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Abstract. Like our Moon, the large icy satellites of Jupiter are thought to be in a Cassini State,
an equilibrium rotation state characterized by a synchronous rotation rate and a precession rate
of the rotation axis equal to that of the normal to the orbit. In these equilibrium states (up
to four Cassini States are possible for a solid and rigid satellite), the spin axis of the satellite,
the normal to its orbit and the normal to the inertial plane remain coplanar with an obliquity
that remains theoretically constant. However, as the gravitational torque exerted on the satellite
shows small periodic variations, the orientation of the rotation axis will also vary with time and
nutations in obliquity will appear.

Here we present a dynamical model for the study of the Cassini States. This model includes
the coupling between the polar motion and the spin axis precession/nutation which is neglected
in the classical studies. We study the influence of the triaxiality of Ganymede on its four possible
Cassini States, use a Toy model of the Moon to illustrate the nutations in obliquity obtained
with the dynamical model, and investigate the influence of the presence of a subsurface ocean
on the Cassini State I of Europa.
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1. Cassini States - Definition

The large satellites of our Solar System, like our Moon or the Galilean satellites, are in
synchronous rotation, with a period of rotation equal to their period of revolution. This
synchronous rotation is often referred to as a Cassini state in reference to Cassini (1693)
who described this state of equilibrium for the Moon at the end of the XVIIth century.
In this rotation state, the precession rates of both the orbital and equatorial planes are
assumed to be constant and equal. Moreover, the spin axis of the Moon, the normal to
its orbit and the normal to its Laplace plane are assumed to be coplanar, with a constant
obliquity ε (defined as the angle between the normal to the orbit and the spin axis).
Due to the precession of the orbit, the orbit normal deviates from the spin axis and the
obliquity therefore tends to an equilibrium value for which the torque and the satellite
response balances each other. Up to four Cassini states are possible for a biaxial body
(Peale 1969).

1.1. Biaxial case

By assuming the obliquity to be constant over time, the different Cassini states of a
solid and rigid biaxial satellite can be obtained from the following classical equation (see
e.g. Colombo (1966); Ward and Hamilton (2004))
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Figure 1. Cassini States of a biaxial (blue) and triaxial (green) Ganymede for different values

of α/Ω̇ ranging from −8 to 0.5. For the actual value of α/Ω̇, indicated by the vertical black

lines, four Cassini States are possible. If Ganymede were to have a ratio α/Ω̇ similar to that of
the Moon (see vertical dashed lines), only two Cassini States would be possible.

αbi sin[2(θ̃− i)] + 2Ω̇ sin θ̃= 0. (1)

In this equation, αbi =
3
2
C−A
C n is the frequency of the Free Precession, with n the mean

motion of the satellite and A and C are the mean equatorial and polar moments of inertia
of the biaxial satellite, respectively (A<C). θ̃ is the angle between the figure axis and
the normal to the inertial plane, or inertial obliquity angle, and Ω̇ the frequency of the
precession which is retrograde (Ω̇< 0) for the Galilean satellites and the Moon. In these
classical studies, the gravitational torque exerted by the central planet is averaged over
short period terms. Morevover, the polar motion is neglected so that the rotation axis is
assumed to be aligned with the figure axis. We therefore denote this obliquity by θ̃ to
make the distinction between this figure axis inertial obliquity and the spin axis inertial
obliquity θ. Obliquities measured from the orbit axis are denoted similarly ε̃= (θ̃− i)
and ε= (θ− i), with i the constant orbital inclination with respect to the Laplace plane.

For satellites like the Galilean moons, with a slow orbital precession in comparison
with the free precession (i.e. |Ω̇| � α), Eq. (1) possesses four solutions characterized by
an obliquity close to 0 (Cassini State I, CSI), −π

2 (CSII), π (CSIII), and π
2 (CSIV), see

Fig. 1. For a satellite characterized by a short orbital precession period (i.e. |Ω̇| � α),
however, the first term of Eq. (1) can be neglected in front of the second term and we are
then left with only two possible Cassini States (CSII and CSIII, with obliquities close to
zero and π, respectively, see Fig. 1). This is the case for our Moon that is considered to
be in Cassini State II (see e.g. Beletskii 1972; Ward 1975; Henrard and Schwanen 2004).

1.2. Triaxial case

The classical equation describing the different Cassini states of a rigid and solid traxial
satellite is (see e.g. Ward 1975)

αtri sin[2(θ̃− i)] +
3

4
n
B −A

C
sin(θ̃− i)

[
1− cos(θ̃− i)

]
+ 2Ω̇ sin θ̃= 0, (2)

where αtri =
3
2n

C−A
C is the frequency of the Free Precession of the triaxial body and

A<B <C are the principal moments of inertia of the triaxial satellite. The obliquities
obtained for Cassini States I and III are very close to the ones for a biaxial satellite.
However, for a large orbital precession period in comparison with the period of the Free
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Table 1. Figure axis obliquities θ̃ for a biaxial (Eq. 1) or triaxial (Eq. 2) Ganymede.

biaxial triaxial

θ̃Cl
I (◦) 0.238 0.213

θ̃Cl
II (◦) −76.543 −92.827

θ̃Cl
III (◦) 180.148 180.148

θ̃Cl
IV (◦) 76.908 93.196

Precession, the Cassini States II and IV present a strong deviation due to the triaxiality
of the body (deviation of 16◦ for Ganymede, see Tab. 1).

2. Our dynamical model

The classical equations (Eqs. 1-2) overlook the possibility of time variations (or nuta-
tions) in obliquity and in longitude induced by the time-varying gravitational torque
acting on the satellite. Here, we use dynamical equations with a non averaged torque
to study the behaviour of the obliquity. Our model also couples the spin axis preces-
sion/nutation in space with the smaller polar motion, which was neglected in the classical
studies. It is described by means of two equations:

(1) The Angular Momentum equation stating that the time derivative of the angular

momentum �H is equal to the applied torque �Γ (Eckhardt 1981)

d �H

dt
+ �Ω× �H = �Γ, (3)

where �Ω= n(mX(t), mY (t), 1 +mZ(t)) is the rotation vector of the satellite and

where the angular momentum �H is given by the product of the inertia tensor and
the rotation vector

�H =

⎛⎝A 0 0
0 B 0
0 0 C

⎞⎠ · �Ω. (4)

(2) The equation describing the invariance of the Laplace Pole in inertial space:

dp̂

dt
+ �Ω× p̂= 0, (5)

where p̂= (pX(t), pY (t), pZ(t)) is the unit vector along the normal to the Laplace
plane.

These equations are written in the Cartesian coordinates of the Body Frame (BF) of
the satellite and split into a system of 4 dynamical equations with 4 unknowns mX(t),
mY (t), pX(t) and pY (t) (see also Baland et al. (2019)):

(C −B)n2mY (t) +Anm′
X(t) = ΓX(t) (6a)

(A−C)n2mX(t) +Bnm′
Y (t) = ΓY (t) (6b)

−npY (t) + nmY (t)pZ(t) + p′X(t) = 0 (6c)

npX(t)− nmX(t)pZ(t) + p′Y (t) = 0. (6d)

Note that a fifth variable (pZ(t)) appears in these equations. In Cassini State I (resp.
CSIII), the obliquity is close to zero (resp. π) so that the normal to the Laplace plane can
be approximated by p̂≈ (pX(t), pY (t), 1) (resp. p̂≈ (pX(t), pY (t),−1)). In the following,
we analytically solve the system of equations (6a-6d) in the case of the Moon and obtain
the time-varying equatorial components of the polar motion (mX(t), mY (t)) and of the
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Figure 2. Left panel: CSI inertial obliquities θI(t) and θ̃I(t) as a function of time for the Moon
(solid and dashed black lines, respectively). Right-panel: CSIII departure from π in inertial

obliquities θIII(t) and θ̃III(t) as a function of time for the Moon (solid and dashed black lines,
respectively) The blue solid and dashed lines represent the mean values of the inertial obliquities
(CSI) and of the inertial obliquity departure from π (CSIII). The red dashed lines represent the
constant-over-time results of the Classical model (Eq. 2).

Laplace pole motion (pX(t), pY (t)). The figure axis inertial obliquity θ̃I(t) (resp. θ̃III(t))
and the spin axis inertial obliquity θI(t) (resp. θIII(t)) are then obtained as byproducts
(see Coyette et al. (2023), in prep.).

2.1. Cassini State I

Even if the Moon is formally considered to be in the Cassini State II due to its short
orbital precession period compared to its free precession period (Ward 1975), its obliq-
uity can be obtained from the small-angle approximation and therefore by the same
formulae used here for the Cassini State I. We obtain mean inertial obliquities values

of θI =−1.589◦ and θ̃I =−1.583◦ (see Fig. 2, left panel, blue lines), close to the value
obtained with the classical “triaxial” equation (red line). The slight difference between

the “dynamical” θ̃I and the “classical” θ̃Cl,tri
I values is due to the coupling between the

polar motion and the spin precession. The nutations in obliquity of the spin and figure
axes have an amplitude of 11 arcsec and are both semi-diurnal and 180◦ out of phase
from each other (black lines). The spin axis and the figure axis are confounded two times
per day as the polar motion semi-diurnally vanishes (see Coyette et al. (2016)).

Note that θI and θ̃I differ from the obliquity observed by lunar laser ranging obser-
vations (Dickey et al. 1994, −1.543◦), likely because of the assumptions made here.
In particular we assume a rigid satellite and the small-angle approximation, as in
Dumberry and Wieczorek (2016). Note also that neglecting the solar torque acting on
the Moon in the Cassini State model leads to a discrepancy with respect to observations,
Stys and Dumberry (2018). We do not aim to reproduce the observed value and the
results presented here for the Moon should only be considered as those of a Toy Model
intended to discuss the semi-diurnal nutations in obliquity and the coupling between the
polar motion and the spin precession/nutation in the case of a satellite precessing at
constant rate.

2.2. Cassini State III

We here hypothetically assume that the Moon is in Cassini State III and model its
time-varying spin and figure axes inertial obliquities. The inertial obliquity departures
δθIII(t) = θIII(t)− π and δ̃θIII(t) = θ̃III(t)− π are presented on Fig. 2 (right panel, black

lines). The mean inertial obliquities are θIII = 180.833◦ and θ̃III = 180.836◦, respectively
(blue lines). Similarly as for CSI, the value of θ̃III is close but not equal to the value

θ̃Cl,tri
III derived with the classical equations (red line), due to the coupling between the
polar motion and the spin precession that is here fully considered.
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The nutations in obliquities are the superimposition of two semi-diurnal terms with
amplitudes of 1.3 and 6.0 arcsec and of one quarter-diurnal term with an amplitude of
0.7 arcsec. In CSIII, the polar motion never vanishes so that the spin axis and the figure
axis always point toward different directions.

3. Influence of a subsurface ocean

Many large icy satellites of the Solar System likely possess a global ocean beneath
a thin ice shell. Such an ice shell is sometimes assumed to be mechanically decoupled
from the solid interior and to precess somewhat independently, with an obliquity larger
than that of an entirely solid and rigid body (e.g. Bills and Nimmo 2008, 2009 for
the case of Titan, see also Chen et al. (2014); Nimmo (2023)). Baland et al. (2011)
drawn a different conclusion and argued that the observed large obliquity of Titan (0.3◦,
Stiles et al. 2008; Meriggiola et al. 2016, about three times the value expected for an
entirely solid Titan) is explained by a resonant amplification of the obliquity of the shell
which is partially mechanically coupled to the interior. Baland et al. (2012) also found
that the obliquity can be smaller than that of an entirely solid satellite, due to a lack of
such a resonance, as could be the case for Europa. We revisit below the obliquity of the
shell of Europa, starting from the coupled model of Baland et al. (2019).

3.1. Equations

To model the influence of the ocean on the obliquity, we consider one angular momen-
tum equation for each layer k of the satellite (shell s, ocean o and interior i), expressed
in the Cartesian coordinates of the BF of that layer if it is solid, or of the BF of the shell
in the case of the ocean:

d

dt
�Hk + �Ωk × �Hk = �Γk, (7)

where �Γk is the total torque applied on layer k that includes the external gravitational
torque exerted by the central planet, the internal gravitational and pressure torques
exerted by the other layers, including the inertial torque due to the Poincaré flow inside
the subsurface ocean. We also use the equations stating the invariance of the Laplace
Pole, expressed in the BF of both solid layers (shell s and interior i)

dp̂k
dt

+ �Ωk × p̂k = 0. (8)

We then analytically solve Eqs. (7-8) to obtain the polar motion components (mX,k, mY,k)
of the different internal layers of the satellite (k= i, k= o or k= s) as well as the Laplace
pole components (pX,k, pY,k) for the two solid layers (k= i or k= s) and compute the
obliquity of the shell.

3.2. Numerical results

The mean orbital obliquity ε̄ of the shell of Europa is presented on Fig. 3 for a large
set of possible interior models of Europa compatible with the observed mass, radius
and moment of inertia. We first model the obliquity of Europa without considering the
inertial torque (similarly as was done by Baland et al. (2012), their Fig. 5). In this case,
the obliquity increases from 0.027◦ to 0.039◦ with increasing ice shell thickness (left panel
of Fig. 3), and is smaller than the expected obliquity of an entirely solid Europa (0.055◦).
These obliquities are about 0.005◦ smaller than those obtained by Baland et al. (2012)
as the value we use here for the mass of Europa slightly differs from the value used in
this paper.
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Figure 3. Mean obliquity of Europa’s shell for a large set of interior models, without inertial
coupling and as a function of the ice shell thickness (left panel), and with inertial coupling and
as a function of the ocean thickness (right panel).

We note that the obliquity of Europa’s shell is strongly influenced by the inertial
torque due to the Poincaré flow inside the subsurface ocean. Due to a resonance with
a free mode associated with the presence of the ocean (the Free Ocean Nutation), the
mean obliquity of the shell of Europa is either amplified to values as large as 0.15◦ or
decreased to values closer to zero, for models with an ocean thickness ranging from 50
to 120 km. For models far away from this resonance, the obliquity of the shell of Europa
is similar to the obliquity of 0.055◦ expected for an entirely solid satellite.

4. Conclusion

We here introduce a dynamical model based on an angular momentum approach for
the study of the Cassini States I and III of large synchronous satellites. Since we do not
average the gravitational torque exerted on the satellite, the nutations in obliquity and in
longitude can be studied from this model, whereas they were neglected in the Classical
Cassini states models (see e.g. Colombo (1966),Ward (1975)). Moreover, the coupling
between the spin axis precession and the polar motion is fully included in our model.
Our dynamical model shows good agreement with the classical solutions derived for

CSI and CSIII, the slight difference being due to the coupling between the polar motion
and the spin axis precession.
With presence of a subsurface ocean at rest, the obliquity of the shell of Europa is

smaller than the obliquity obtained for a entirely solid satellite. If we add the inertial
torque caused by a Poincaré flow inside the subsurface ocean in our model, depending
on the ocean thickness, the obliquity of Europa ranges between 0 and a few tens of
degrees. Far from a resonance with the Free Ocean Nutation, the obliquity remains close
to the obliquity of an entirely solid satellite. Those results are in contradiction with the
assumption that the obliquity of the shell of a satellite with an internal global ocean
should necessarily be larger than that of an entirely solid satellite.
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