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We exhibit a new approach to the proofs of the existence of a large family of almost
isometric ideals in nonseparable Banach spaces and existence of a large family of
almost isometric local retracts in metric spaces. Our approach also implies the
existence of a large family of nontrivial projections on every dual of a nonseparable
Banach space. We prove three possible formulations of our results are equivalent.
Some applications are mentioned which witness the usefulness of our novel approach.
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When dealing with the geometry of a Banach space, one of the main issues is to
understand its nontrivial complemented subspaces (by nontrivial we mean not of
finite dimension or codimension). On the one hand we have examples of Banach
spaces with no nontrivial complemented subspaces, the first one constructed by
Gowers and Maurey for separable spaces [15], more recent result by Koszmider,
Shelah and Świȩtek is that consistently there are such examples of arbitrary density
[22]. On the other hand, for many nonseparable Banach spaces we are able to find
a very nice structure on nontrivial complemented subspaces with consequences for
the structure of the space itself, quite a wide class of spaces with this feature are
Banach spaces admitting a projectional skeleton (including e.g. all the reflexive
spaces, more generally also all the WCG spaces), where the structure of nontrivial
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2 L. Candido, M. Cúth and O. Smetana

complemented subspaces enables us to prove that those spaces admit Markushevich
basis and LUR renorming, see e.g. [21, Chapter 17] and [19].

It is also well-known that nontrivial complemented subspace exist in every dual
Banach space of density greater than continuum, which is a result originally proved
by Heinrich and Mankiewicz [17, Corollary 3.8]. Later, inspired Lindenstrauss’ finite
dimensional lemma, the proof was simplified by Sims and Yost [29] using the notion
of a locally complemented subspace. In [14] the authors realized there is a connec-
tion to the notion of M -ideals, and therefore, they used the term ideal instead of
locally complemented subspace. This notion was further developed and in [2] Abra-
hamsen, Lima and Nygaard introduced the notion of an almost isometric ideal and
found that almost isometric ideals inherit diameter 2 properties and the Daugavet
property.

Given a Banach spaceX and its subspace Y ⊂ X, we say Y is an almost isometric
ideal in X if for any finite-dimensional subspace E ⊂ X and any ε > 0 there exists
a bounded linear operator T : E → Y such that Tx = x for x ∈ E ∩ Y and T is
(1 + ε)-isomorphic embedding (that is, we have (1 + ε)−1‖x‖ � ‖Tx‖ � (1 + ε)‖x‖
for every x ∈ E). If instead of (1 + ε)-isomorphic embedding we require only
‖T‖ � (1 + ε) then we say Y is ideal in X. The connection to the structure of
complemented subspaces is that Y ⊂ X is an ideal if and only if Y ⊥ is kernel of a
contractive projection on X∗, see e.g. [14, Introduction].

An essential result is [1, Theorem 1.5] by which for every Banach space X and
its subspace Z ⊂ X there exists almost isometric ideal Y ⊂ X with Z ⊂ Y and
densY = densZ. This has further applications, see e.g. [1, Section 3] or also some
more recent ones [5, 25, 28]. Our first main contribution is that we construct quite
a large family of almost isometric ideals in every Banach space. There are more
ways of formulating our result, the one which seems to be the most attractive one
is through the notion of exceedingly rich families, which we introduce here.

Definition 1. Given a (nonseparable) topological space X we say that a family of
its closed subspaces S is exceedingly rich family provided that:

(R-a) for every Y ⊂ X there is S ∈ S such that Y ⊂ S and max{densY, ω} =
densS;

(R-b) if A ⊂ S is up-directed, then
⋃A ∈ S.

We say that a family S ⊂ P(X × Y ) is rectangular, if for every S ∈ S there are
A ⊂ X and B ⊂ Y such that S = A×B.

Our first main result is then the following.

Theorem A. Let X be a (nonseparable) Banach space. Then there exists a rect-
angular exceedingly rich family S of closed subspaces of X ×X∗ such for every
V ×W ∈ S we have that V is almost isometric ideal in X and there is a contractive
projection P : X∗ → X∗ with KerP = V ⊥ and RngP ⊃W .

We note that a family satisfying condition (R-a) was more-or-less found in [1]
(see Theorem 1.5 and Remark 2.3 therein). The additional feature is condition
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Note on almost isometric ideals 3

(R-b) which enables us to combine several results of this kind together due to the
following simple observation.

Lemma 2. Let X be (nonseparable) topological space and let (Si)i∈N be a countable
family of exceedingly rich families. Then

⋂
i∈N Si is exceedingly rich family as well.

Proof. It is obvious that condition (R-b) holds for
⋂

n Sn. Let us prove (R-a). Pick
Z ⊂ X. We inductively using find spaces {Y n

i : i � n} with densY n
i � densZ such

that Y n
i ∈ Si for every i � n and

Z ⊂ Y 1
1 ⊂ Y 1

2 ⊂ Y 2
2 ⊂ . . . ⊂ Y n

1 ⊂ Y n
2 ⊂ . . . ⊂ Y n

n ⊂ Y n+1
1 ⊂ . . .

Then Y∞
i :=

⋃∞
n=1 Y

n
i ∈ Si and we have Y∞

i = Y∞
j for every i �= j. Thus, Y∞

1 ∈⋂
i∈N Si, Z ⊂ Y∞

1 and densY∞
1 = densZ. �

The notion of exceedingly rich family is inspired by a related notion of a rich
family which is an analogue for the class of separable spaces, see [8] and references
therein. We also note that existence of a rich family satisfying theorem A follows
from [5, Theorem 2.4], but when compared with our proof of theorem A, the proof
of [5, Theorem 2.4] is more involved and less direct (and the result covers only
separable spaces).

Very recently, Quilis and Zoca [27] introduced a metric analogue of almost iso-
metric ideals. We say that a subset Y of a metric space X is almost isometric local
retract in X, if for every finite set E ⊂ X and every ε > 0 there exists a Lipschitz
mapping T : E → N such that Tx = x for x ∈ E ∩ Y and T is (1 + ε)-biLipschitz
embedding (that is, we have (1 + ε)−1d(x, y) � d(Tx, Ty) � (1 + ε)d(x, y) for
x, y ∈ E). Using our approach, we quite easily obtain the following improvement of
[27, Theorem 5.5]. This might be considered as the second main result of this paper.

Theorem B. Let X be a metric space. Then there exists an exceedingly rich family
S such that each F ∈ S is almost isometric local retract in X.

An important feature of our proofs, which might be of use in many similar sit-
uations is, that we do not actually construct exceedingly rich family, but rather
family large in the sense of Skolem-like functions.

Definition 3. Given an infinite set I we say that a function φ : P(I) → P(I) is
Skolem-like provided that:

(S-a) A ⊂ φ(A) and |A| = |φ(A)| for every A ⊂ I;

(S-b) φ is monotone, that is, if A ⊂ B then φ(A) ⊂ φ(B) for A, B ∈ P(I);

(S-c) given an up-directed family A ⊂ P(I), we have φ(
⋃A) =

⋃
A∈A φ(A).

Given a (nonseparable) topological space X we say that a family of its closed
subspaces S is large in the sense of Skolem-like functions if there exists a Skolem-like
function φ : P(X) → P(X) such that

S = {φ(C) : C ⊂ X}.
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4 L. Candido, M. Cúth and O. Smetana

The main ingredient of our proofs is the following which enables us to pass from
one notion to another. Experience shows that it is easier to construct families large
in the sense Skolem-like functions, so this seems to be quite a helpul tool and might
be considered as the third main result of this paper.

Theorem C. Let X be a topological space and let S be a family of its subspaces.

• If S is exceedingly rich, then there exists S0 ⊂ S large in the sense of Skolem-like
functions.

• If X is metrizable and S is large in the sense of Skolem-like functions, then
there exists S0 ⊂ S which is exceedingly rich.

Moreover, we also show that in metrizable topological spaces, the two methods
mentioned above are equivalent also to the method of suitable models, we refer
the reader to § 2 for more details. Our approach also gives some improvement of
the main result from [8], where a similar result was obtained only in the setting of
spaces homeomorphic to Banach spaces and their separable subspaces, see remark
10 for more details.

Finally, in the last part of this paper we show some applications of theorem A
and theorem B, which are related to separable reduction (that is, a method of a
proof where we extend validity of a result known to hold for separable spaces to
the nonseparable setting not knowing the proof of the result in the separable case,
we refer reader to [8] for some more details). A sample of those applications are the
following two results.

Theorem D. Let X be a non-separable Banach space. Then there exists an exceed-
ingly rich family S of subspaces of X such that, for every Y ∈ S the following
holds:

X is a Gurarĭı space ⇔ Y is a Gurarĭı space,

X is an L1-predual space ⇔ Y is an L1-predual space,

X has Daugavet property ⇔ Y has Daugavet property.

(We emphasize that one family S is responsible for all the three equivalences.)

Theorem E. Let X be a non-separable metric space. Then there exists an exceed-
ingly rich family S of subspaces of X such that, for every Y ∈ S the following
holds:

X is an absolute ai-local retract ⇔ Y absolute an ai-local retract.

Many other properties could be easily added to the lists above using our results
and the above is just an incomplete sample witnessing applicability of our results,
for more details we refer the interested reader to remark 20.

The structure of the paper is the following. In § 1 we collect our notation and
some preliminaries concerning Lipschitz-free spaces, which is a tool used in our
proofs. Section 2 is devoted mainly to the proof of theorem C and also to the
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comparison of the methods mentioned therein with the method involving suitable
models (proofs in § 2 are using the set-theoretical method of suitable models, this
method is not used anywhere else in the paper). The main outcome of § 3 is the
proof of theorem A, the main outcome of § 4 is the proof of theorem B and in § 5
we find some applications of our results, in particular implying theorems D and E.

1. Preliminaries

In this section we set up some notation that will be used throughout the paper. We
also recall results concerning Lipschitz-free spaces which will be used further in the
text.

Given a set X and cardinal κ, we denote by [X]�κ the family of subsets of
X of cardinality at most κ and by [X]<κ the family of subsets of X of cardi-
nality strictly less than κ. Cardinality of a set X is denoted by |X|, family of
its subset is denoted by P(X). Given a Banach space X, A ⊂ X and B ⊂ X∗

we put A⊥ := {x∗ ∈ X∗ : x∗|A ≡ 0} and B⊥ := {x ∈ X : x(b) = 0 for every b ∈ B}.
Further, we say B ⊂ X∗ is norming if X \ {0} � x �→ supx∗∈B\{0} |x∗(x)|/‖x∗‖
defines an equivalent norm on X. We shall use also the following.

Definition 4. Let X and Y be topological spaces. We say that a Skolem-like
function φ : P(X × Y ) → P(X × Y ) is rectangular if for every A ⊂ X × Y there
are B ⊂ X and C ⊂ Y such that φ(A) = B × C. In this case we denote by
φX : P(X × Y ) → P(X) and φY : P(X × Y ) → P(Y ) the mappings satisfying that
φ(A) = φX(A) × φY (A) for every A ⊂ X × Y .

Note that of course if φ : P(X × Y ) → P(X × Y ) is rectangular Skolem-like func-
tion then the corresponding large family S := {φ(A) : A ⊂ X × Y } is rectangular.

Finally, let us give some preliminaries concerning Lipschitz-free spaces. Given
a pointed metric space (M, d, 0), there exists a unique (up to isometry) Banach
space F(M) (called the Lipschitz-free space over M) such that there is an isom-
etry δ : M → F(M) satisfying that δ(M \ {0}) is linearly independent set with
spanδ(M) = F(M) and for every Banach space X and a Lipschitz map f : M →
X with f(0) = 0 there exists f̂ : F(M) → X with f̂ ◦ δ = f and ‖f̂‖ = Lip(f),
where Lip(f) = sup{‖f(x) − f(y)‖/d(x, y) : x �= y ∈M}. We note that in partic-
ular we have F(M)∗ = Lip0(M), where Lip0(M) is the vector space {f : M →
R : f is Lipschitz and f(0) = 0} endowed with the norm given by ‖f‖ := Lip(f).
We refer the interested reader e.g. to [9] or [13] to some more details concerning
the construction of Lipschitz-free spaces and their basic properties.

2. Exceedingly rich families and equivalent methods

The main purpose of this section is to compare three notions of largeness of a
family of subspaces S ⊂ P(X) and prove those notions are in a sense equivalent.
We warmly recommend the interested reader to the Introduction in [8], where the
motivation for such a result is further explained. The main outcome here is the
proof of theorem C and the proof of lemma 9, which are the only results needed in
further sections.
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6 L. Candido, M. Cúth and O. Smetana

Even though it is possible to give a direct proof of theorem C, the way how we
found it was through its connection to the method of suitable models, so we prefer
here to provide the reader with this insight as well. We refer the interested reader
to [8, Section 2], where a proper introduction to the method of suitable models is
given. Here, we just collect all the necessary notions needed to formulate and prove
our result.

Let N be a fixed set and ϕ a formula in the basic language of the set theory. By
the relativization of ϕ to N we understand the formula ϕN which is obtained from
ϕ by replacing each chain of the form ‘∀x’ by ‘∀x ∈ N ’ and each chain of the form
‘∃x’ by ‘∃x ∈ N ’. Let ϕ(x1, . . . , xn) be a formula with all free variables shown, that
is, a formula whose free variables are exactly x1, . . . , xn. We say ϕ is absolute for
N if

∀a1, . . . , an ∈ N :
(
ϕ(a1, . . . , an) ⇔ ϕN (a1, . . . , an)

)
.

Definition 5. Let Φ be a finite list of formulas and S be any countable set. Let
M ⊃ S be a set such that each ϕ from Φ is absolute for M . Then we say that M
is a suitable model for Φ containing S and we write M ≺ (Φ;S).

(Warning: in [8] only countable models were considered, while here we consider
suitable models which are not necessarily countable.)

The method of suitable models is based mainly on the well-known theorem
(see [24, Chapter IV, Theorem 7.8]) that for any finite list Φ of formulas and any
set S there exists M ≺ (Φ;S) with |M | � max{ω, |S|}. We note that in our paper
we will use the method of suitable models only through results proved elsewhere -
so we do not require the reader to be too much familiar with it.

Definition 6. Given a (nonseparable) topological space X we say that a family of
its closed subspaces S is exceedingly large in the sense of suitable models provided
that there exists a finite list of formulas Φ and a countable set C such that

S = {X ∩M : M ≺ (Φ;C)}.
Given M ≺ (Φ;C) we put XM := X ∩M .

The main outcome of this Section is the following, which easily implies theorem C.

Theorem 7. Let X be a topological space and let S ⊂ P(X).

(1) If S is exceedingly rich family, then there exists a family S0 ⊂ S large in the
sense of Skolem-like functions.

(2) If S is large in the sense of Skolem-like functions, then there exists a family
S0 ⊂ S exceedingly large in the sense of suitable models.

(3) If X is metrizable and S is exceedingly large in the sense of suitable models,
then there exists an exceedingly rich family S0 ⊂ S.

Before giving the proof of theorem 7 (see Subsection 2.1), let us mention one of its
consequences which we shall use later. It gives a connection of rectangular families
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with the notion of a projectional skeleton, see lemma 9. This notion was found in
[23] and further studied by many authors in many papers, see e.g. [7, 19], where
we refer the interested reader for more details. We start with an easy observation.

Fact 8. Let X and Y be topological spaces. Then there is a finite list of formulas Φ
and a countable set S such that whenever M ≺ (φ;S), then (X × Y )M = XM × YM .

Proof. By [6, Lemma 7], there is a finite list of formulas Φ and a countable set S
such that whenever M ≺ (φ;S), then (x, y) ∈ (X × Y ) ∩M if and only if (x, y) ∈
(X ∩M) × (Y ∩M). From this the fact easily follows. �

Lemma 9. Let X be a Banach space and D ⊂ X∗ a norming closed subspace. Then
the following conditions are equivalent.

(i) D is subset of a set induced by a projectional skeleton in X.

(ii) There exists a rectangular exceedingly rich family S ⊂ P(X ×D) such that
for every V ×W we have X = V +W⊥.

(iii) There exists a rectangular exceedingly rich family S ⊂ P(X ×D) such that
for every V ×W there exists a projection P : X → X satisfying RngP = V
and KerP = W⊥.

Proof. First, assume (i) holds. By [7, Lemma 15 and Proposition 16], there is a
finite list of formulas Φ and a countable set S such that whenever M ≺ (φ;S), then
X = XM + (D ∩M)⊥. Using Fact 8, we obtain a rectangular exceedingly large
family S ⊂ P(X ×D) in the sense of suitable models such that whenever V ×W ∈
S, then V +W⊥ = X. Using theorem 7, we obtain (ii).

Assume (ii) holds. By theorem 7 together with Fact 8 and [7, Lemma 15], there is
a finite list of formulas Φ and a countable set S such that wheneverM ≺ (φ;S), then
(X ×D)M = XM ×DM and there exists a projection P : X → X with RngP =
XM and KerP = (D ∩M)⊥. Thus, there is a a rectangular exceedingly large family
S ⊂ P(X ×D) in the sense of suitable models such that for every V ×W ∈ S
there exists a projection P : X → X satisfying RngP = V and KerP = W⊥. By
theorem 7, this implies (iii).

Finally, assuming (iii) holds, we easily check that for Γ = {(V, W ) ∈ S : V ×
W is separable} ordered by inclusion, the projections (PV ×W )V ×W∈Γ satisfying
RngPV ×W = V and KerPV ×W = W⊥ form a projectional skeleton (see e.g. [7,
Definition 1]) and the set induced by the skeleton is in this case equal to⋃

V ×W∈Γ(PV ×W )∗[X∗] =
⋃

V ×W∈Γ(KerPV ×W )⊥ =
⋃

V ×W∈ΓW
w∗

⊃ D. Thus, (i)
holds. �

2.1. Proof of theorem 7

Our proof of theorem 7(1) is similar to the proof of [8, Theorem 19].

Proof of theorem 7 (1). For every x ∈ X, let us pick separable Fx ∈ S with x ∈ Fx

and for every separable F ∈ S, let us pick a countable set DF ⊂ F which is dense in
F . Moreover, for every separable G, H ∈ S, pick separable FG,H ∈ S with FG,H ⊃

https://doi.org/10.1017/prm.2024.68 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.68


8 L. Candido, M. Cúth and O. Smetana

G ∪H. Pick an arbitrary infinite countable Z ⊂ X. Now, let us define a function
ψ : P(X) → P(S) by putting for every C ⊂ X

ψ0(C) := {Fx : x ∈ C ∪ Z},
ψk+1(C) := ψk(C) ∪ {FG,H : G,H ∈ S ∩ ψk(C), G and H are separable},

ψ(C) :=
∞⋃

k=0

ψk(C).

Finally, we define φ : P(X) → P(X) by φ(C) := Z ∪ C ∪⋃{DF : F ∈ ψ(C) is
separable}.

Let us prove that φ is indeed a Skolem-like function. Since ψ is monotone, we see
that φ is monotone as well. Moreover, we clearly have C ⊂ φ(C) and max{|C|, ω} =
|φ(C)| for every C ⊂ X. Finally, pick an up-directed family A ⊂ P(X). By mono-
tonicity we obviously have φ(

⋃A) ⊃ ⋃A∈A φ(A). For the other inclusion, using that
A is up-directed we first easily by induction prove that ψk(

⋃A) ⊂ ⋃A∈A ψ(A) for
any k ∈ N ∪ {0}. Thus, given x ∈ φ(

⋃A) either we have x ∈ Z ∪⋃A (and there-
fore we indeed have x ∈ ⋃A∈A φ(A)) or we pick k ∈ N ∪ {0} such that x ∈ DF for
some separable F ∈ ψk+1(

⋃A) ⊂ ⋃A∈A ψ(A) in which case we have x ∈ φ(A) for
some A ∈ A. This completes the proof that φ is indeed a Skolem-like function.

It remains to prove that S0 := {φ(C) : C ⊂ X} satisfies that S0 ⊂ S. Pick C ⊂ X.
First, we claim that

φ(C) =
⋃

{F : F ∈ ψ(C), F is separable}. (2.1)

Indeed, it follows from the construction that given x ∈ φ(C) there is separable
F ∈ ψ(C) such that x ∈ F , which proves inclusion ‘⊂’ in (2.1). Conversely, given
separable F ∈ ψ(C) we have DF ⊂ φ(C) and so F = DF ⊂ φ(C), which proves
inclusion ‘⊃’ in (2.1). This proves the claim and so (2.1) holds. Now, we observe that
by the definition of ψ we have that A := {F : F ∈ ψ(C) is separable} is up-directed
subset of S and therefore

φ(C)
(2.1)
=
⋃

A ∈ S.
Since C ⊂ X was arbitrary, this shows that S0 ⊂ S. �

Proof of theorem 7 (2) is similar to the proof of [10, Proposition 3.1].

Proof of theorem 7 (2). Let τ be the topology of X and φ : P(X) → P(X) be a
Skolem-like function such that S = {φ(A) : A ⊂ X}. Let Φ be the union of finite
lists of formulas from the statements of results used in the proof below (namely [6,
Lemma 7]). Let S be the union of {X, τ, φ} together with the countable sets from
the statements of results used in the proof below (namely [6, Lemma 7]).1 Let M ≺
(Φ;S). In order to finish the proof it suffices to show that then XM = φ(X ∩M).

1Note that the statement of [6, Lemma 7] starts with ‘For every suitable model M the following
holds’ which by [6, Convention 6] guarantees existence of a list of formulas Φ and a countable set
Y such that for every M ≺ (Φ; Y ) the following holds .. so in the above we pick this particular
list Φ and the set S = Y ∪ {X, τ, φ}, which will enable us to use in the proof below that for any
M ≺ (Φ; S) all the statements (1)-(7) from [6, Lemma 6] hold.

https://doi.org/10.1017/prm.2024.68 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.68


Note on almost isometric ideals 9

Note that by [6, Lemma 7] we have: A ∈M if and only if A ⊂M whenever A ⊂ X
is finite; A ∈M implies that A ⊂M whenever A ⊂ X is countable; φ(A) ∈M for
every A ∈M ∩ P(X).

Now, we shall observe that

XM =
⋃

{φ(A) : A ⊂ X ∩M is finite set}. (2.2)

Indeed, for the inclusion ‘⊃’ we notice that given a finite set A ⊂ X ∩M we have
A ∈M and therefore φ(A) ∈M which, since φ(A) is countable, implies φ(A) ⊂
X ∩M . For the inclusion ‘⊂’ we notice that given x ∈ X ∩M , we have x ∈ φ(A)
where A = {x} ⊂ X ∩M . Thus, (2.2) holds.

Further, using (S-c) we also have

φ(X ∩M) =
⋃

{φ(A) : A ⊂ X ∩M is finite set}.

This together with (2.2) shows that XM = φ(X ∩M), which is what we needed to
finish the proof. �

Finally, we shall prove theorem 7 (3). The basic idea in the argument below
is similar to the proof of [8, Theorem 21]. The additional ingredient is the use
of Lipschitz-free spaces, which enable us to work not only with Banach spaces,
but rather with metric spaces in general. Also, we present the proof using suit-
able models, which is less technical approach when compared to the proof of [8,
Theorem 21], where a direct inductive construction was used. Reader not familiar
with the method of suitable models can then compare both methods (suitable mod-
els used in the proof below and inductive construction used in [8, Theorem 21]) and
convince himself that when using suitable models we really just hide the techni-
calities concerning a precise inductive construction in an abstract result, otherwise
both methods use the same ideas (in the proof below the inductive construction is
hidden in the proof of [7, Lemma 13] used therein).

Proof of theorem 7 (3). Let Φ′ be a finite list of formulas and S′ a countable set
such that S = {XM : M ≺ (Φ′;S′)}.

Let d be a metric on X generating its topology. By [31], all Banach spaces of the
same density are topologically homeomorphic. Thus, there exists a homeomorphism
h : F(X) → 
2(κ), where κ = densX. Let e : κ→ 
2(κ) be one-to-one mapping such
that e[κ] is the canonical orthonormal basis of 
2(κ).

Let Φ be the union of Φ′ and the finite lists of formulas from the statements of
results used in the proof below (namely [6, Lemma 7 and 8] and [7, Lemma 12]).
Let S be the union of S′ ∪ {h, κ, e} ∪ {X, d} ∪ {F(X), δ, ‖ · ‖, +, ·} ∪ {
2(κ), ‖ ·
‖, +, ·} together with the countable sets from the statements of results used in the
proof below (namely [6, Lemma 7 and 8] and [7, Lemma 12])2 . Let M ≺ (Φ;S).

2Similar remark as in the proof of Theorem 7 (2) applies here. Namely, the statement of [6,
Lemma 7 and 8] and [7, Lemma 12] guarantees the existence of some lists of formulas and countable
sets .. and those are simply put together here in order to know that any M ≺ (Φ; S) is ‘suitable’
for all of the finitely many cited results.
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10 L. Candido, M. Cúth and O. Smetana

Note that by [6, Lemma 7 and 8] we have δ[X] ∈M , e[κ] ∈M and by [7, Lemma
12 (2)(ii)] we therefore obtain

F(X) ∩M = span{δ(x) : x ∈ X ∩M}, 
2(κ) ∩M = span{ei : i ∈ κ ∩M}

and by [7, Lemma 12 (1)] we have h[F(X) ∩M ] = 
2(κ) ∩M . By [24, Theorem
IV.7.4], there exists a set R such that R ≺ (Φ;S ∪ κ). Let ψ : P(R) → P(R) be the
Skolem function given by [7, Lemma 13], in particular we have

(1) ∀A ⊂ R : ψ(A) ≺ (Φ;S), |ψ(A)| � max{|A|, ω},
(2) ψ(A) ⊂ ψ(B) whenever A ⊂ B ⊂ R,

(3) whenever A ⊂ P(R) is such that {ψ(A) : A ∈ A} is up-directed, then
ψ(
⋃A) =

⋃
A∈A ψ(A),

(4) for every A, B ⊂ κ we have ψ(A ∪ S) ⊂ ψ(B ∪ S) if and only if ψ(A ∪ S) ∩
κ ⊂ ψ(B ∪ S) ∩ κ.

Consider the following family of subsets of R

M := {ψ(A ∪ S) : A ⊂ κ}. (2.3)

and put S0 := {XM : M ∈ M}. By (1) we have S0 ⊂ S and so it remains to prove
that S0 is exceedingly rich family.

Pick infinite C ⊂ X and let D ⊂ C be its dense subset with |D| = densC. We
want to find M ∈ M such that D ⊂ XM and densXM � |D|. Pick A ⊂ κ satisfying
h[δ[D]] ⊂ span{ei : i ∈ A} and |A| = |D|. We claim that forM := ψ(S ∪A) we have
D ⊂ XM . Indeed, first we notice that

δ(D) ⊂ h−1[span{ei : M ∩ κ}] = span{δ(x) : x ∈ XM}.

This already implies D ⊂ XM as otherwise for s ∈ D \XM we have d(s, XM ) > 0
so we may find a Lipschitz function f with f |XM

≡ 0 and f(s) = 1, but then f
separates span{δ(x) : x ∈ X ∩M} from δ(s), a contradiction. Thus, we indeed have
D ⊂ XM ∈ S0 and densXM � |ψ(S ∪A)| � |C|.

Finally, let A ⊂ S0 be up-directed. There is I ⊂ M with A = {XM : M ∈ I}.
Notice that for M, N ∈ M we have M ⊂ N if and only if XM ⊂ XN . Indeed, one
implication is trivial and for the other one we note that XM ⊂ XN implies that

span{ei : i ∈ κ ∩M} = h[span{δ(x) : x ∈ XM}]
⊂ h[span{δ(x) : x ∈ XN}] = span{ei : i ∈ κ ∩M},

which in turn implies κ ∩M ⊂ κ ∩N and by (4) we therefore obtain M ⊂ N . Thus,
since the mapping I �M �→ XM ∈ A is order-isomorphism, I is up-directed. For
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Note on almost isometric ideals 11

every M ∈ I there is AM with M = ψ(S ∪AM ) and we obtain⋃
M∈I

M =
⋃

M∈I

ψ(S ∪AM )
(3)
= ψ(S ∪

⋃
M∈I

AM ) =: M∞ ∈ M,

which implies that⋃
A =

⋃
M∈I

X ∩M = X ∩ (
⋃

M∈I

M) = X ∩M∞ ∈ S0.

This finishes the proof that S0 ⊂ S is exceedingly rich family. �

Remark 10. We note that minor modifications in the proof of theorem 7 (3) lead to
the proof of the following, which improves [8, Theorem 15] from spaces homeomor-
phic to a Banach space to metrizable topological spaces: supposing X is a metrizable
topological space and S ⊂ P(X) is large in the sense of suitable models, there exists
a rich family S0 ⊂ S. The only modification which is needed is: in the definition of
M in (2.3) one needs to write A ∈ [κ]�ω instead of A ⊂ κ.

We refer the interested reader to [8], where the needed notions are defined.

3. Almost isometric ideals

The main purpose of this section is to prove theorems 13, 14 and its consequence
corollary 15, from which theorem A easily follows (using lemma 2). Basic strategy
of our proof is the same as [1, proof of Theorem 1.5]. In order not to get lost
in the inductive construction which we shall use, we start by extracting the main
technicalities in lemma 11.

Lemma 11. Let X be a Banach space, U, V ⊂ X finite-dimensional subspaces with
U ∩ V = {0}. Then for any m ∈ N there is a function ζ : [0, 1) → [0, 1) continuous
at zero with ζ(0) = 0 such that whenever ε ∈ (0, 1],

• n ∈ N is such that n � 1/ε,

• N ⊂ V is an ε-net of nBV ,

• A ⊂ 
dim U
1 is an ε-net of S�dim U

1

• {e1, . . . , edim U} ⊂ mBU is a basis of U ,

• {f1, . . . , fdim U} ⊂ mBX are such that for every x ∈ N and a ∈ A we have∣∣∣∣∣
∥∥∥∥∥x+

dim U∑
i=1

aiei

∥∥∥∥∥−
∥∥∥∥∥x+

dim U∑
i=1

aifi

∥∥∥∥∥
∣∣∣∣∣ � ε,

then the mapping T : U ⊕ V → X defined by

T

(
x+

dim U∑
i=1

aiei

)
:= x+

dim U∑
i=1

aifi, x ∈ V, a ∈ Rdim U

is (1 + ζ(ε))-isomorphism.
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12 L. Candido, M. Cúth and O. Smetana

Moreover, if x∗ ∈ X∗ is such that |x∗(ei − fi)| < ε, then ‖(x∗ ◦ T − x∗)|U⊕V ‖ <
ζ(ε)‖x∗‖.

Proof. Let us denote by PU the projection PU : U ⊕ V → U . Further, since all
the norms on a finite-dimensional space are equivalent, pick C > 0 such that
‖∑dim U

i=1 aiei‖ � C‖a‖1 for any a ∈ Rdim U .
Pick any a ∈ S�dim U

1
and x ∈ nBV . Let b ∈ A and y ∈ N be such that ‖a− b‖1 � ε

and ‖x− y‖ � ε. Then we have

∣∣∣∣∣
∥∥∥∥∥x+

dim U∑
i=1

aiei

∥∥∥∥∥−
∥∥∥∥∥x+

dim U∑
i=1

aifi

∥∥∥∥∥
∣∣∣∣∣

� ‖x− y‖ +

∥∥∥∥∥
dim U∑
i=1

aiei −
dim U∑
i=1

biei

∥∥∥∥∥+ ‖x− y‖ +

∥∥∥∥∥
dim U∑
i=1

aifi −
dim U∑
i=1

bifi

∥∥∥∥∥
+

∣∣∣∣∣
∥∥∥∥∥y +

dim U∑
i=1

biei

∥∥∥∥∥−
∥∥∥∥∥y +

dim U∑
i=1

bifi

∥∥∥∥∥
∣∣∣∣∣

< ε+ εm+ ε+ εm+ ε = ε(3 + 2m).
(3.1)

Moreover, for any z ∈ V and c ∈ Rdim U we have

∥∥∥∥∥z +
dim U∑
i=1

ciei

∥∥∥∥∥ � 1
‖PU‖

∥∥∥∥∥
dim U∑
i=1

ciei

∥∥∥∥∥ � C‖c‖1

‖PU‖ ,

so from (3.1) we obtain

∣∣∣∣∣
∥∥∥∥∥x+

dim U∑
i=1

aiei

∥∥∥∥∥−
∥∥∥∥∥x+

dim U∑
i=1

aifi

∥∥∥∥∥
∣∣∣∣∣ � ε(3 + 2m)‖PU‖

C

∥∥∥∥∥x+
dim U∑
i=1

aiei

∥∥∥∥∥,
which implies that for f(ε) := min{ ε(3+2m)‖PU‖

C , 1/2} we have

(1 − f(ε))

∥∥∥∥∥x+
dim U∑
i=1

aiei

∥∥∥∥∥ �
∥∥∥∥∥x+

dim U∑
i=1

aifi

∥∥∥∥∥ � (1 + f(ε))

∥∥∥∥∥x+
dim U∑
i=1

aiei

∥∥∥∥∥ (3.2)

and for h(ε) = f(ε)/1 − f(ε) we have (1 + h(ε))−1 = (1 − f(ε)) and therefore

1
1 + h(ε)

∥∥∥∥∥x+
dim U∑
i=1

aiei

∥∥∥∥∥ �
∥∥∥∥∥x+

dim U∑
i=1

aifi

∥∥∥∥∥ � (1 + h(ε))

∥∥∥∥∥x+
dim U∑
i=1

aiei

∥∥∥∥∥ (3.3)

whenever x ∈ nBV and a ∈ S�dim U
1

.
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Pick arbitrary a ∈ S�dim U
1

and x ∈ X \mBU . We observe

‖x‖ −m � ‖x‖ −
∥∥∥∥∥

dim U∑
i=1

aiei

∥∥∥∥∥ �
∥∥∥∥∥x+

dim U∑
i=1

aiei

∥∥∥∥∥ � ‖x‖ +m.

The same argument yields

‖x‖ −m �
∥∥∥∥∥x+

dim U∑
i=1

aifi

∥∥∥∥∥ � ‖x‖ +m.

This means∥∥∥x+
∑dim U

i=1 aifi

∥∥∥∥∥∥x+
∑dim U

i=1 aiei

∥∥∥ � ‖x‖ +m

‖x‖ −m
and

∥∥∥x+
∑dim U

i=1 aiei

∥∥∥∥∥∥x+
∑dim U

i=1 aifi

∥∥∥ � ‖x‖ +m

‖x‖ −m
. (3.4)

We consider the real function g : z �→ z +m/z −m− 1. Because ‖x‖ > n � 1/ε
and the function g is decreasing to 0, we have ‖x‖ +m/‖x‖ −m = g(‖x‖) + 1 <
g(1/ε) + 1. From this and (3.4) we obtain

1
1 + g( 1

ε )

∥∥∥∥∥x+
dim U∑
i=1

aiei

∥∥∥∥∥ �
∥∥∥∥∥x+

dim U∑
i=1

aifi

∥∥∥∥∥ � (1 + g( 1
ε ))

∥∥∥∥∥x+
dim U∑
i=1

aiei

∥∥∥∥∥. (3.5)

Thus, for ζ(ε) := 2max{h(ε), g(1/ε), ε/C‖PU‖} from (3.3) and (3.5) we obtain
that

1
1 + ζ(ε)

∥∥∥∥∥x+
dim U∑
i=1

aiei

∥∥∥∥∥ <
∥∥∥∥∥T
(
x+

dim U∑
i=1

aiei

)∥∥∥∥∥ < (1 + ζ(ε))

∥∥∥∥∥x+
dim U∑
i=1

aiei

∥∥∥∥∥
for every a ∈ S�dim U

1
and every x ∈ V , which easily using a homogeneous argument

implies that T is (1 + ζ(ε))-isomorphism.
In order to prove the ‘Moreover’ part, pick x∗ ∈ X∗ with |x∗(ei − fi)| < ε and

y ∈ BU⊕V . Let us denote y = x+
∑dim U

i=1 aiei. Then we have

|x∗(Ty) − x∗(y)| =

∣∣∣∣∣x∗
(
x+

dim U∑
i=1

aifi

)
− x∗

(
x+

dim U∑
i=1

aiei

)∣∣∣∣∣
=

∣∣∣∣∣
dim U∑
i=1

aix
∗(ei − fi)

∣∣∣∣∣ < ‖x∗‖
dim U∑
i=1

|ai|ε = ‖x∗‖ε‖a‖�dim U
1

� ε‖x∗‖
C

∥∥∥∥∥
dim U∑
i=1

aiei

∥∥∥∥∥ =
ε‖x∗‖
C

‖PU (y)‖ � ε‖x∗‖
C

‖PU‖‖y‖.

Thus, we have that ‖(x∗ ◦ T − x∗)|U⊕V ‖ � ε/C‖PU‖‖x∗‖ < ζ(ε)‖x∗‖. �

The inductive construction we need is contained in the following analogy to
[1, Lemma 2.1].
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14 L. Candido, M. Cúth and O. Smetana

Lemma 12 (Key Lemma). Let X be a Banach space. Then there exists a rectangular
Skolem-like function φ : P(X ×X∗) → P(X ×X∗) such that for every A ⊂ X ×
X∗ the sets φX(A) and φX∗(A) are Q-linear subspaces and the following holds :

Let ε > 0, D ∈ [φX∗(A)]<ω, B ∈ [φX(A)]<ω and E ⊂ X be a finite-dimensional
subspace with E ⊃ B. Then there is a continuous linear mapping T : E → φX(A)
such that

(Ka) Tx = x for all x ∈ B,

(Kb) (1 + ε)−1‖x‖ � ‖Tx‖ � (1 + ε)‖x‖ for all x ∈ E,

(Kc) ‖(d ◦ T − d)|E‖ � ε‖d‖ for all d ∈ D,

Proof. We start the proof by defining certain sets which we will later use to
construct the desired Skolem-like function. Given sets A ⊂ X ×X∗, finite sets
B ⊂ X and D ⊂ X∗, for each n, k ∈ N and δ ∈ Q+, we pick a finite δ-net Ak,δ

of S�k
1

and a finite δ-net Nn,δ(B) ⊂ spanB of nBspan B. Now since the mapping
ψn,k,δ : (BX)k → (RNn,δ(B)×Ak,δ × RD×k, ‖ · ‖∞), defined by the formula

ψn,k,δ(u) :=

⎛⎝(∥∥∥∥∥x+
k∑

i=1

aiui

∥∥∥∥∥
)

x∈Nn,δ(B),a∈Ak,δ

, (d(ui))d∈D,i�k

⎞⎠ ,

has separable range, we may pick a countable set Fn,k,δ(B, D) ⊂ BX such
that ψn,k,δ(Fn,k,δ(B, D)k) is dense in the range of ψn,k,δ. Next, if B(A) :=
spanQ πX(A) ⊂ X and D(A) := spanQ πX∗(A) ⊂ X∗ for every A ⊂ X ×X∗, we
inductively define ξ(A) ⊂ X for A ⊂ X ×X∗ as follows:

ξ0(A) := B(A),

ξn+1(A) := spanQ

(
ξn(A) ∪

⋃{
Fn,k,δ(B,D) : n, k ∈ N, δ ∈ Q+,

B ⊂ ξn(A) and D ⊂ D(A) are finite sets

})
,

ξ(A) :=
∞⋃

n=0

ξn(A).

Finally, we put φ(A) := ξ(A) ×D(A) for A ⊂ X ×X∗. We claim that φ is indeed
a rectangular Skolem-like function. It is evident that φ satisfies conditions (S-a)
and (S-b) from definition 3. To check (S-c) we pick an up-directed family
A ⊂ P (X ×X∗). From (S-b) we have φ(

⋃A) ⊃ ⋃A∈A φ(A). To check the reverse
inclusion, we start by proving the following claim: for every n < ω, if x ∈ ξn(

⋃A),
then there is A ∈ A such that x ∈ ξn(A).

We proceed by induction on n. Since the map A �→ B(A) satisfies (S-c), and A
is up-directed, the claim is easily seen to be true for n = 0. Assume that it holds
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for n, and let x be an element in ξn+1(
⋃A). Then

x = q0y +
m∑

j=1

qjzj

for some q0, q1, . . . , qm ∈ Q, y ∈ ξn(
⋃A) and zj ∈ Fnj ,kj ,δj

(Bj , Dj), j � m where
nj , kj ∈ N, δj ∈ Q+, and Bj and Dj are finite subsets of ξn(

⋃A) and D(
⋃A)

respectively. By the induction hypothesis, there is A0 ∈ A such that y ∈ ξn(A0).
Moreover, since A is up-directed, by applying the induction hypothesis again, we
deduce that there is A1 ∈ A such that, A0 ⊂ A1 and

⋃m
j=1Bj ⊂ ξn(A1). Since

A �→ D(A) satisfies (S-c), we may also assume that
⋃m

j=1Dj ⊂ D(A1). Hence
x ∈ ξn+1(A1) and the claim is established by induction.

Now let (x, x∗) ∈ φ(
⋃A) be arbitrary. Then x∗ ∈ D(

⋃A) and there is n < ω
such that x ∈ ξn(A). Since the map A �→ D(A) satisfies (S-c), there is A0 ∈ A such
that x∗ ∈ D(A0). In accordance with our claim, there exists A1 ∈ A such that x ∈
ξn(A1). Finally, since A is up-directed, there is A2 ∈ A such that A0 ∪A1 ⊂ A2 and
(x, x∗) ∈ ξn(A1) ×D(A0) ⊂ φ(A2). This establishes that φ(

⋃A) ⊂ ⋃A∈A φ(A).
The fact that φ is rectangular is evident from the definition of φ.

Now, pick ε > 0, A ⊂ X ×X∗, D ⊂ D(A) = φX∗(A) finite, B ⊂ φX(A) = ξ(A)
finite and finite-dimensional space E ⊂ X with E ⊃ B. Since spanB is finite-
dimensional, there is U ⊂ E such that E = spanB ⊕ U and we may pick a basis
{e1, . . . , ek} ⊂ BU of the space U . Let ζ be the function from lemma 11 applied to
spanB ⊕ U and let δ > 0 be such that ζ(δ) < ε. Now, pick n ∈ N with n � 1/δ. By
the choice of Fn,k,δ(B, D), there are f1, . . . , fk ∈ Fn,k,δ(B, D) ⊂ ξ(A) such that
‖ψn,k,δ((fi)) − ψn,k,δ((ei))‖∞. Then, by lemma 11, since ζ(δ) < ε, we have that the
mapping T : E = spanB ⊕ U → ξ(A) = φX(A) given by

T

(
x+

k∑
i=1

aiei

)
:= x+

k∑
i=1

aifi, x ∈ spanB, a ∈ Rk

is (1 + ε)-isomorphic embedding and so (Kb) holds. Finally, since for any d ∈ D we
have |d(ei) − d(fi)| < δ, i = 1, . . . , k, the moreover part of lemma 11 implies that
(Kc) holds as well. �

The first main result of this section is now contained in the following.

Theorem 13. Let X be a Banach space. Then there exists an exceedingly rich
family S of subspaces of X such that each F ∈ S is ai-ideal in X.

Proof. By theorem C, it suffices to find a family S large in the sense of Skolem-like
functions such that each F ∈ S is ai-ideal in X.

Pick the Skolem-like function φ : P(X ×X∗) → P(X ×X∗) from the Key lemma
12 and consider its projection onto the first coordinate given by ψ(A) := φX(A×
{0}). It is easy to check that ψ : P(X) → P(X) is Skolem-like function as well.
Thus, in order to finish the proof it suffices to check that ψ(A) is ai-ideal for every
A ⊂ X.

Fix A ⊂ X and put Y := ψ(A). Given a finite dimensional subspace E ⊂ X
and ε > 0 (without loss of generality, we may assume that ε < 1), we let δ =
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16 L. Candido, M. Cúth and O. Smetana

min{ε/2(1 + dim(E)), ε/2(1 − ε/1 + ε)} and pick a finite δ/2(δ + 2)-net N for
BE∩Y . Since ψ(A) is dense subset of Y , there exists a function ϕ : N → ψ(A) such
that ‖ϕ(x) − x‖ � δ/2(δ + 2) for every x ∈ N . Since φ was the function from Key
lemma 12, for E′ = span{E ∪ ϕ[N ]}, B = ϕ[N ], D = ∅ and δ > 0 there exists a
(1 + δ)-isomorphic embedding T : E → Y such that Tx = x for x ∈ B.

Now, we shall check that then ‖(Id− T )|E∩Y ‖ � δ. Indeed, for x ∈ BE∩Y , there is
n ∈ N such that ‖x− n‖ � δ/2(δ + 2) and hence ‖x− ϕ(n)‖ � ‖x− n‖ + ‖ϕ(n) −
n‖ � δ/δ + 2. In other words, there exists b ∈ B such that ‖x− b‖ � δ/δ + 2. Since
Tb = b we have

‖(Id − T )x‖ � ‖x− b‖ + ‖Tb− Tx‖ � (1 + ‖T‖)‖x− b‖ � δ,

so we really have ‖(Id− T )|E∩Y ‖ � δ.
Now pick a projection P : E → E with P [E] = E ∩ Y and norm ‖P‖ � dim(E),

and define S : E → Y by S = P + T (Id − P ). It is clear that S(x) = x for every
x ∈ E ∩ Y . Furthermore, for every x ∈ E, the following relation holds:

‖Sx− Tx‖ = ‖(Id − T )Px‖ � δ‖Px‖ � δ dim(E)‖x‖ < ε

2
‖x‖.

Therefore, for every x ∈ E we have

‖Sx‖ � ‖Sx− Tx‖ + ‖Tx‖ � ε

2
‖x‖ + (1 + δ)‖x‖ � (1 + ε)‖x‖.

and

‖Sx‖ � ‖Tx‖ − ‖Sx− Tx‖ � (1 − δ)‖x‖ − ε

2
‖x‖

�
(

1 − ε

2
· 1 − ε

1 + ε
− ε

2

)
‖x‖ = (1 + ε)−1‖x‖.

which shows that S is (1 + ε)-isomorphic embedding and therefore completes the
proof. �

The second main result is the following.

Theorem 14. Let X be a Banach space. Then there exists a rectangular exceedingly
rich family S of subspaces of X ×X∗ such that for every V ×W ∈ S there exists
a norm-one operator R : X → V ∗∗ such that

(Ra) Rx = x for all x ∈ V .

(Rb) Rx(x∗|V ) = x∗(x) for all x ∈ X and for all x∗ ∈W .

Proof. By theorem C, it suffices to find a rectangular family S large in the sense
of Skolem-like functions such that for each V ×W ∈ S there exists a norm-one
operator R : X → V ∗∗ satisfying both (Ra) and (Rb).
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Let φ : P(X ×X∗) → P(X ×X∗) be the rectangular Skolem-like function from
Key Lemma 12. Pick A ⊂ X ×X∗ and put V := φX(A), W := φX∗(A). Let

Γ = {(E,B,D, ε) : E ⊂ X finite-dimensional, B ∈ [E ∩ φX(A)]<ω,

D ∈ [φX∗(A)]<ω, ε > 0}
be directed by the relation � defined as follows (E, B, D, ε) � (E′, B′, D′, ε′) if
and only if E ⊂ E′, B ⊂ B′, D ⊂ D′ and ε′ � ε.

Since φ is as in Key lemma 12, for every I = (E′, B′, D′, ε′) there exists a
bounded linear operator TI : E → V satisfying conditions (Ka), (Kb) and (Kc)
of the lemma.

We define RI : X → V by

RIx =
{
TIx if x ∈ E;
0 otherwise .

We note that for every x ∈ X and x∗ ∈ X∗, {x∗(RIx) : I ∈ Γ} is a bounded set
of real numbers and so relatively compact. We fix a directed ultrafilter U in Γ (that
is, U is nonprincipal ultrafilter satisfying {i ∈ Γ: i � i0} ∈ U for every i0 ∈ Γ) and
define a function R : X → V ∗∗ by the formula:

Rx(x∗) = lim
U
x∗(RIx), x ∈ X, x∗ ∈ V ∗.

It is readily seen that R is a linear map. Moreover, for arbitrary x ∈ BX , x∗ ∈
BV ∗ and ε > 0, if I0 = (span{x}, ∅, ∅, ε) then for every I � I0 we have |x∗(TIx)| �
‖TI‖ � (1 + ε) and therefore

|Rx(x∗)| = lim
U

|x∗(RIx)| � (1 + ε)

and we deduce that ‖R‖ � 1.
To verify (Ra), we let x ∈ φX(A) be arbitrary and set I0 = (span{x}, {x}, ∅, 1).

Then, for any I � I0, recalling (Ka), for all x∗ ∈ V ∗, we have

x∗(x) = x∗(TIx) = x∗(RIx),

which implies

Rx(x∗) = lim
U
x∗(RIx) = lim

I�I0
x∗(RIx) = x∗(x).

Thus, we have Rx = x for x ∈ φX(A) and by the continuity of R we obtain (Ra).
To verify (Rb), we let x ∈ X and x∗ ∈ φX∗(A) be arbitrary. Given δ > 0

we set I0 = (span{x}, ∅, {x∗}, δ/(1 + ‖x∗‖‖x‖)). For every I = (E, B, D, ε) � I0,
according to (Kc), we have

|(x∗|V )(TIx) − x∗(x)| � ‖(x∗ ◦ TI − x∗)|E‖‖x‖ � ε‖x∗‖‖x‖ < δ.

This implies

|Rx(x∗|V ) − x∗(x)| = lim
U

|(x∗|V )(TIx) − x∗(x)| � δ.

As δ > 0 is arbitrary, we can conclude that Rx(x∗|XM
) = x∗(x). Furthermore, due

to the continuity of R, we can deduce that Rx(x∗|V ) = x∗(x) holds for all x ∈ X
and for all x∗ ∈ φX∗(A) = W . �

https://doi.org/10.1017/prm.2024.68 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.68


18 L. Candido, M. Cúth and O. Smetana

Corollary 15. Let X be a Banach space. Then there exists a rectangular exceed-
ingly rich family S of subspaces of X ×X∗ such that for every V ×W ∈ S there
exists a norm-one projection P : X∗ → X∗ with KerP = V ⊥ and RngP ⊃W .

Proof. Let S be as in theorem 14. Then given V ×W ∈ S there exists norm-one
mapping R : X → V ∗∗ such that (Ra) and (Rb) hold. Define P : X∗ → X∗ by

Px∗(x) := Rx(x∗|V ), x ∈ X, x∗ ∈ X∗. (3.6)

Then indeed P is a norm-one operator and using condition (Ra) we obtain Px∗|V =
x∗|V , x∗ ∈ X∗ which implies that P is a projection. Condition (Rb) implies that
RngP ⊃W . It is immediate from (3.6) that Px∗ = 0 for x∗ ∈ V ⊥, so we have
V ⊥ ⊂ KerP . Finally, given x∗ ∈ KerP we have x∗|V = Px∗|V ≡ 0 and so KerP ⊂
V ⊥. �

One can wonder what is the range of the projection given by corollary 15.
Theorem 16 below shows that this issue might be quite complicated and might
depend on the structure of the Banach space X (as one can see from the proof, this
result is essentially known, we only use outcomes of § 2 to reformulate everything
using rich families instead of suitable models).

Theorem 16. Let X be a Banach space. Consider the following conditions.

(i) There exists a rectangular exceedingly rich family S of subspaces of X ×X∗

such that for every V ×W ∈ S there exists a norm-one projection P : X∗ →
X∗ with KerP = V ⊥ and RngP = W .

(ii) There exists a rectangular exceedingly rich family S of subspaces of X ×X∗

such that for every V ×W ∈ S there exists a norm-one projection P : X∗ →
X∗ with KerP = V ⊥ and RngP ⊃W

w∗
.

(iii) There exists a rectangular exceedingly rich family S of subspaces of X ×X∗

such that for every V ×W ∈ S there exists a w∗-w∗ continuous norm-one
projection P : X∗ → X∗ with KerP = V ⊥ and RngP ⊃W .

Then

• (i) holds ⇔ X is Asplund,

• (ii) holds ⇔ (iii) holds ⇔ X is WLD.

Proof. By [23, Proposition 26], X is Asplund if and only if X is a subset of the set
induced by a projectional skeleton on X∗. Thus, by lemma 9 (applied to X ×D =
X∗ ×X) we obtain that (i) holds if and only if X is Asplund.

It is immediate that (iii) implies (ii).
By [23, Corollary 25], X is WLD if and only if X∗ is the set induced by a

projectional skeleton on X.
First, suppose thatX is WLD. By lemma 9, there exists a rectangular exceedingly

rich family S of subspaces of X ×X∗ such that for every V ×W ∈ S there exists a
projection Q : X → X with Q[X] = V and KerQ = W⊥. Then P = Q∗ : X∗ → X∗
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is a w∗-w∗ continuous projection with RngP = W
w∗

and KerP = V ⊥. Thus, if X
is WLD then both (ii) and (iii) hold.

Finally, if (ii) holds, then for every V ×W ∈ S we have X = V +W⊥ (because
otherwise there is x∗ ∈ X∗ \ {0} such that x∗|V +W⊥ ≡ 0, and therefore x∗ ∈ V ⊥ ∩
(W⊥)⊥ ⊂ RngP ∩ KerP = {0}, contradiction). Thus, by lemma 9 we obtain that
X∗ is the set induced by a projectional skeleton on X and so X is WLD. �

4. Almost isometric local retracts

The main aim of this section is to show that small modifications of the proof of
theorem 14 lead quite directly to the proof of theorem B. This gives a different
approach when compared to the proof of [27, Theorem 5.5], where a similar (but
slightly weaker) result was proved.

Lemma 17 Key Lemma, metric case. Let X be a metric space. Then there exists
a rectangular Skolem-like function φ : P(X × Lip0(X)) → P(X × Lip0(X)) such
that for every A ⊂ X × Lip0(X) the set φLip0(X)(A) is Q-linear subspace and the
following holds :

Let ε > 0, D ∈ [φLip0(X)(A)]<ω, B ∈ [φX(A)]<ω and E ⊂ X be a finite set with
E ⊃ B. Then there is a Lipschitz mapping T : E → φX(A) such that

(K’a) Tx = x for all x ∈ B,

(K’b) (1 + ε)−1d(x, y) � d(Tx, Ty) � (1 + ε)d(x, y) for all x, y ∈ E,

(K’c) ‖(d ◦ T − d)|E‖ � ε‖d‖ for all d ∈ D,

Proof. The proof is very similar to the proof of Key lemma 12. The additional
ingredient is only to use Lipschitz-free spaces. We pick arbitrary 0 ∈ X, so X is a
pointed metric space.

Given sets A ⊂ X × Lip0(X), finite sets B ⊂ X andD ⊂ Lip0(X), for each n, k ∈
N and δ ∈ Q+, we pick a finite δ-net Ak,δ of S�k

1
and a finite δ-net Nn,δ(B) ⊂

F(B) := span δ(B)(⊂ F(X)) of nBF(B). Now since for any R ∈ N the mapping
ψn,k,δ,R : (BX(0, R))k → (RNn,δ(B)×Ak,δ × RD×k, ‖ · ‖∞), defined by the formula

ψn,k,δ,R(u) :=

⎛⎝(∥∥∥∥∥x+
k∑

i=1

aiδ(ui)

∥∥∥∥∥
)

x∈Nn,δ(B),a∈Ak,δ

, (d(ui))d∈D,i�k

⎞⎠ ,

has separable range, we may pick a countable set Fn,k,δ,R(B, D) ⊂ BX(0, R) such
that ψn,k,δ,R(Fn,k,δ,R(B, D)k) is dense in the range of ψn,k,δ,R. Next, if D(A) :=
spanQ πLip0(X)(A) ⊂ X∗ for every A ⊂ X × Lip0(X), we inductively define ξ(A) ⊂
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X for A ⊂ X × Lip0(X) as follows:

ξ0(A) := πX(A),

ξn+1(A) := ξn(A) ∪
⋃{

Fn,k,δ,R(B,D) : n, k,R ∈ N, δ ∈ Q+,

B ⊂ ξn(A) and D ⊂ D(A) are finite sets

}
,

ξ(A) :=
∞⋃

n=0

ξn(A).

Similarly as in the proof of Key lemma 12 we check that indeed the mapping φ
defined by φ(A) := ξ(A) ×D(A), A ⊂ X × Lip0(X) is a rectangular Skolem-like
function.

Now, pick ε > 0, A ⊂ X ×X∗, D ⊂ D(A) = φLip0(X)(A) finite, B ⊂ φX(A) =
ξ(A) finite and finite set E ⊂ X with E ⊃ B. Let R ∈ N be such that E ⊂ B(0, R)
and enumerate {e1, . . . , ek} = E \B. Let ζ be the function from lemma 11 applied
to m = R and F(B) ⊕F(E \B) and let δ > 0 be such that ζ(δ) < ε. Now, pick
n ∈ N with n � 1/δ. By the choice of Fn,k,δ,R(B, D), there are f1, . . . , fk ∈
Fn,k,δ,R(B, D) ⊂ ξ(A) such that ‖ψn,k,δ,R((fi)) − ψn,k,δ,R((ei))‖∞. Then, by lemma
11, since ζ(δ) < ε, we have that the mapping T̂ : F(E) = F(B) ⊕F(E \B) →
F(ξ(A)) = F(φX(A)) given by

T̂ (x+
k∑

i=1

aiδ(ei)) := x+
k∑

i=1

aiδ(fi), x ∈ F(B), a ∈ Rk

is (1 + ε)-isomorphic embedding. Thus, the mapping T : E → φX(A) given by
T (x) := δ−1(T̂ (δ(x))) satisfies (K’a) and (K’b). Finally, since for any d ∈ D we
have |d(ei) − d(fi)| < δ, i = 1, . . . , k, the moreover part of lemma 11 implies that
(K’c) holds as well. �

Remark 18. In the proof of lemma 17 we used lemma 11. We could also formulate
and prove a metric version of lemma 11, whose proof is much easier. This is the
basic strategy of the approach from [27] (see the proof of Lemma 5.2 therein). In
order to shorten a bit the argument, we used rather the already proven lemma 11
(even though an easier statement would be sufficient as well in this case).

Theorem 19. Let X be a metric space. Then there exists an exceedingly rich family
S of closed subsets of X such that each F ∈ S is ai local retract in X.

Proof. By theorem C, it suffices to find a rectangular family S large in the sense of
Skolem-like functions such that each F ∈ S is almost isometric local retract in X.

Pick the rectangular Skolem-like function φ : P(X × Lip0(X)) → P(X ×
Lip0(X)) from the statement of lemma 17 and consider its projection onto the first
coordinate given by ψ(A) := φX(A× {0}). It is easy to check that ψ : P(X) →
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P(X) is Skolem-function as well. Thus, in order to finish the proof it suffices to
check that ψ(A) is almost isometric local retract for every A ⊂ X.

Pick A ⊂ X and denote V := ψ(A). Fix ε > 0 and a finite set E ⊂ X. Pick δ >
0 small enough (more concretely, δ < ε/2 and δ < min{εd(x, y)/2: x, y ∈ E, x �=
y}) and a function ϕ : E ∩ V → ψ(A) such that d(ϕ(x), x) < δ for every x ∈ E ∩
V . We let E′ = E ∪ Rngϕ, B = Rngϕ, D = ∅ and use (K’a) and (K’b) to find
(1 + δ)-biLipschitz embedding T : E′ → ψ(A) satisfying Tx = x for x ∈ B.

We define S : E → V by Sx = x for x ∈ E ∩ V and Sx = T (x) for x ∈ E \ V .
It suffices to show that S is (1 + ε)-biLipschitz embedding. Since T is (1 + ε)-
biLipschitz embedding, it suffices to consider x ∈ E ∩ V , y ∈ E \ V and estimate
then d(Sx, Sy). For x ∈ E ∩ V , y ∈ E \ V we have

|d(Sx, Sy) − d(x, y)| = |d(x, Ty) − d(x, y)| � δ + |d(Ty, ϕ(x)) − d(x, y)|
= δ + |d(Ty, Tϕ(x)) − d(x, y)| � δ + δd(x, y) � εd(x, y).

Thus, S is (1 + ε)-biLipschitz embedding. �

Now, we could also proceed similarly as in the proofs of theorem 14 and corollary
15 and obtain a family of extension operators E : Lip0(V ) → Lip0(X); however,
in this case it seems to us that we would not get anything valuable since the
existence of an extension operator E : Lip0(V ) → Lip0(X) follows immediately from
the existence of Hahn-Banach extension operator H : F(V )∗ → F(X)∗ which in
turn is easily deduced from theorem 14. In other words, using directly corollary 15
we obtain a family of projection on the space Lip0(X) = F(X)∗.

Finally, let us recall that any nonseparable Lipschitz-free space contains an iso-
morphic copy of 
1(ω1), see [20, Theorem 2.1] or [16, Proposition 3] and also
[3, Theorem 3.9] for even more general statements, and therefore, nonseparable
Lipschitz-free spaces are not WLD and also not Asplund. In particular, projections
on Lip0(X) given by corollary 15 are not w∗-w∗ continuous due to theorem 16.

5. (Separable) determination theorems

In this section we exhibit the use of our results from the previous sections to obtain
several ‘(separable) determination theorem’. The main advantage is that the notion
of exceedingly rich families makes it possible to combine several results together,
see lemma 2. This enables us to prove independently some partial steps and then
combine those together without the need of going through the proofs again. We
refer the interested reader to [8, Introduction], where this is explained in a greater
detail. The main results from this section are theorems 22, 23 and 24 from which
using lemma 2 we easily obtain theorem D.

Remark 20. Results contained in this section should be understood just as a sample
of possible applications as using similar techniques we are able to add several other
properties to the list from theorem D such as local diameter 2 property, diameter
2 property, strong diameter 2 property, almost squareness, octahedrality etc (we
refer the interested reader to [1] where the notions mentioned above are defined
and results of a similar nature were proved therein). Similarly, one could add some
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more properties of metric spaces to the statement of theorem E such as being length,
having long trapezoid property etc (we refer the interested reader to [12] and [26],
where the connection to the above mentioned Daugavet property and octahedrality
is proved).

We recall that a Banach space X is said to be a Gurarĭı space (an L1-predual
space) if, for every ε > 0 and for every isometric embedding T : E → X and for
all finite-dimensional space F , if E ⊂ F , then T admits an extension T̂ : E → X
such that (1 + ε)−1‖x‖ � ‖T̂‖ � (1 + ε)‖x‖ (‖T̂‖ � (1 + ε)‖x‖) for every x ∈ F
(see [4, Proposition 2.7]). In other words, X is a Gurarĭı space (an L1-predual
space) if and only if it is an ai-ideal (a ideal) in every Banach space containing it.

The subsequent lemma is a slight modification of [4, Proposition 2.5]. We provide
the complete argument here for the reader’s convenience.

Lemma 21. Let X be a Gurarĭı space (an L1-predual space). If Y is an ai-ideal on
X, then Y is also a Gurarĭı space (an L1-predual space).

Proof. Given ε > 0 and a finite dimensional Banach space E we let T : E → Y be
a linear isometric embedding. If F denotes a finite dimensional Banach contain-
ing E, since X is a Gurarĭı space (an L1-predual space), for 0 < δ <

√
1 + ε−

1, T admits a linear extension T̂ : F → X of T with (1 + δ)−1‖x‖ � ‖T (x)‖ �
(1 + δ)‖x‖ (‖T (x)‖ � (1 + δ)‖x‖) for all x ∈ E. Since Y is an ai-ideal in X,
there exists an (1 + δ)-isomorphic embedding S : T̂ [F ] → Y such that S(x) = x
for every x ∈ Y ∩ T̂ [F ]. Hence S ◦ T̂ : F → Y is a linear extension of T satis-
fying (1 + ε)−1‖x‖ � (1 + δ)−2‖x‖ � ‖S ◦ T (x)‖ � (1 + δ)2‖x‖ � (1 + ε)‖x‖ (‖S ◦
T (x)‖ � (1 + δ)2‖x‖ � (1 + ε)‖x‖) for all x ∈ F . �

From the results established in this paper, we can obtain a slight strengthening
of [11, Theorem 3.4] and [4, Theorem 2.6 and Theorem 2.8].

Theorem 22. Let X be a non-separable Banach space. Then there exists an exceed-
ingly rich family S of subspaces of X such that, for every Y ∈ S the following
holds

X is a Gurarĭı space ⇔ Y is a Gurarĭı space,

X is an L1-predual space ⇔ Y is an L1-predual space.

Proof. We start with handling the first equivalence by distiguishing two cases. In
the case that X is Gurarĭı space, by theorem 14 there is exceedingly rich family S1

such that every Y ∈ S1 is ai-ideal in X and therefore, by lemma 21, it is Gurarĭı
space. Thus, we have that for any Y ∈ S1 it holds that X is Gurarĭı space if and
only if Y is Gurarĭı space.

In the case that X is not Gurarĭı space, there is ε > 0, finite dimensional E
and F , with E ⊂ F , and an isometric linear embedding T : E → X that cannot be
extended to an (1 + ε)-isomorphic embedding from F into X. Then we let

S1 := {V ⊂ X : V is a closed subspace of X and contains E ∪ F ∪ T (E)}
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and easily check that S1 is exceedingly rich family with V not being Gurarĭı for
V ∈ S1. Thus, we have that for any Y ∈ S it holds that X is not Gurarĭı if and
only if Y is not Gurarĭı.

Thus, in any case there exists exceedingly rich family S1 such that for any Y ∈ S1

we have that X is Gurarĭı if and only if Y is Gurarĭı. Similarly, we find exceedingly
rich family S2 such that for any Y ∈ S2 we have that X is L1-predual if and only
if Y is L1-predual. Finally it suffices to put S := S1 ∩ S2, which is exceedingly rich
family by lemma 2. �

A Banach space X is said to have the Daugavet property if for every rank-
one operator T : X → X satisfies ‖ IdX −T‖ = 1 + ‖T‖. It is well-known, see
[18, Lemma 2.2], that X has the Daugavet property if and only if, for every
y ∈ SX , x∗ ∈ SX∗ and ε > 0 there exists x ∈ SX such that x∗(x) � 1 − ε and
‖x+ y‖ � 2 − ε.

By employing the results from this paper, we establish the following.

Theorem 23. Let X be a non-separable Banach space. Then there exists an exceed-
ingly rich family S of subspaces of X such that, for every Y ∈ S the following
holds

X has the Daugavet property ⇔ Y has the Daugavet property.

Proof. Similarly as in the proof of theorem 22, we distiguish two cases. If X has
the Daugavet property, then according to theorem 14 there exists an exceedingly
rich family S such that every Y ∈ S is ai-ideal in X, and, by [2, Proposition 3.8],
each of these ai-ideals inherits the Daugavet property. Thus, if X has the Daugavet
property, S does the job.

If X does not have Daugavet property, then, based on the characterization men-
tioned above, there exist y ∈ SX , x∗ ∈ SX∗ and ε > 0 such that, for every x ∈ SX ,
x∗(x) < 1 − ε or ‖x+ y‖ < 2 − ε.

We let D ⊂ BX be a countable set witnessing that ‖x∗‖ = 1, that is,
supx∈D ‖x∗(x)‖ = 1. The family S ′ := {Y ⊂ X : Y is a closed subspace of X and
contains {y} ∪D} is readily seen to be an exceedingly rich family of closed subsets
of X. Moreover, for each Y ∈ S ′ we have ‖x∗|Y ‖ = 1, and since SY ⊂ SX , for each
x ∈ SY we have x∗(x) < 1 − ε or ‖x+ y‖ < 2 − ε, which proves that Y does not
have the Daugavet property. Thus, if X does not have the Daugavet property, S ′

does the job. �

A metric space X is said to be an absolute ai-local retract if it is an ai-
local retract in every metric space containing it. This concept was introduced in
[27, Definition 4.1]. It was also established, see [27, Theorem 4.5], that X abso-
lute ai-local retract, if and only if, for every finite subsets E, F ⊂ X, with E ⊂ F ,
every isometry f : E → X can be extended to an (1 + ε)-biLipschitz embedding
f̂ : F → X.

From the results of the § 4, we have the following application.

Theorem 24. Let X be a non-separable metric space. Then there exists an exceed-
ingly rich family S of subspaces of X such that, for every Y ∈ S the following
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holds

X is an absolute ai-local retract ⇔ Y absolute an ai-local retract.

Proof. Similarly as in the proof of theorem 22 by distinguishing two cases. If X is
an absolute ai-local retract, then from theorem 19 we may fix a exceedingly rich
family S comprising ai-local retracts of X. With an argument similar to lemma
21 we deduce that each F ∈ S is absolute ai-local retract. On the other hand,
assuming that X is not an absolute ai-local retract, there exists ε > 0, finite sets
E, F ⊂ X and a isometric mapping f : E :→ X that cannot be extended to a
(1 + ε)-biLipschitz embedding. The family S = {Y ⊂ X : Y contains E ∪ F ∪
T (E)} is clearly a exceedingly rich family such that Y is not an absolute ai-local
retract for all Y ∈ S. �

Acknowledgements
We would like to thank Andrés Quilis and Abraham Rueda Zoca for sending us
preliminary version of their preprint [27], which motivated us to write this paper.
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31 H. Toruńczyk. Characterizing Hilbert space topology. Fund. Math. 111 (1981), 247–262.

https://doi.org/10.1017/prm.2024.68 Published online by Cambridge University Press

arXiv:2311.13289
arXiv:2311.13289
https://doi.org/10.1017/prm.2024.68

	1 Preliminaries
	2 Exceedingly rich families and equivalent methods
	2.1 Proof of theorem [st13]7

	3 Almost isometric ideals
	4 Almost isometric local retracts
	5 (Separable) determination theorems
	References

