itotal and therefore prohibits jet migration.
Figure 18(b) shows that when λ ranges from 0 to λc, the jet migration speeds calculated
from (6.5) capture the migration speeds obtained from numerical simulations. The impact
of NIWs on jet migration again shows its catalytic effect – the direct effect of NIWs,
INIW , restrains jet migration, but NIW-modified mean flow dominates and drives the
migration.

The direction of jet migration can be understood as a consequence of NIW concentration
in anticyclones (Danioux et al. 2015). Since NIWs accumulate in anticyclones, more
energy is transferred downscale by negative vorticity and finally dissipates (cf. § 3),
so the negative vorticity of the mean flow is weaker than the positive vorticity. Then
the vortex pairs propagate poleward. This phenomenon was observed in simulations of
both primitive equations (Hernandez-Duenas, Smith & Stechmann 2014) and reduced
model (Xie & Vanneste 2015). Similarly, figure 19 shows that both jets and waves
migrate poleward and NIWs concentrate in regions with negative vorticity, so jets migrate
poleward.

We need to note that the coupled model was initially derived in the ocean context.
But most jets in ocean models are found to propagate equatorward (Chan et al. 2007;
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Figure 18. (a) The dependences of the net momentum flux I on λ. (b) Numerically obtained jet migration
speed V against the migration speed V∗ calculated from momentum balance (6.5). Here, εQG = 8 × 10−5.

t
500 1000 1500 2000 2500

2.5

0.022

0.021

0.020

0.019

0.018

0.017

0.016

0.015

2.0

1.5

1.0

0.5

|φ̄|(b)

2.5

2.0

1.5

1.0

0.5

500 1000

y

y

1500 2000 2500

5

0

–5

Q̄(a)

Figure 19. Hovmöller diagram of the zonal-mean (a) vorticity and (b) NIW amplitude with εQG = 8 × 10−5

and λ = 0.4.

Ashkenazy & Tziperman 2016). Nevertheless, poleward migration was also observed over
a short range and less systematically (Chan et al. 2007). Thus, the impact of NIWs cannot
fully explain the migration of oceanic jets.
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7. Summary and discussion

Using a 2-D single-vertical-mode NIW–QG coupled model on a β-plane (2.1), we study
the impact of NIWs on zonal jets in forced-dissipative statistically steady states. We
explore the parameter regime with different mean energy injection rates and the ratio
between NIW and QG mean energy injection rate, which λ parametrizes.

The presence of NIWs leads to bidirectional mean-flow energy transfer, which shows
a second-order phase transition with a critical value λc. When 0 < λ < λc, the energy
of balanced flow transfers to both large and small scales. As λ increases, the portion of
upscale transferring energy decreases, while the proportion of zonal-jet energy in the
energy of the balanced flow remains almost unchanged. When λ > λc, the QG inverse
cascade is eliminated and zonal jets cannot form. Since there is a negligible energy
exchange between mean flows and NIWs, the existence of the catalytic wave induction
mechanism initially proposed on an f -plane (Xie 2020) is justified on a β-plane. This
mechanism differs from the spontaneous and stimulated loss of balance (Vanneste 2013;
Xie & Vanneste 2015), where the mean energy converts to that of NIWs and finally
dissipates.

Based on the picture that the β-effect arrests the upscale energy flux, previous studies
(Rhines 1975; Williams 1978) showed that the Rhines scale could capture the zonal
jet spacing. Nevertheless, we find that the Rhines scale calculated from the r.m.s.
velocity (Rhines 1975) and the upscale energy transfer rate εup (Vallis 2006) cannot
sufficiently describe jet spacing when NIWs are present. Instead, the Rhines scale
calculated from the upscale-mean-energy transfer rate induced by the mean advection,
Ladv = (2εadv)

1/4α−1/4β−1/2, captures the jet spacing before jet total annihilation by
NIWs.

The concentration of NIWs in anticyclones induces symmetry breaking of zonal jets.
The NIWs lead to an asymmetry of the left and right flanks about the jet profile
cusp, where the right flank’s slope is flatter than that of the left flank. Moreover, this
asymmetry enhances as the energy injection ratio λ increases. The concentration of NIWs
in anticyclones or regions with negative vorticity (Danioux et al. 2015) can explain the
mechanism behind such asymmetry. Therefore at the right flank of a jet cusp, stronger
NIW–mean flow interaction leads to stronger downscale mean energy flux induced by
waves, which enhances the mean flow dissipation, so the right flank is flatter than the left
flank. The NIW-induced symmetry breaking also manifests in jets’ poleward migration.
The interaction between NIWs and mean flows also influences the jet migration speed in
the meridional direction. Based on an expression of migration speed calculated from the
momentum equation in a frame of reference moving with jets (Chemke & Kaspi 2015b),
we find that the distribution of the momentum flux convergence to the cusps in the velocity
profile is asymmetric, which leads to jet migration. In this expression, the mean-advection
net momentum flux dominates, while the NIW-related term impedes jet migration but
is of secondary importance. Furthermore, we numerically find that the migration speed
increases as the energy injection of NIWs increases. Even though the asymmetric jet
profile and meridional migration coexist, we do not know if this coexistence is inevitable.
Such coexistence is also observed in jet migration without wave impact (cf. Cope 2020),
so there is more to be understood on jet asymmetry.

Considering that the strong vortex regions are close to the peak of the cusp of eastward
jets, this poleward migration mimics the left turning of vortex dipoles (Hernandez-Duenas
et al. 2014; Xie & Vanneste 2015). Even though the reduced model is derived in an oceanic
context (Xie & Vanneste 2015), the jet migration direction coincides with the results of
observations (Riehl et al. 1950; Dickey et al. 1992) and numerical simulations (James &
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Figure 20. Illustration of the jet–NIW interaction.

Dodd 1996; Chemke & Kaspi 2015b) in the atmosphere. However, in the ocean, poleward
migration of zonal flow is observed less frequently (Chan et al. 2007), implying that the
impact of NIWs on zonal jets may not be a dominant effect that determines the direction
of oceanic jet migration.

The catalytic wave impact on zonal jets manifests itself from three aspects. (i) In the
mean-flow bidirectional energy transfer across scales, NIWs impact the relative strength
of the downscale flux without energy conversion between NIW and mean flow. (ii) The
jet spacing is described by the Rhines scale obtained from the upscale mean energy flux
induced by mean flow alone as if there is no NIW. (iii) The jet meridional migration
speed is dominated by the asymmetry of mean momentum flux induced by mean flow,
but in our set-up, this asymmetry is induced by NIWs. We summarize the effects of NIW
concentration on the right flank, the asymmetry of the jet and the meridional migration in
figure 20. However, we do not understand why these wave effects are catalytic, which is
an interesting future direction.

We close this paper by pointing out several limitations of the present study. To solve the
coupled NIW–QG model with the pseudospectral method, we prescribe a periodic β( y)
(cf. 2.4). Therefore, around one-half of the meridional extension approximates a β-plane,
while other regions are only introduced to construct a periodic domain for the spectral
method. To avoid the Gibbs effect, the β-effect is artificially prescribed with a narrow but
finite range of non-constant value, which leads to unphysical effects, but we assume that
this effect is only confined in this narrow region, which is the drawback of this set-up.
In addition, the NIW–QG model in this paper is asymptotically derived in the regime
of small Rossby and small Burger numbers (cf. Xie & Vanneste 2015), which limits the
validity of the current results; therefore, it would be interesting to check if our results
persist in primitive equations in future work. Besides, we applied a simple turbulence
phenomenology based on energy flux to explain jet formation, but we did not distinguish
the local and non-local effects in spectral space. So in future work, we plan to study the
impact of waves on jets by applying a quasilinear approximation to the balanced motion
(cf. Marston & Tobias 2023).
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of China (NSFC) under grant nos. 92052102 and 12272006 and Joint Laboratory of Marine Hydrodynamics
and Ocean Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao) under grant
no. 2022QNLM010201.

Declaration of interests. The authors report no conflict of interest.

962 A33-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

31
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.310


L.-F. Zhang and J.-H. Xie

–0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

y
0.6

360 × ūS0.8
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Appendix A. Stokes drift

The vertical plane-wave displacement and velocity are expressed by the complex
amplitude φ as

ξ + iη = φ e−if0t+imz, ζ = i
m
φs e−if0t+imz + c.c. (A1a,b)

and

u0 + iv0 = −if0φ e−if0t+imz, w0 = f0
m
φs e−if0t+imz + c.c., (A2a,b)

where s = x + iy, ∂s = (∂x − i∂y)/2 and ‘c.c.’ denotes the complex conjugate. The
Lagrangian mean velocity differs from the Eulerian mean velocity by a Stokes drift (Bühler
2009), which is expressed as

ūS = ξ · ∇u0. (A3)

To check the difference between the Lagrangian and Eulerian mean velocity, we calculate
the Stokes drift by substituting (A1a,b) and (A2a,b) into (A3):

uS =
(

− f0
2

∇⊥|φ|2, f0
4m
(φ∗Δφ + c.c.)+ f0

2m
[|φy|2 + |φx|2 + i(φxφ

∗
y − c.c.)]

)
. (A4)

Here, wave action acts as the streamfunction of the horizontal components of Stokes drift
(Rocha et al. 2018). Since NIWs concentrate in regions with negative vorticity (Danioux
et al. 2015), the perpendicular gradient of wave action is large at the peak of the mean
velocity profile. Therefore, Stokes drift peaks around the maximum Lagrangian mean
velocity. In figure 21, the Stokes drift is much weaker than the Lagrangian mean flow,
so in the main text we do not pay special attention to the Eulerian mean velocity.
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