Bull. Aust. Math. Soc. 110 (2024), 161–166 doi[:10.1017/S0004972723000837](http://dx.doi.org/10.1017/S0004972723000837)

A NOTE ON BRØNDSTED'S FIXED POINT THEORE[M](#page-0-0)

OLEG ZUBELEVIC[H](https://orcid.org/0000-0003-0463-5559)

(Received 13 July 2023; accepted 18 July 2023; first published online 31 August 2023)

Abstract

We show that for the case of uniformly convex Banach spaces, the conditions of Brøndsted's fixed point theorem can be relaxed.

2020 *Mathematics subject classification*: primary 47H10; secondary 06A06, 46A40, 46B40, 46B42, 47J05.

Keywords and phrases: fixed points, partial order, discontinuous operators.

1. Introduction and main theorem

The object of this short note is a fixed point theorem by Arne Brøndsted. Let us formulate this theorem.

Let $(X, \|\cdot\|)$ be a Banach space and let $M \subset X$ be a closed set. We denote the closed unit ball by $B = \{x \in X \mid ||x|| \le 1\}$. Assume that

$$
M \cap B = \emptyset. \tag{1.1}
$$

Consider a mapping $T : M \to M$ that maps each $x \in M$ in the direction of the ball: if $Tx \neq x$, then there exists $t > 1$ such that

$$
x + t(Tx - x) \in B. \tag{1.2}
$$

THEOREM 1.1 (Brøndsted [\[2\]](#page-4-0)). *In addition to the assumptions above, suppose that*

$$
\inf\{\|x\| \mid x \in M\} > 1. \tag{1.3}
$$

Then the mapping T has a fixed point.

Observe that condition [\(1.3\)](#page-0-1) is stronger than condition [\(1.1\)](#page-0-2) only if dim $X = \infty$.

To prove Theorem [1.1,](#page-0-3) Brøndsted endows the set *M* with a partial order in the following way.

DEFINITION 1.2. If $x, y \in M$, we write $x \leq y$ provided either $x = y$ or there exists $t > 1$ such that

© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

The research was funded by a grant from the Russian Science Foundation (Project No. 19-71-30012).

162 **O.** Zubelevich [2]

$$
x + t(y - x) \in B.
$$

The second possibility can equivalently be formulated as follows: there exist $\tilde{t} > 1$ and $a \in X$, $||a|| = 1$, such that $x + \tilde{t}(y - x) = a$ and $x + t(y - x) \notin B$ for all $t < \tilde{t}$.

Equation [\(1.2\)](#page-0-4) takes the form

$$
x \le Tx \quad \text{for all } x \in M. \tag{1.4}
$$

Then Brøndsted observes that this partial order is finer than that of the Caristi type [\[3\]](#page-4-1) and, by some of his other results [\[1\]](#page-4-2), the fixed point exists.

Our aim is to show that for the class of uniformly convex Banach spaces *X*, Theorem [1.1](#page-0-3) remains valid even in the critical case when condition (1.3) is replaced by (1.1) . This does not follow from Brøndsted's original method. We recall a definition.

DEFINITION 1.3. A Banach space $(X, \|\cdot\|)$ is said to be uniformly convex if for any $\sigma > 0$, there exists $\gamma > 0$ such that if $||x|| = ||y|| = 1$ and $||x - y|| \ge \sigma$, then $||x + y|| < 2 - \gamma$ $||x + y|| \leq 2 - \gamma.$

For example, the space L^p , $p \in (1, \infty)$, is uniformly convex. Similarly, ℓ_p is uniformly convex. Each uniformly convex Banach space is reflexive and a Hilbert space is uniformly convex (see [\[4\]](#page-4-3) and references therein).

We now state our main result.

THEOREM 1.4. *Assume that X is a uniformly convex Banach space. If the mapping T satisfies condition [\(1.4\)](#page-1-0) and condition [\(1.1\)](#page-0-2) is fulfilled, then T has a fixed point.*

EXAMPLE 1.5. For the space *X*, take ℓ_p , $1 < p < \infty$. For each $n \in \mathbb{N}$, define

$$
M_n = \{ \mathbf{x} = \{x_k\} \in \ell_p \mid x_n \ge 1 + 1/n \}, \quad M = \bigcup_{n \in \mathbb{N}} M_n.
$$

It is not hard to show that the set *M* is closed and $M \cap B = \emptyset$. A sequence

 $x_i = (0, ..., 0, 1 + 1/j, 0, ...)$ (where $1 + 1/j$ stands at the *j*th place),

belongs to *M* and $||\mathbf{x}_j|| \to 1$ as $j \to \infty$. Thus, the set *M* satisfies the hypotheses of Theorem [1.4,](#page-1-1) but not those of Theorem [1.1.](#page-0-3)

Now take any nonempty closed set $M \subset X$ with $M \cap B = \emptyset$ in a uniformly convex Banach space *X* and let $f : B \to B$ be a mapping. Construct *T* as follows. Take

$$
\mathbf{x} \in M, \quad \mathbf{y} = f\left(\frac{\mathbf{x}}{\|\mathbf{x}\|}\right)
$$

and let

$$
\lambda_0 = \min\{\lambda \in [0, 1] \mid \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in M\}.
$$

It is clear that $\lambda_0 > 0$. Define $T\mathbf{x} = \lambda_0 \mathbf{x} + (1 - \lambda_0) \mathbf{y}$. We obviously obtain $\mathbf{x} \leq T\mathbf{x}$ and T has a fixed point. Since we assume only $M \cap B = \emptyset$ this fact follows from Theorem *T* has a fixed point. Since we assume only $M \cap B = \emptyset$, this fact follows from Theorem [1.4](#page-1-1) and it does not follow from Theorem [1.1.](#page-0-3)

2. Proof of Theorem 1.4

The scheme of the proof is quite standard by itself. It is clear that a maximal element of the set *M* provides a fixed point. To prove that the maximal element exists, we check the conditions of Zorn's lemma. This argument and the technique developed below make it possible to give a direct proof of Theorem [1.1](#page-0-3) as well.

PROPOSITION 2.1. *Suppose that vectors* $a, x \in X$ *have the properties*

$$
||(1-t)a + tx|| > 1
$$
 for all $t \in (0, 1)$, $||x|| > 1$ and $||a|| = 1$.

Then for any $\varepsilon > 0$ *, there exists* $\delta > 0$ *such that inequality* $||x|| \le 1 + \delta$ *implies*
 $||x - a|| \le \varepsilon$ $||x - a|| \leq \varepsilon.$

This proposition has a 'physical' interpretation. Let *x* be a light source placed away from the ball *B*, where $||x|| > 1$. According to the proposition, the diameter of the light spot on the ball tends to zero as x approaches the ball that is $||x|| \rightarrow 1$ spot on the ball tends to zero as *x* approaches the ball, that is, $||x|| \rightarrow 1$.

Here the uniform convexity of the norm is essential: such a feature fails for the norm $||(p, q)|| = \max{ |p|, |q| }$ in \mathbb{R}^2 .

PROOF. Assume the opposite: there exist $\varepsilon > 0$ and sequences a_n, x_n , with

$$
||x_n|| > 1
$$
, $||a_n|| = 1$, $||x_n|| \to 1$ and $||(1-t)a_n + tx_n|| > 1$, (2.1)

such that

$$
||x_n - a_n|| > \varepsilon.
$$

Consequently, for all sufficiently large *n*, the estimate

$$
||x_n - a_n|| = \left\|x_n - \frac{x_n}{||x_n||} + \frac{x_n}{||x_n||} - a_n\right\| \le \alpha_n + \left\|a_n - \frac{x_n}{||x_n||}\right\|,
$$

where

$$
\alpha_n = ||x_n|| \left(1 - \frac{1}{||x_n||} \right) \to 0,
$$

implies

$$
\left\|a_n - \frac{x_n}{\|x_n\|}\right\| \ge \varepsilon/2.
$$

Substituting $t = 1/2$ in [\(2.1\)](#page-2-0),

$$
||a_n + x_n|| > 2.
$$
 (2.2)

The inequality

$$
\left\| a_n + \frac{x_n}{\|x_n\|} \right\| > 2 - \alpha_n
$$

follows from (2.2) in the same way as above. This contradicts the hypothesis of uniform convexity of the space *X*. The proposition is proved. \Box 164 **O.** Zubelevich [4]

Let $C \subset M$ be a chain and put $\rho = \inf\{||u|| \mid u \in C\}$ where $\rho \ge 1$. The inclusion $x \in C$
plies that $||x|| > 1$ provided $\rho \ge 1$ and $||x|| > \rho$ provided $\rho > 1$ implies that $||x|| > 1$ provided $\rho = 1$ and $||x|| \ge \rho$ provided $\rho > 1$.
For any $x \in C$ define a set

For any $x \in C$, define a set

$$
K_x(\rho) = \{y \in M \mid ||y|| \ge \rho, x \le y\}.
$$

The sets $K_x(\rho)$ are nonvoid: $x \in K_x(\rho)$ and

$$
x_1 \le x_2 \Longrightarrow K_{x_2}(\rho) \subset K_{x_1}(\rho). \tag{2.3}
$$

LEMMA 2.2. *The sets* $K_r(\rho)$ *are closed.*

PROOF. Indeed, let a convergent sequence $\{y_k\}$ belong to $K_x(\rho)$ and $y_k \to y \in M$. This means that there are sequences $\{\beta_k\} \subset (0, 1)$ and $\{a_k\} \subset X$ with $||a_k|| = 1$, such that

$$
y_k = \beta_k a_k + (1 - \beta_k)x.
$$

The sequence $\{\beta_k\}$ contains a convergent subsequence; we keep the same notation for this subsequence, say $\beta_k \to \beta$. If $\beta = 0$, then $\|\beta_k a_k\| \to 0$ and $y = x \in K_\rho(x)$. If $\beta \neq 0$, put

$$
a = \frac{1}{\beta}y + \left(1 - \frac{1}{\beta}\right)x
$$

so that

$$
a_k = \frac{1}{\beta_k} y_k + \left(1 - \frac{1}{\beta_k}\right) x \to a.
$$

Since $||a_k|| = 1$ and $a_k \to a$, we have $||a|| = 1$. It follows that

$$
y = \beta a + (1 - \beta)x.
$$

Since $y \in M$, the parameter β cannot be equal to 1. The lemma is proved.

LEMMA 2.3. *Suppose that* $z \in K_x(\rho)$ *with* $x \in C$. If $\rho > 1$ *, then*

$$
||z - x|| \le (||x|| - \rho) \frac{||x|| + 1}{\rho - 1}.
$$

If $\rho = 1$ *, then for any* $\varepsilon > 0$ *, there exists* $\delta > 0$ *such that*

$$
||x|| \le 1 + \delta \Longrightarrow ||z - x|| \le \varepsilon.
$$

PROOF. *The case* $\rho > 1$. The formula

$$
x + t(z - x) = a
$$
, where $||a|| = 1, t > 1$ and $||x||, ||z|| \ge \rho > 1$, (2.4)

implies $z = (a + (t-1)x)/t$ and

$$
\rho \le ||z|| \le \frac{1}{t} + \frac{t-1}{t} ||x||, \quad \frac{1}{t} \le \frac{||x|| - \rho}{||x|| - 1}.
$$

Using (2.4) again.

$$
||z - x|| = \frac{1}{t} ||a - x|| \le \frac{1}{t} (1 + ||x||).
$$

The case $\rho = 1$. The condition of the lemma that $z \in K_x(1)$ means

$$
z = \tau a + (1 - \tau)x, \quad \text{where } ||x||, ||z|| > 1, ||a|| = 1 \text{ and } \tau \in (0, 1).
$$

Therefore, the assertion of the lemma follows from Proposition [2.1](#page-2-2) and the formulae

$$
z - x = \tau(a - x), \quad ||z - x|| \le ||x - a||.
$$

LEMMA 2.4. *For any* $\varepsilon > 0$, there exists $\tilde{x} \in C$ such that

$$
C\ni x \geq \tilde{x} \Longrightarrow \text{diam } K_x(\rho) \leq \varepsilon.
$$

PROOF. *The case* $\rho > 1$. By definition of the number ρ , for any $\varepsilon > 0$, there is an element $\tilde{x} \in C$ such that

$$
\|\tilde{x}\| \leq \varepsilon + \rho.
$$

Take any elements $z_1, z_2 \in K_{\tilde{x}}$ and apply Lemma [2.3](#page-3-1) for each summand on the right side of the inequality

$$
||z_1 - z_2|| \le ||z_1 - \tilde{x}|| + ||z_2 - \tilde{x}||. \tag{2.5}
$$

Observe also that [\(2.3\)](#page-3-2) implies

$$
\tilde{x} \le x \in C \Longrightarrow \text{diam}\, K_x(\rho) \le \text{diam}\, K_{\tilde{x}}(\rho). \tag{2.6}
$$

The case $\rho = 1$. Fix $\varepsilon > 0$. By Lemma [2.3,](#page-3-1) there exists $\delta > 0$ such that if $\tilde{x} \in C$ and $\|\tilde{x}\| \leq 1 + \delta$, then for any $z \in K_{\tilde{x}}(1)$, one has $\|\tilde{x} - z\| \leq \varepsilon$. By definition of the number ρ , such an element $\tilde{x} \in C$ exists. Thus (2.5) (2.6) remain valid such an element $\tilde{x} \in C$ exists. Thus, [\(2.5\)](#page-4-4), [\(2.6\)](#page-4-5) remain valid.

The lemma is proved. \Box

PROOF OF THEOREM 1.4. Therefore, we have a nested family of closed sets $K_x(\rho)$ whose diameters tend to zero. By a well-known theorem, their intersection is not empty and consists of a single point:

$$
\bigcap_{x\in C}K_x(\rho)=\{m\}.
$$

The point *m* ∈ *M* is an upper bound for *C*. Indeed, for any *x* ∈ *C*, we have *m* ∈ *K_x*(ρ) and thus *x* $\lt m$ Theorem 1.4 is proved and thus $x \le m$. Theorem [1.4](#page-1-1) is proved.

References

- [1] A. Brøndsted, 'On a lemma of Bishop and Phelps', *Pacific J. Math.* 55 (1974), 335–341.
- [2] A. Brøndsted, 'Fixed points and partial orders', *Proc. Amer. Math. Soc.* 60 (1976), 365–366.
- [3] J. Caristi and W. A. Kirk, 'Geometric fixed point theory and inwardness conditions', in: *The Geometry of Metric and Linear Spaces (Conference, Michigan State University, 1974)*, Lecture Notes in Mathematics, 490 (ed. L. M. Kelly) (Springer, New York, 1975), 74–83.
- [4] K. Yosida, *Functional Analysis* (Springer, New York, 1980).

OLEG ZUBELEVICH, Steklov Mathematical Institute of the Russian Academy of Sciences, 2nd Krestovskii Pereulok 12-179, 129110, Moscow, Russia e-mail: oezubel@gmail.com