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1. Introduction
In topological dynamics, the study of chaotic behaviour of a dynamical system is often
based on some properties of continuous functions. One of the frequently studied properties
of such functions in the theory of topological dynamical systems is the entropy of a
continuous function f : X→ X on a compact metric space X, which serves as a measure
of the complexity of the dynamical system. This often leads to studying the entropy of the
shift map σ on the inverse limit lim←−(X, f ). More precisely, suppose X is a compact metric
space. If f : X→ X is a continuous function, the inverse limit space generated by f is the
subspace of

∏∞
i=0 X equipped with the usual product topology, given by

lim←−(X, f ) :=
{
(x0, x1, x2, x3, . . .) ∈

∞∏
i=0

X | for each non-negative integer i, xi = f (xi+1)

}
,
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also abbreviated as lim←− f . The map f on X induces a natural homeomorphism σ on lim←− f ,
called the shift map, defined by

σ(x0, x1, x2, x3, x4, . . .) = (x1, x2, x3, x4, . . .)

for each (x0, x1, x2, x3, x4, . . .) in lim←− f . Note that the shift map σ is the inverse function
to the map defined by (x0, x1, x2, . . .) �→ (f (x0), x0, x1, x2, . . .).

To study such inverse limits lim←− f and shift maps σ : lim←− f → lim←− f , the study of
backward orbits of points of dynamical systems (X, f ) is also required; note that the
inverse limit lim←− f is the space of all backward orbits in (X, f ). Such backward orbits of
points are actually forward orbits of points in the dynamical system (X, f−1) if f−1 is well
defined. However, usually, f−1 is not a well-defined function; therefore, a more general
tool is needed to study these properties. Note that for a continuous function f : X→ X,
the set

�(f )−1 = {(y, x) ∈ X ×X | y = f (x)}
is a closed relation on X that describes best the dynamics of (X, f ) in the backward
direction when f−1 is not well defined. So, generalizing topological dynamical systems
(X, f ) to topological dynamical systems (X, F) with closed relations F on X by making
the identification (X, f ) = (X, �(f )) is only natural. So, what we are engaged in is the
replacement of a map f : X→ X by a closed relation F on X.

Recently, many such generalizations of dynamical systems were introduced and studied
(see [1, 2, 7, 12, 14–19, 22], where more references may be found). However, there is
not much known of such dynamical systems and, therefore, there are many properties
of such set-valued dynamical systems that are yet to be studied. In [2], the notion of
topological entropy h(f ) of continuous functions f : X→ X on compact metric spaces
X was generalized to the notion of topological entropy ent(F ) of closed relations F on
compact metric spaces X. In this paper, we continue our research from [2]. We introduce
the notions of returns and well-aligned sets for closed relations on compact metric spaces,
and then use them to obtain non-trivial sufficient conditions for such relations to have
non-zero entropy. In addition, we give a characterization of finite relations with non-zero
entropy. We also show that, unlike topological entropy for closed relations on compact
metric spaces in general, in the case of finite relations, positive entropy is equivalent to the
shift map on the Mahavier product being Li–Yorke chaotic as well as equivalent to DC-2
distributional chaos for the shift map, as well as equivalent to F having a (k, ε)-return.

When constructing a closed relation F on a compact metric space X, a standard
topological dynamical system (X+F , σ), where X+F is the Mahavier product of the relation
F and σ is the shift map on X+F , is constructed at the same time. This is a new way of
constructing topological dynamical systems with interesting properties. Therefore, it is
only natural to study the properties of the relation F that imply interesting topological or
dynamical properties of the dynamical system (X+F , σ). Here, we study the properties of
the closed relation F on X (such as returns and well-aligned sets) that imply that the shift
map σ on X+F has positive entropy. Then, for example, one can apply these results to obtain
mappings on compact metric spaces with non-zero entropy. Oprocha constructed in [21] a
transitive zero-entropy homeomorphism on the Lelek fan. He asked then if there existed

https://doi.org/10.1017/etds.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.11


Sufficient conditions for non-zero entropy of closed relations 3093

also a transitive non-zero entropy homeomorphism on the Lelek fan [21, Question 3.11].
In [3], Banič, Erceg and Kennedy constructed a transitive homeomorphism on the Lelek
fan. The construction was based on producing a closed relation F on X = [0, 1] in such a
way that the Mahavier product X+F is a Lelek fan and the shift map σ on it is transitive. In
[2], the authors showed that the entropy of the relation F from [3] has positive entropy. In
Example 4.12, we use the introduced theory of returns to shorten and simplify that proof
from [2] and then we use Theorem 3.16 to show that this implies that the shift map σ on X+F
from [3] has non-zero entropy. This gives an answer to Oprocha’s question [21, Question
3.11] in the affirmative. The same technique of closed relations on compact metric spaces
was used later in [4] to produce a transitive homeomorphism on the Cantor fan. The notions
of returns can be used to give simple proofs that a transitive homeomorphism on the Cantor
fan from [4] also has positive entropy. See Examples 4.10 and 4.11.

We proceed as follows. In §2, basic definitions and notation that are needed later in
the paper are given and presented. In §3, the topological entropy for closed relations is
defined and in addition, basic results from [2] are presented. In §4, our first main result as
well as illustrative examples and corollaries are given and proved. In our last section, §5,
we restrict ourselves to finite relations on compact metric spaces. Here, our second main
result, a characterization of finite relations with non-zero entropy, is presented and proved.

2. Definitions and notation
First, we define some properties from the continuum theory and the theory of inverse limits
that are used later in the paper.

Definition 2.1. Let X be a non-empty compact metric space. We always use ρ to denote
the metric on X.

Definition 2.2. Suppose X is a non-empty compact metric space. If for each non-negative
integer n, fn : X→ X is a continuous function, the inverse limit space generated by (fn)

is the subspace of
∏∞

i=0 X equipped with the usual product topology, given by

lim←−(X, fn) :=
{
(x0, x1, x2, x3, . . .) ∈

∞∏
i=0

X | for each non-negative integer i, xi = fi(xi+1)

}
.

Definition 2.3. A continuum is a non-empty connected compact metric space. A contin-
uum is degenerate if it consists of only a single point. Otherwise it is non-degenerate. A
subcontinuum is a subspace of a continuum which itself is a continuum.

Next, we define chainable continua (using inverse limits); see [20, §XII] for more
details.

Definition 2.4. A continuum X is chainable if there is a sequence (fn) of continuous
surjections fn : [0, 1]→ [0, 1] such that X is homeomorphic to lim←−([0, 1], fn).

Definition 2.5. A continuum X is decomposable if there are proper subcontinua A and
B of X (A, B �= X) such that X = A ∪ B. A continuum is indecomposable if it is not
decomposable. A continuum is hereditarily indecomposable if each of its subcontinua is
indecomposable.
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Definition 2.6. A pseudoarc is any non-degenerate hereditarily indecomposable chainable
continuum.

Bing showed in [5] that any two pseudoarcs are homeomorphic. Next, we present basic
definitions and well-known results about closed relations and Mahavier products.

Definition 2.7. We use:
(1) N to denote the set of positive integers;
(2) Nm to denote the set {1, 2, 3, . . . , m} for each positive integer m;
(3) Z+ to denote the set of non-negative integers; and
(4) Z to denote the set of integers.
Let m be a positive integer. For any set X, we use:
(1) Xm to denote the Cartesian product

∏m−1
i=0 X;

(2) XZ+ to denote the Cartesian product
∏∞

i=0 X.

For each non-negative integer i and for each x = (x0, x1, x2, . . .) ∈ XZ+ ( or x =
(x0, x1, x2, . . . , xm−1) ∈ Xm), we use πi(x) or x(i) or xi to denote the ith coordinate
xi of the point x. For all non-negative integers k and � such that k ≤ �, we use [k, �]
to denote the set {k, k + 1, k + 2, . . . , �} and π[k,�] :

∏∞
i=0 X→∏�

i=k X to denote
the projection that is defined by π[k,�](x0, x1, x2, . . . , xk , xk+1, . . . , x�, x�+1, . . .) =
(xk , xk+1, xk+2, . . . , x�). For k = �, we use πk to denote the projection π[k,k]. For a
non-empty compact metric space X, we use p1 : X ×X→ X and p2 : X ×X→ X to
denote the standard projections defined by p1(s, t) = s and p2(s, t) = t for all (s, t) ∈
X ×X.

Definition 2.8. Let X and Y be metric spaces, and let f : X→ Y be a function. We use
�(f ) = {(x, y) ∈ X × Y | y = f (x)} to denote the graph of the function f.

Definition 2.9. Let X be a non-empty compact metric space and let F ⊆ X ×X be a
relation on X. If F is closed in X ×X, then we say that F is a closed relation on X.

Definition 2.10. Let X be a set and let F be a relation on X. Then we define F−1 =
{(y, x) ∈ X ×X | (x, y) ∈ F } to be the inverse relation of the relation F on X.

Definition 2.11. Let X be a non-empty compact metric space and let F be a closed relation
on X. Then we call

Xm
F =

{
(x0, x1, x2, x3, . . . , xm) ∈

m∏
i=0

X | for each i ∈ {0, 1, 2, . . . , m−1}, (xi , xi+1) ∈ F

}

for each positive integer m, the mth Mahavier product of F, and we call

X+F =
{
(x0, x1, x2, x3, . . .) ∈

∞∏
i=0

X | for each non-negative integer i, (xi , xi+1) ∈ F

}

the infinite Mahavier product of F.

In our previous papers, we have also used �m−1
i=0 F to denote the mth Mahavier product

and �∞i=0F to denote the infinite Mahavier product of F.
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Definition 2.12. Let X be a non-empty compact metric space and let F be a closed relation
on X. The function σ : X+F → X+F , defined by

σ(x0, x1, x2, x3, . . .) = (x1, x2, x3, . . .)

for each (x0, x1, x2, x3, . . .) ∈ X+F , is called the shift map on X+F .

Definition 2.13. We use 	2 to denote the set

	2 = {s : Z+ → {0, 1}}
and for each non-negative integer j, we use 	

j

2 to denote the set

	
j

2 = {s : [0, j ]→ {0, 1}}.
Finally, we define the operation � on Mahavier products.

Definition 2.14. Let X be a non-empty compact metric space and let F be a
closed relation on X. Also, let m, n ∈ Z+ and let (x0, x1, x2, . . . , xn) ∈ Xn

F and
(y0, y1, y2, . . . , ym) ∈ Xm

F be such that xn = y0. Then we define (x0, x1, x2, . . . , xn) �

(y0, y1, y2, . . . , ym) by

(x0, x1, x2, . . . , xn) � (y0, y1, y2, . . . , ym) = (x0, x1, x2, . . . , xn, y1, y2, . . . , ym).

Observation 2.1. Let X be a non-empty compact metric space and let F be a closed relation
on X. Also, let m, n ∈ Z+, and let (x0, x1, x2, . . . , xn) ∈ Xn

F and (y0, y1, y2, . . . , ym) ∈
Xm

F be such that xn = y0. Then (x0, x1, x2, . . . , xn) � (y0, y1, y2, . . . , ym) ∈ Xn+m
F .

3. Topological entropy of closed relations on compact metric spaces
In this section, we summarize the generalization of topological entropy to closed relations
on a compact metric space introduced in [2], where the entropy of a closed relation F on
X is defined using Mahavier products Xm

F−1 . To simplify the notion of entropy of closed
relations and to avoid any possible confusion when dealing with F and F−1 at the same
time, we define here the entropy of F using Mahavier products Xm

F . This new definition is
equivalent to the definition of entropy from [2].

Definition 3.1. Let X be a non-empty compact metric space and let S be a family of subsets
of X. We use |S| to denote the cardinality of S.

Definition 3.2. Let X be a non-empty compact metric space and let S be a family of subsets
of X. For each positive integer n, we use Sn to denote the family

Sn = {S0 × S1 × S2 × · · · × Sn−1 | S0, S1, S2, . . . , Sn−1 ∈ S}.
We call the elements S0 × S1 × S2 × · · · × Sn−1 of S the n-boxes (generated by the
family S).

Definition 3.3. Let X be a non-empty compact metric space and let U be an open cover for
X. We use N(U) to denote

N(U) = min{|V| | V is a finite subset of U that covers X}.
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Definition 3.4. Let X be a non-empty compact metric space, let n be a positive integer, let
K be a closed subset of the product Xn and let U be a non-empty family of open subsets of
Xn such that K ⊆⋃

U . We use N(K , U) to denote

N(K , U) = min
{
|V| | V is a non-empty subfamily of U such that K ⊆

⋃
V

}
.

Observation 3.1. Let X be a non-empty compact metric space, let K be a closed subset of
the product Xn and let U be a non-empty family of open subsets of Xn such that K ⊆⋃

U .
Note that even in the case when K = ∅, N(K , U) is a positive integer since |V| ≥ 1 for
each non-empty subfamily V of U . Also, note that for each positive integer m and for each
open cover α for X,

1 ≤ N(Xm
F , αm+1) ≤ (N(α))m+1,

and that for some positive integer m, Xm
F may be empty. Note that even in this case,

1 ≤ N(Xm
F , αm+1) ≤ (N(α))m+1.

Observation 3.2. Let X be a non-empty compact metric space, let F be a closed relation
on X such that p2(F ) ⊆ p1(F ) and let α be an open cover for X. Note that for each positive
integer m,

N(Xm
F , αm+1) ≤ N(Xm+1

F , αm+2).

LEMMA 3.3. Let X be a non-empty compact metric space, let F be a closed relation on X
and let α be an open cover for X. Then

N(Xm+n
F , αm+n+1) ≤ N(Xm

F , αm+1) ·N(Xn
F , αn+1)

for all positive integers m and n.

Proof. Let m and n be positive integers, and let:
(1) N(Xm

F , αm+1) = km and let γ = {�0, �1, �2, . . . , �km−1} be a subfamily of αm+1

such that Xm
F ⊆ �0 ∪ �1 ∪ �2 ∪ · · · ∪ �km−1; and

(2) N(Xn
F , αn+1) = kn and let δ = {0, 1, 2, . . . , kn−1} be a subfamily of αn+1

such that Xn
F ⊆ 0 ∪1 ∪2 ∪ · · · ∪kn−1.

Observe that

Xm
F ×Xn

F ⊆
km−1⋃
i=0

kn−1⋃
j=0

�i ×j .

Let π : Xm
F ×Xn

F → Xm
F ×Xn−1

F be the projection which omits the first coordinate in Xn
F :

π((x0, x1, x2, . . . , xm), (y0, y1, y2, . . . , yn)) = ((x0, x1, x2, . . . , xm), (y1, y2, . . . , yn))

for each ((x0, x1, x2, . . . , xm), (y0, y1, y2, . . . , yn)) ∈ Xm
F ×Xn

F . Also, let

Z = {(x, y) ∈ Xm
F ×Xn

F | xm = y0}.
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Then π(Z) is homeomorphic to Xm+n
F . Furthermore, note that for each i ∈ {0, 1, 2, . . . ,

km − 1} and for each j ∈ {0, 1, 2, . . . , kn − 1},
π(�i ×j) ⊆ αm+n+1

and the result follows.

We use the following lemma in the proof of Theorem 3.5.

LEMMA 3.4. Let (am) be a sequence in R such that:
(1) for each positive integer m, am ≥ 0; and
(2) for all positive integers m and n, am+n ≤ am + an.
Then the limit limm→∞ am/m exists and

lim
m→∞

am

m
= inf

{
am

m
| m is a positive integer

}
.

Proof. The proof can be found in [24, Theorem 4.9, p. 87].

THEOREM 3.5. Let X be a non-empty compact metric space, let F be a closed relation on
X and let α be an open cover for X. Then the limit

lim
m→∞

log N(Xm
F , αm+1)

m

exists.

Proof. For each positive integer m, let

am = log N(Xm
F , αm+1).

By Observation 3.1, for each positive integer m, N(Xm
F , αm+1) is a positive integer. It

follows that for each positive integer m, am ≥ 0. Next, we prove that the above limit exists.
By Lemma 3.4, it suffices to show that for all positive integers m and n, am+n ≤ am + an.
It follows (using Lemma 3.3) that for all positive integers m and n,

am+n = log N(Xm+n
F , αm+n+1) ≤ log(N(Xm

F , αm+1) ·N(Xn
F , αn+1))

= log N(Xm
F , αm+1)+ log N(Xn

F , αn+1) = am + an.

Definition 3.5. Let X be a non-empty compact metric space, let F be a closed relation on
X and let α be an open cover for X. We define the entropy of F with respect to the open
cover α by

ent(F , α) = lim
m→∞

log N(Xm
F , αm+1)

m
.

Observation 3.6. Let X be a non-empty compact metric space, let F be a closed relation
on X and let α be an open cover for X. Since X is non-empty, it follows that α is
non-empty. Therefore, log N(Xm

F , αm+1) is well defined and is a non-negative number
(even in the case when Xm

F = ∅ for some positive integer m), since N(Xm
F , αm+1) is

https://doi.org/10.1017/etds.2024.11 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.11


3098 I. Banič et al

defined in Definition 3.4 as

N(Xm
F , αm+1) = min

{
|V| | V is a non-empty subfamily of αm+1 such that Xm

F ⊆
⋃

V
}

.

Therefore, the entropy ent(F , α) with respect to the open cover α is always well defined –
also in the case when Xm

F = ∅ for some positive integer m. Note that if for some positive
integer m0, X

m0
F = ∅, then for each m ≥ m0, also Xm

F = ∅. It follows that in this case,
N(Xm

F , αm+1) = 1 and, therefore,

ent(F , α) = lim
m→∞

log N(Xm
F , αm+1)

m
= lim

m→∞
log 1
m
= 0.

Definition 3.6. Let X be a metric space and let S and T be families of subsets of X. We say
that the family S refines the family T if for each S ∈ S, there is T ∈ T such that S ⊆ T .
The notation T ≤ S means that the family S refines the family T .

PROPOSITION 3.7. [2, Proposition 1] Let X be a non-empty compact metric space and let
F be a closed relation on X. For all non-empty open covers α and β,

α ≤ β �⇒ ent(F , α) ≤ ent(F , β).

Proof. Let α and β be any open covers for X such that α ≤ β. Then αn ≤ βn for
each positive integer n. Let m be a positive integer, let k = N(Xm

F , βm+1) and let
{B0, B1, B2, . . . , Bk−1} ⊆ βm+1 be such that Xm

F ⊆ B0 ∪ B1 ∪ B2 ∪ · · · ∪ Bk−1. For
each i ∈ {0, 1, 2, . . . , k − 1}, let Ai ∈ α such that Bi ⊆ Ai . Therefore, Xm

F ⊆ A0 ∪ A1 ∪
A2 ∪ · · · ∪ Ak−1 and N(Xm

F , αm+1) ≤ N(Xm
F , βm+1) follows. Therefore, ent(F , α) ≤

ent(F , β).

PROPOSITION 3.8. [2, Proposition 2] Let X be a non-empty compact metric space and let
α be a non-empty open cover for X. For all closed relations F and G on X,

F ⊆ G �⇒ ent(F , α) ≤ ent(G, α).

Proof. The proposition follows from the fact that N(Xm
F , αm+1) ≤ N(Xm

G, αm+1) for each
positive integer m.

Definition 3.7. Let X be a non-empty compact metric space, let F be a closed relation on
X and let E = {ent(F , α) | α is an open cover for X}. We define the entropy of F by

ent(F ) =
{

sup(E); E is bounded in R,

∞; E is not bounded in R.

Observation 3.9. Let X be a non-empty compact metric space and let F be a closed
relation on X. Note that if for some positive integer m0, X

m0
F = ∅, then, as seen in

Observation 3.6, for each open cover α for X, ent(F , α) = 0. Therefore, in this case,
E = {ent(F , α) | α is an open cover for X} = {0} and since E is bounded in R, it follows
that ent(F ) = sup(E) = sup{0} = 0.

The following theorems summarize the basic properties of ent(F ).
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THEOREM 3.10. Let X be a non-empty compact metric space. For all closed relations F
and G on X,

F ⊆ G �⇒ ent(F ) ≤ ent(G).

Proof. The theorem follows directly from Proposition 3.8.

THEOREM 3.11. Let X be a non-empty compact metric space and let F be a closed relation
on X. Then

ent(F−1) = ent(F ).

Proof. Let T be the homeomorphism on Xm+1 which reverses the order of the coordinates.
Then T (Xm

F ) = Xm
F−1 and T (Xm

F−1) = Xm
F . Note that for any subset U of αm+1 which

covers Xm
F , the set T (U) is a subset of αm+1 which covers Xm

F−1 , and that for any subset
U of αm+1 which covers Xm

F−1 , the set T (U) is a subset of αm+1 which covers Xm
F . The

result follows.

In Theorem 3.12, we show that the entropy of closed relations F on a non-empty
compact metric space X is a generalization of the well-known topological entropy of
continuous functions f : X→ X. Before stating and proving the theorem, we give the
following definitions.

Definition 3.8. Let X be a set, let f : X→ X be a function and let S be a family of subsets
of X. Then we define f−1(S) = {f−1(S) | S ∈ S}.
Definition 3.9. Let X be a set and let A0, A1, A2, . . . , Am−1 be families of subsets of X.
Then we define

∨m−1
i=0 Ai = {A0 ∩ A1 ∩ A2 ∩ · · · ∩ Am−1 | for each i ∈ {0, 1, 2, . . . , m− 1}, Ai ∈ Ai}.

Definition 3.10. Let X be a non-empty compact metric space and let f : X→ X be a
continuous function. For any open cover α for X, we define

h(f , α) = lim
m→∞

log(N(∨m
i=0f

−i (α)))

m
.

Definition 3.11. Let X be a non-empty compact metric space and let f : X→ X be a
continuous function. Also, let E = {h(f , α) | α is an open cover for X}. Then we define

h(f ) =
{

sup(E); E is bounded in R,

∞; E is not bounded in R,

to be the entropy of the function f.

The following theorem shows that the topological entropy of a continuous function
f : X→ X on compact metric spaces X is just a special case of the entropy of closed
relations F on X. Therefore, the concept ent(F ) is a generalization of the concept of h(f ).

THEOREM 3.12. Let X be a non-empty compact metric space and let f : X→ X be a
continuous function. Then

ent(�(f )) = h(f ).
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Proof. Observe that for each x ∈ X and for all A0, A1, A2, . . . , An ∈ α, (x, f (x),
f 2(x) . . . , f n(x)) ∈ A0 × A1 × A2 × · · · × An if and only if x ∈⋂n

i=0 f−i (Ai). So, a
collection of elements of αn+1 covers Xn

�(f ) if and only if the corresponding elements of
∨n

i=0f
−i (α) cover X. Therefore, for any open cover α for X and for any positive integer m,

N(Xm
�(f ), αm+1) = N(∨m

i=0f
−i (α)).

Finally, we prove that ent(�(f )) = h(f ):

ent(�(f )) = sup{ent(�(f ), α) | α is an open cover for X}

= sup
{

lim
m→∞

log N(Xm
�(f ), αm+1)

m
| α is an open cover for X

}

= sup
{

lim
m→∞

log N(∨m
i=0f

−i (α))

m
| α is an open cover for X

}
= sup{h(f , α) | α is an open cover for X}
= h(f ).

This completes the proof.

For a more thorough discussion of topological entropy h(f ), see [24]. In Theorem 3.16,
we present a relationship between ent(F ) and h(σ). We use the following notation in its
proof.

Definition 3.12. Let X be a non-empty compact metric space, let F be a closed relation on
X and let U be an open cover for XZ+ . Then we use U ∩X+F to denote

U ∩X+F = {U ∩X+F | U ∈ U}.
Next, let m be a positive integer and let V be an open cover for Xm. Then we use V ×XZ+

to denote

V ×XZ+ = {V ×XZ+ | V ∈ V},
which is an open cover for XZ+ .

LEMMA 3.13. Let X be a non-empty compact metric space, let F be a closed relation on X
such that p2(F ) ⊆ p1(F ) and let σ be the shift map on X+F . Then

ent(F , α) = h(σ , (αm+1 ×XZ+) ∩X+F )

for any open cover α for X and for any positive integer m.

Proof. First, we define σX : XZ+ → XZ+ to be the function defined by

σX(x0, x1, x2, . . .) = (x1, x2, x3, . . .)

for each (x0, x1, x2, . . .) ∈ XZ+ . Note that (σX)|X+F = σ . Let α be an open cover for X and

let m be a positive integer. First, note that for each positive integer k and for any V ∈ αm+1,

σ−k
X (V ×XZ+) = Xk × V ×XZ+ .
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It follows that σ−k(αm+1 ×XZ+) = Xk × αm+1 ×XZ+ and, therefore,

N(X+F , ∨k
i=0σ

−i
X (αm+1 ×XZ+)) = N(X+F , αm+k+1 ×XZ+).

Let π : X+F → Xm+k
F be the projection to the first m+ k + 1 coordinates. Note that π is

surjective since p2(F ) ⊆ p1(F ). Then

N(X+F , αm+k+1 ×XZ+) = N(Xm+k
F , αm+k+1)

follows since for each x ∈ X+F and for each V ∈ αm+k+1,

x ∈ V ×XZ+ = π−1(V )⇐⇒ π(x) ∈ V .

Note also that for all positive integers m and k,

N(∨k
i=0σ

−i ((αm+1 ×XZ+) ∩X+F )) = N(∨k
i=0(σ

−i
X (αm+1 ×XZ+) ∩ σ−i (X+F )))

= N(∨k
i=0(σ

−i
X (αm+1 ×XZ+) ∩X+F )) = N(X+F , ∨k

i=0(σ
−i
X (αm+1 ×XZ+) ∩X+F ))

= N(X+F , ∨k
i=0σ

−i
X (αm+1 ×XZ+) ∩X+F ) = N(X+F , ∨k

i=0σ
−i
X (αm+1 ×XZ+)).

It follows that for all positive integers m and k,

N(Xm+k
F , αm+k+1) = N(∨k

i=0σ
−i ((αm+1 ×XZ+) ∩X+F )).

Next, we prove that

lim
k→∞

log N(Xm+k
F , αm+k+1)

k
= lim

k→∞
log N(Xk

F , αk+1)

k
.

For each positive integer n, let an = log N(Xn
F , αn+1). Then ak = log N(Xk

F , αk+1)

and am+k = log N(Xm+k
F , αm+k+1) for all positive integers m and k. It follows from

Observation 3.2 that ak ≤ am+k and from Lemma 3.3 that am+k ≤ am + ak for all positive
integers m and k. Therefore, ak ≤ am+k ≤ am + ak , and ak/k ≤ am+k/k ≤ am/k + ak/k

follows for all positive integers m and k. By Theorem 3.5, the limit limk→∞(ak/k) exists,
therefore, for each positive integer m,

lim
k→∞

ak

k
≤ lim

k→∞
am+k

k
≤ lim

k→∞
am

k
+ lim

k→∞
ak

k
= lim

k→∞
ak

k
.

Thus, for each positive integer m, limk→∞ am+k/k = limk→∞ ak/k and

lim
k→∞

log N(Xm+k
F , αm+k+1)

k
= lim

k→∞
log N(Xk

F , αk+1)

k

follows for each positive integer m. Therefore, for any positive integer m, we get that

h(σ , (αm+1 ×XZ+) ∩X+F ) = lim
k→∞

log N(∨k
i=0σ

−i ((αm+1 ×XZ+) ∩X+F ))

k

= lim
k→∞

log N(Xm+k
F , αm+k+1)

k

= lim
k→∞

log N(Xk
F , αk+1)

k

= ent(F , α).
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LEMMA 3.14. Let X be a non-empty compact metric space, let F be a closed relation on
X and let σ be the shift map on X+F . Then

h(σ) = sup{h(σ , (αm+1 ×XZ+) ∩X+F ) | α is an open cover for X, m is a positive integer}

Proof. Let A = {h(σ , (αm+1 ×XZ+) ∩X+F ) | α is an open cover for X, m is a positive
integer} and let B = {h(σ , U) | U is an open cover for X+F }. Note that h(σ) = sup(B).
We distinguish the following possible cases.
• A is not bounded in R. Then sup(A) = ∞ and since A ⊆ B, it follows that

sup(B) = ∞. Therefore, in this case, sup(A) = sup(B).
• A is bounded in R. Since A ⊆ B, it follows that sup(A) ≤ sup(B). To show that

sup(A) ≥ sup(B), we show that for every open cover U for X+F , there are an open cover
α for X and a positive integer m such that h(σ , U) ≤ h(σ , (αm+1 ×XZ+) ∩X+F ). Let
U be any open cover for X+F . To show that there are an open cover α for X and a
positive integer m such that h(σ , U) ≤ h(σ , (αm+1 ×XZ+) ∩X+F ), we show that there
are an open cover α for X and a positive integer m such that U ≤ (αm+1 ×XZ+) ∩X+F .
Since X+F is a compact metric space, it follows that U has a finite subcover. Let
U0, U1, U2, . . . , Uk ∈ U be such that X+F = U0 ∪ U1 ∪ U2 ∪ · · · ∪ Uk . Let λ be a
Lebesgue number (a positive number λ is a Lebesgue number of an open cover U of X
if for each set A ⊆ X with diameter less than λ, there is U in U such that A ⊆ U ) of the
open cover {U0, U1, U2, . . . , Uk} for X+F , let α be an open cover for X and m a positive
integer such that for each A ∈ α, diam(A) < λ and diam(X+F )/2m < λ. It follows
that for each element U ∈ (αm+1 ×XZ+) ∩X+F , diam(U) < λ. Therefore, for each
U ∈ (αm+1 ×XZ+) ∩X+F , there is an i ∈ {0, 1, 2, . . . , k} such that U ⊆ Bi . Thus,
{U0, U1, U2, . . . , Uk} ≤ (αm+1 ×XZ+) ∩X+F . Since {U0, U1, U2, . . . , Uk} ⊆ U , it
follows that also U ≤ (αm+1 ×XZ+) ∩X+F .

LEMMA 3.15. Let X be a non-empty compact metric space, let F be a closed relation on X
such that p2(F ) ⊆ p1(F ) and let σ be the shift map on X+F . Then

ent(F ) = sup{h(σ , (αm+1 ×XZ+)∩X+F ) | α is an open cover for X, m is a positive integer}.

Proof. It follows from Lemma 3.13 that for each positive integer m,

sup{ent(F , α) | α is an open cover for X} =
sup{h(σ , (αm+1 ×XZ+) ∩X+F ) | α is an open cover for X}.

For each positive integer m, let Am = {h(σ , (αm+1 ×XZ+) ∩X+F ) | α is an open cover
for X}, let A = {h(σ , (αm+1 ×XZ+) ∩ X+F ) | α is an open cover for X, m is a positive
integer} and let B = {ent(F , α) | α is an open cover for X}. It follows from A =⋃∞

i=1 Ai

and from sup(Am) = sup B for each positive integer m that sup(A) = sup(B).

THEOREM 3.16. Let X be a non-empty compact metric space, let F be a closed relation on
X such that p2(F ) ⊆ p1(F ) and let σ be the shift map on X+F . Then

ent(F ) = h(σ).
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Proof. The theorem follows from Lemmas 3.14 and 3.15:

ent(F )

= sup{h(σ , (αm+1 ×XZ+) ∩X+F ) | α is an open cover for X, m is a positive integer}
= h(σ).

The following well-known result is a corollary of Theorem 3.16.

COROLLARY 3.17. Let X be a non-empty compact metric space, let f : X→ X be a
continuous function and let σ : lim←−(X, f )→ lim←−(X, f ) be the shift function. Then

h(f ) = h(σ).

We conclude this section by stating some open problems. Let X be a non-empty
compact metric space and let F be a closed relation on X. If there is a positive integer
m such that Xm

F = ∅, then, obviously, ent(F ) = 0. Note that there is a positive integer m
such that Xm

F = ∅ if and only if
⋂∞

n=0 Fn(X) = ∅, where Fn(x) = {y ∈ X | there is x ∈
Xn

F such that π0(x) = x and πn(x) = y} and Fn(X) =⋃
x∈X Fn(x). This gives rise to

the following problems that came up during a discussion on the topic with our anonymous
referee.

Problem 3.18. Let X be a non-empty compact metric space and let F be a closed relation
on X. Is it true that

ent(F ) = ent
(

F ∩
(( ∞⋂

n=0

Fn(X)

)
×

( ∞⋂
n=0

Fn(X)

)))
?

Note that for any non-empty closed relation F on a compact metric space, p2(F ) ⊆
p1(F ) is a stronger condition than

⋂∞
n=0 Fn(X) �= ∅. So, it is natural to state the following

problem.

Problem 3.19. Let X be a non-empty compact metric space, let F be a closed relation on
X such that

⋂∞
n=0 Fn(X) �= ∅ and let σ be the shift map on X+F . Is it true that also in this

case,

ent(F ) = h(σ)?

An affirmative solution to the problem gives a nice generalization of Theorem 3.16.

4. Returns
In this section, we present returns for closed relations on compact metric spaces and use
them to obtain non-trivial sufficient conditions for a relation on a compact metric space to
have non-zero entropy. First, we introduce the notion of a (k, ε)-return on a set.

Definition 4.1. Let X be a non-empty compact metric space, let A be a non-empty subset
of X, let F be a closed relation on X, let k be a positive integer and let ε > 0. We say that
F has a (k, ε)-return on A if for each a ∈ A, there are positive integers j and j ′ such that
0 < j ′ ≤ j ≤ k and points x, y ∈ X

j
F such that:

(1) x(0) = y(0) = a;
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(2) x(j), y(j) ∈ A; and
(3) ρ(x(j ′), y(j ′)) ≥ ε.
We say that F has a (k, ε)-return if there is a non-empty set B ⊆ X such that F has a
(k, ε)-return on B.

In Construction 4.1, we give detailed instructions on how to construct an (F , A, k, ε)-
return function for any element a ∈ A (which is defined later in Definition 4.2).

Construction 4.1. Let X be a non-empty compact metric space, let A ⊆ X, let F be a closed
relation on X, let k be a positive integer and let ε > 0. Suppose that F has a (k, ε)-return
on A.
• Step 1. For each a ∈ A, we choose and fix positive integers j ′(a) and j (a) such that

0 < j ′(a) ≤ j (a) ≤ k and points x(a, 0), x(a, 1) ∈ X
j(a)
F such that:

(1) a = x(a, 0)0 = x(a, 1)0;
(2) ρ(x(a, 0)j ′(a), x(a, 1)j ′(a)) ≥ ε;
(3) x(a, 0)j (a), x(a, 1)j (a) ∈ A.
Then we define

δ(a, 0) = x(a, 0)j (a) and δ(a, 1) = x(a, 1)j (a).

• Step 2. Choose and fix a∗ ∈ A. We inductively define functions

 : 	2 → AZ+ and J : 	2 → Z
Z++

by (s)0 = a∗ and for each non-negative integer n, we define

(s)n+1 = δ((s)n, sn)

and J (s)0 = 0, and for each non-negative integer n, we define

J (s)n+1 = J (s)n + j ((s)n)

for any sequence s ∈ 	2.
• Step 3. We define the function � : 	2 → X+F by

�(s)J (s)n = (s)n

for each s ∈ 	2 and for each positive integer n, and

�(s)J (s)n+i = x((s)n, sn)i

for each s ∈ 	2, for each positive integer n and for each i ∈ [0, j ((s)n)].

Definition 4.2. Let X be a non-empty compact metric space, let A ⊆ X, let F be a closed
relation on X, let k be a positive integer, let ε > 0 such that F has a (k, ε)-return on A and let
a∗ ∈ A. We call such a function � : 	2 → X+F from Construction 4.1 a (F , A, k, ε)-return
function for a∗.

The following observation follows directly from Construction 4.1.

Observation 4.2. Let X be a non-empty compact metric space, let F be a closed relation
on X, let k be a positive integer, let ε > 0, let A ⊆ X be such that F has a (k, ε)-return on
A and let a∗ ∈ A. Also, let � be a (F , A, k, ε)-return function for a∗.
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Note that for all sequences s, t ∈ 	2 and for each positive integer n:
(1) J (s)n+1 ≤ kn;
(2) if si = ti for each i ∈ [0, n], then (s)i = (t)i and J (s)i = J (t)i for each i ∈

[0, n+ 1];
(3) �(s)0 = a∗;
(4) for i = 0,

�(s)J (s)n+i = x((s)n, sn)0 = (s)n = �(s)J (s)n ,

and for i = j ((s)n), it holds that J (s)n + i = J (s)n+1, and

�(s)J (s)n+i = x((s)n, sn)j ((s)n) = (s)n+1 = �(s)J (s)n+1

follows.

LEMMA 4.3. Let X be a non-empty compact metric space, let F be a closed relation on X,
let k and m be positive integers, let ε > 0, let A ⊆ X be such that F has a (k, ε)-return on
A, and let a∗ ∈ A. Also, let � be a (F , A, k, ε)-return function for a∗, let j ′ = j ′((s)m)

and let s, t ∈ 	2 be any sequences of 0s and 1s such that:
• for any i ∈ [0, m− 1], si = ti and
• sm �= tm.
Then:
(1) for each i ∈ [0, J (s)m],

�(s)i = �(t)i ;

(2) for each i ∈ [0, j ((s)m)],

�(s)J (s)m+i = x((s)m, sm)i and �(t)J (s)m+i = x((s)m, tm)i ;

(3) ρ(�(s)J (s)m+j ′ , �(t)J (s)m+j ′) ≥ ε and

J (s)m + j ′ ≤ J (s)m + j ((s)m) = J (s)m+1 ≤ mk.

Proof. The lemma follows directly from the construction of the function � and from
Observation 4.2.

COROLLARY 4.4. Let X be a non-empty compact metric space, let F be a closed relation
on X, let k and m be positive integers, let ε > 0, let A ⊆ X be such that F has a (k, ε)-return
on A, and let a∗ ∈ A. Also, let � be a (F , A, k, ε)-return function for a∗, and let s, t ∈ 	2

be any sequences of 0s and 1s. Then the following hold.
(1) If there is a non-negative integer i ≤ m such that ti �= si , then there is a positive

integer j < mk such that
ρ(�(s)j , �(t)j ) ≥ ε.

(2) Let α be an open cover for X consisting of sets with diameter less than ε and let
A∗ ∈ α be such that a∗ ∈ A∗. Then for any U ∈ A∗ × αmk−1,

{π[0,mk](�(s)), π[0,mk](�(t))} �⊆ U .

(3) N(π[0,mk](�(	2)), A∗ × αmk−1) ≥ 2m−1.
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Proof. Item (1) follows directly from Lemma 4.3, item (2) follows from item (1) and item
(3) follows from item (2).

Theorem 4.5 is our first main result of the paper. It says that for a closed relation F on
a compact metric space X, the existence of a (k, ε)-return on a subset of X implies that the
entropy of G is non-zero.

THEOREM 4.5. Let X be a non-empty compact metric space, let A ⊆ X, let F be a closed
relation on X, let k be a positive integer and let ε > 0 such that F has a (k, ε)-return on A.
Then

ent(F ) ≥ log(2)

k
.

Proof. Let a∗ ∈ A and let � be a (F , A, k, ε)-return function for a∗. Let α be an open
cover for X such that for any A ∈ α, the diameter of A is less than ε. It follows from
Corollary 4.4 that for each positive integer m, N(Xmk−1

F , αmk) ≥ 2m−1. Thus,

ent(F )≥ lim
m→∞

log(N(Xmk−1
F , αmk))

mk−1
≥ lim

m→∞
log(2m−1)

mk−1
= lim

m→∞
(m−1) log(2)

mk−1
= log(2)

k
.

Note that it follows from the following observation that there are closed relations F on
compact metric spaces X such that ent(F ) �= 0 and for each non-empty A ⊆ X, F has no
(k, ε)-return on A. So, sufficient conditions from Theorem 4.5 are not necessary conditions
for non-zero entropy of F. Thus, we do not have a characterization of non-zero entropy.

Observation 4.6. If F is a graph of a continuous function from X to X, then for any positive
integer k and for any ε > 0, F does not have a (k, ε)-return since for each positive integer
k and for all x, y ∈ X+F , x(0) = y(0) implies that x(j) = y(j) for all j ≤ k.

In particular, if ϕ is a homeomorphism on X with non-zero entropy, then �(ϕ) is a
closed relation on X with non-zero entropy that admits no (k, ε)-returns. An example of
such a space X and a homeomorphism ϕ on X is the Cantor set {0, 1}Z and the shift
homeomorphism σ on it. Also, note that such a space X may be connected. For example,
let X be the pseudo-arc. It was proved by Kennedy in [13] that there is a homeomorphism
ϕ on X such that h(ϕ) �= 0.

THEOREM 4.7. Let X be a non-empty compact metric space, let A ⊆ X, let F be a closed
relation on X, let k be a positive integer and let ε > 0 such that has a (k, ε)-return on A.
Then there is a countable subset A′ ⊆ A such that F has a (k, ε)-return on A′.

Proof. Let a∗ ∈ A and let � be a (F , A, k, ε)-return function for a∗. While 	2 is
uncountable, for each positive integer m, the set {(s)i : s ∈ 	2, i ≤ m} is finite and
so, the set {(s)i : s ∈ 	2, i ∈ Z+} is a countable set A′ such that F has a (k, ε)-return
on A′.
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FIGURE 1. The graph of the function f from Example 4.9.

Observation 4.8. For any integer N ≥ 2, one can also define that F has a (k, ε, N)-return
on A if for every a ∈ A, there exist j ∈ {2, 3, 4, . . . , k} and the set

{x� | � ∈ {0, . . . , N − 1}} ⊆ X
j
F

such that for each � ∈ {0, 1, 2, . . . , N − 1}, x�(0) = a and x�(j) ∈ A, and for all �, �′ ∈
{0, 1, 2, . . . , N − 1} such that � �= �′, there exists a positive integer j ′ ≤ j such that
ρ(x�(j ′), x�′(j ′)) ≥ ε. One can then embed 	N into X+F and obtain that the entropy of
the relation F is at least log(N)/k.

Next, we give some examples showing how easy it is to prove, using the notion of
returns, that the entropy of a function is positive. First, we show how the notion of returns
can be used to give a simple proof that the tent map has non-zero entropy.

Example 4.9. Let I = [0, 1] and let f : [0, 1]→ [0, 1] be defined by

f (x) =
{

2x for x ≤ 1
2 ,

2− 2x for x > 1
2 ,

see Figure 1.
Let F = �(f )−1. It is easy to check that for each x ∈ [0, 1], both (x, 1

2x, 1
4x) and

(x, 1− 1
2x, 1

2 + 1
4x) are elements of I 2

F . Since | 14x − ( 1
2 + 1

4x)| = 1
2 > 1

3 , �(f )−1 has
a (3, 1

3 )-return on A = [0, 1]. It follows from Theorem 4.5 that h(f ) = ent(F ) > 0.

The following example presents how returns may be used to produce a homeomorphism
on a Cantor fan with positive entropy (a continuum X is a Cantor fan if X is homeomorphic
to the continuum

⋃
c∈C Sc, where C ⊆ [0, 1] is the standard Cantor set and for each c ∈ C,

Sc is the straight line segment in the plane from (0, 0) to (c, 1)).

Example 4.10. Let X = [−1, 1] and let F = �(f1) ∪ �(f2), where f1 : [−1, 1]→
[−1, 1] and f2 : [−1, 1]→ [−1, 1] are defined by

f1(x) = −x and f2(x) = x

for each x ∈ X. By [11, Example 2.7], the Mahavier product X+F is a Cantor fan. Note that
A = {1} is a (3, 2)-return with sequences (1, −1, 1) and (1, 1, 1). So, the entropy of the
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FIGURE 2. The relation F from Example 4.11.

shift map σF on X+F is non-zero. The same argument as in [4, Example 4.15] shows that the
inverse limit lim←−(X+F , σF ) is also a Cantor fan. Therefore, the shift map σ on lim←−(X+F , σF )

is a homeomorphism on a Cantor fan with positive entropy.

In the following example, the same simple argument is used to produce a transitive
homeomorphism on a Cantor fan with positive entropy. (The function f : X→ X is
transitive if for all non-empty open sets U and V in X, there is a non-negative integer
n such that f n(U) ∩ V �= ∅.) Note that the homeomorphism from Example 4.10 is not
transitive.

Example 4.11. Let X = [−1, 1] and let F = �(f1) ∪ �(f2), where f1 : [−1, 1]→
[−1, 1] and f2 : [−1, 1]→ [−1, 1] are defined by

f1(x) = −x and f2(x) =
{

x1/3; x ∈ [−1, 0],

x2; x ∈ [0, 1]

for each x ∈ X; see Figure 2. By [4, Example 4.15], the Mahavier product X+F is a Cantor
fan and the shift map σF on X+F is transitive. Note that A = {1} is a (3, 2)-return with
sequences (1, −1, 1) and (1, 1, 1). So, the entropy of the shift map σF on X+F is positive.
It follows from [4, Example 4.15] that the inverse limit lim←−(X+F , σF ) is also a Cantor fan.
Therefore, the shift map σ on lim←−(X+F , σF ) is a transitive homeomorphism on a Cantor fan
with positive entropy.

The closed relation in the following example was shown in [2] to produce a dynamical
system with positive entropy that does not have periodic points or finitely generated Cantor
sets. (Let X be a compact metric space and let F be a closed relation on X. We say that F
has finitely generated Cantor sets, if there is a Cantor set C in X+F such that for some
finite collection G ⊆ F , X+G = C.) The notion of well-aligned sets was introduced in [2]
as a way to generalize the proof that the relation in Example 4.12 produces a dynamical
system with positive entropy. While the existence of well-aligned sets may be hard to verify
in many different settings, the use of returns introduced in this paper serves a different
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FIGURE 3. The relation F from Example 4.12.

purpose in that it can greatly simplify proofs of positive entropy in this setting of shift maps
on Mahavier products as well as in more traditional settings as in Example 4.9. However,
it is especially useful when there are no finitely generated Cantor sets. Our examples also
tend to illustrate that it is much easier to verify the existence of a return than the existence
of well-aligned sets.

Example 4.12. Let I = [0, 1]. In [2], it was shown that if 0 < a < 1 and 0 < b < 1, and

F =
{
(x, y) ∈ [0, 1]× [0, 1] | y = 1

a
x or y = bx

}
,

see Figure 3, then ent(F ) �= 0.
We present a much streamlined proof of this fact by showing that if 0 < a ≤ b < 1,

then F has a (k, ε)-return on the set A = [ab, a]. For the case 0 < b ≤ a < 1, a similar
argument shows that F−1 has a (k, ε)-return on A = [ab, b].

So assume 0 < a ≤ b < 1. Note if b > a, then there is an m ∈ N such that bm−1 > a

and bm ≤ a, and thus ab<bm ≤ a. So if y ∈ (a, b], then there is an my ∈ N such that
my ≤ m and bmy−1y > a and bmy y ≤ a, and thus ab ≤ bmy y ≤ a.

We show that if k = m+ 1 and ε = (1/a − b)ab/2, then F has a (k, ε)-return on
[ab, a].

Let x ∈ [ab, a]. If (b/a)x ≤ a, then (b/a)x ≥ (b/a)ab = b · b ≥ ab and (x, bx) ∈ F

with bx < x≤a, so (bx, (b/a)x) ∈ F . It follows that (x, bx, (b/a)x) ∈ I 2
F . It is easy

to see that also (x, (1/a)x, (b/a)x) ∈ I 2
F . Observe that x ∈ [ab, a], (b/a)x ∈ [ab, a]

and |(1/a)x − bx| = ((1/a)− b)x ≥ ((1/a)− b)ab > ε. So, for (b/a)x ≤ a, F has an
(m+ 1, ε)-return on [ab, a].

If (b/a)x > a, then (b/a)x ≤ (b/a)a = b. So, there is a positive integer mx such that
mx ≤ m and ab ≤ bmx (b/a)x ≤ a. Now

(
x, bx,

b

a
x, b

b

a
x, b2 b

a
x, . . . , bmx

b

a
x

)
∈ I

mx+2
F
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and (
x,

1
a
x,

b

a
x, b

b

a
x, b2 b

a
x, . . . , bmx

b

a
x

)
∈ I

mx+2
F .

Again observe that x ∈ [ab, a], bmx (b/a)x ∈ [ab, a] and |(1/a)x − bx| = ((1/a)−
b)x ≥ ((1/a)− b)ab > ε. So, for (b/a)x > a, F has an (m+ 1, ε)-return on [ab, a].
So, by Theorem 4.5, it follows that ent(F ) �= 0.

Observation 4.13. Let F be the closed relation on I = [0, 1] from Example 4.12 for a = 1
2

and b = 1
3 . Note that it follows from Theorem 3.16 that the shift mapping σF on I+F has

non-zero entropy and that it follows from [3, Theorem 4.3] that σF is transitive. It follows
from [3, Theorem 5.17] that the inverse limit lim←−(I+F , σF ) is a Lelek fan (let X be a Cantor
fan and let Y be a subcontinuum of X. We say that Y is a Lelek fan if the end-points
of Y are dense in Y) and from [3, Observation 5.3] that the shift homeomorphism σ

on lim←−(I+F , σF ) is transitive. Therefore, the shift homeomorphism σ on lim←−(I+F , σF ) is a
transitive homeomorphism on a Lelek fan with non-zero entropy. This answers the question
[21, Question 3.11] by Oprocha in the affirmative.

We conclude the section by stating and proving various corollaries to Theorem 4.5.

COROLLARY 4.14. Let X be a non-empty compact metric space, let F be a closed relation
on X and let k be a positive integer. If there are two sets J and K in Xk

F with ρ(J , K) > 0
(where ρ(J , K) = inf{ρ(x, y) | x ∈ J , y ∈ K}) and such that πk(J ) ∪ πk(K) ⊆ π0(J ) ∩
π0(K), then F has a (k, ρ(J , K))-return. In particular, F has non-zero entropy.

Proof. Let ε = ρ(J , K). We show that F has a (k, ε)-return on X. Since ρ(J , K) > 0,
if (x0, x1, x2, . . . , xk) ∈ J and (y0, y1, y2, . . . , yk) ∈ K with x0 = y0, then there is an
integer i ∈ {1, 2, 3, . . . k} such that ρ(xi , yi) > ε. Let x ∈ π0(J ) ∩ π0(K). Then there
are elements (x0, x1, x2, . . . , xk) ∈ J and (y0, y1, y2, . . . , yk) ∈ K with x = x0 = y0 and
since πk(J ) ∪ πk(K) ⊆ π0(J ) ∩ π0(K), we have {xk , yk} ⊆ π0(J ) ∩ π0(K). So F has a
(k, ε)-return on π0(J ) ∩ π0(K). By Theorem 4.5, ent(F ) �= 0.

COROLLARY 4.15. Let X be a non-empty compact metric space and let F be a closed
relation on X. Also, let kx and ky be two positive integers, let x ∈ X

kx

F and y ∈ X
ky

F be
such that x(kx) = x(0) = y(0) = y(ky), and let j be a positive integer such that 0 < j ≤
min{kx , ky} and x(j) �= y(j). Then there are a positive integer k and an ε > 0 such that F
has a (k, ε)-return. In particular, F has non-zero entropy.

Proof. We show that there is a set A ⊆ X, a positive integer k and an ε > 0 such that F
has a (k, ε)-return on A. Let s = x � y and t = y � x. Then s, t ∈ X

kx+ky

F such that s(0) =
t(0) = s(kx + ky) = t(kx + ky) and s(j) �= t(j). Therefore, for A = {s(0)}, F has a (kx +
ky , ε)-return on A, where ε = 1

2ρ(s(j), t(j)). By Theorem 4.5, ent(F ) �= 0.

In the last corollary (Corollary 4.17) to Theorem 4.5, so-called well-aligned sets are
used to detect non-zero entropy. They form a more visual or geometric apparatus for
spotting non-zero entropy. Before stating and proving the corollary, we give the following
definitions to describe this apparatus.
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X

X

p (LUR)
2

p(L)
1

p(L)
1

p(R)
1

p(R)
1

FIGURE 4. The sets L and R from Definition 4.3.

Definition 4.3. Let X be a non-empty compact metric space, let F be a closed relation on
X, and let L and R be non-empty subsets of F. We say that the sets L and R are well aligned
in F, if:
(1) p2(L) ∩ p2(R) �= ∅;
(2) there is ε > 0 such that for all t ∈ p2(L) ∩ p2(R), there are � ∈ p1(p

−1
2 (t) ∩ L) and

r ∈ p1(p
−1
2 (t) ∩ R) such that ρ(r , �) ≥ ε;

(3) p1(L) ∪ p1(R) ⊆ p2(L ∪ R);
(4) there is a positive integer N such that for each t ∈ p2(L ∪ R), there are a positive

integer i0 ≤ N and a point (a0, a1, a2, . . . , ai0−1, ai0) ∈ X
i0
F−1 such that:

(a) a0 = t and
(b) ai0 ∈ p2(L) ∩ p2(R);

see Figure 4.

Example 4.16. Let F = {(0, 1), (0, 3
4 ), ( 3

4 , 0), (1, 0)} be a closed relation on [0, 1]. It is
easy to see that ent(F ) �= 0. Let L = {( 3

4 , 0)}, R = {(1, 0), (0, 1), (0, 3
4 )}. Then the sets L

and R are well aligned in F.

Definition 4.4. Let X be a non-empty compact metric space, let F be a closed relation on
X. We say that the relation F is well aligned if there are L, R ⊆ F such that the sets L and
R are well aligned in F.

COROLLARY 4.17. Let X be a non-empty compact metric space and let F be a closed
relation on X. If F or F−1 is a well-aligned relation, then ent(F ) �= 0.

Proof. Suppose that F is a well-aligned relation. Let L and R be non-empty closed subsets
of F such that L and R are well aligned in F; that is:
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(1) p2(L) ∩ p2(R) �= ∅;
(2) there is ε > 0 such that for all t ∈ p2(L) ∩ p2(R), there are � ∈ p1(p

−1
2 (t) ∩ L) and

r ∈ p1(p
−1
2 (t) ∩ R) such that ρ(r , �) ≥ ε;

(3) p1(L) ∪ p1(R) ⊆ p2(L ∪ R);
(4) there is a positive integer N such that for each t ∈ p2(L ∪ R), there are a positive

integer i0 ≤ N and a point (a0, a1, a2, . . . , ai0−1, ai0) ∈ X
i0
F such that:

(a) a0 = t and
(b) ai0 ∈ p2(L) ∩ p2(R).

Choose and fix such a positive integer N and ε > 0. Let A = p2(L ∪ R). Then F−1 has an
(N , ε/2)-return on A. Thus, by Theorem 4.5, ent(F−1) �= 0. It follows that ent(F ) �= 0. If
F−1 is a well-aligned relation, the proof is similar.

5. Finite relations
Finite relations on compact metric spaces X can have positive entropy. This may happen
even in the case where X is not finite. We show in this final section that, unlike topological
entropy for closed relations on compact metric spaces in general, in the case of finite
relations, positive entropy is equivalent to the shift map on the Mahavier product being
Li–Yorke chaotic as well as equivalent to DC-2 distributional chaos for the shift map, as
well as equivalent to G having a (k, ε)-return. Before stating and proving our theorems, we
present the following definitions.

Definition 5.1. Let X be a non-empty compact metric space, let f : X→ X be a
continuous function and let x, y ∈ X such that x �= y. The set {x, y} is called a Li–Yorke
pair for f if

lim inf(ρ(f n(x), f n(y))) = 0 and lim sup(ρ(f n(x), f n(y))) > 0.

Definition 5.2. Let X be a non-empty compact metric space, let f : X→ X be a
continuous function and let S ⊆ X. We say that the set S is a scrambled set or a Li–Yorke
set in (X, f ) if for all x, y ∈ S,

x �= y �⇒ {x, y} is a Li–Yorke pair for f .

Definition 5.3. Let X be a non-empty compact metric space and let f : X→ X be a
continuous function. The dynamical system (X, f ) is called Li–Yorke chaotic if X contains
an uncountable scrambled set.

The following is a well-known result.

THEOREM 5.1. Let X be a non-empty compact metric space and let f : X→ X be a
continuous function. If h(f ) > 0, then the dynamical system (X, f ) is Li–Yorke chaotic.

Proof. See the proof of [6, 2 from Corollary 2.4, p. 10].

See [6] for more references and information about Li–Yorke chaotic topological
dynamical systems.
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The approach used in the following theorem was suggested by our referee. Let X =
{0, 1, 2, . . . , m− 1} be a finite set and F be a relation on X. We define the zero-one
m×m-matrix MF on (X, F) as follows: for all x, y ∈ X, Mxy = 1 if (x, y) ∈ F and
Mxy = 0 if (x, y) �∈ F . Observe that for all x, y ∈ X and for each positive integer N, MN

xy

counts the number of distinct paths of length N from x to y, that is, MN
xy is the cardinality

of the set {x ∈ XN
F | x(0) = x and x(N) = y}.

THEOREM 5.2. Let X = {0, 1, 2, . . . , m− 1} be a finite set and F be a relation on X. If
there are x ∈ X and a positive integer k such that Mk

xx > 1, then ent(F ) ≥ (log N)/k.

Proof. Let x ∈ X and let k be a positive integer such that Mk
xx > 1. Let N = Mk

xx . Then
F has (k, 1, N)-return on {x} (see Observation 4.8 for the definition of (k, ε, N)-returns)
and so, the entropy of the relation F is at least (log N)/k.

For any point x ∈ X, we say that x is recurrent in (X, F) if Mk
xx ≥ 1 for some positive

integer k. Using this, one can easily prove the following theorem.

THEOREM 5.3. Let X = {0, 1, 2, . . . , m− 1} be a finite set and F be a relation on X. The
following statements are equivalent.
(1) There are x ∈ X and a positive integer k such that Mk

xx > 1.
(2) ent(F ) �= 0.

Proof. Let x ∈ X and let k be a positive integer such that Mk
xx > 1. It follows from

Theorem 5.2 that ent(F ) �= 0. This proves the implication from statement (1) to (2). To
prove the implication from statement (2) to (1), suppose that for every x ∈ X and for
every positive integer k, Mk

xx ≤ 1. First, we show that for each recurrent point x in (X, F),
there is exactly one element y ∈ X such that (x, y) ∈ F . To show this, let x ∈ X be a
recurrent point in (X, F). Also, let k be a positive integer such that Mk

xx ≥ 1. It follows
from our assumption that Mk

xx = 1. Therefore, there is exactly one element y ∈ X such
that (x, y) ∈ F .

For each recurrent point x in (X, F), we denote by f (x) the point in X such that
(x, f (x)) ∈ F . Note that for each recurrent point x in (X, F), the point f (x) is also a
recurrent point in (X, F). It follows that for any recurrent point x in (X, F) and for any
positive integer m, there is exactly one point x ∈ Xm

F such that x(0) = x.
Next, we examine non-recurrent points in (X, F). For any non-recurrent point x in

(X, F), either:
(1) there is a positive integer m such that for each x ∈ Xm

F , x(0) �= x; or
(2) there are a positive integer m and a point x ∈ Xm

F such that x(0) = x and x(m) is a
recurrent point.

Let R be the set of recurrent points in (X, F) and let

A = {x ∈ X \ R | there is a positive integer m such that for each x ∈ Xm
F , x(0) �= x}

and
B = {x ∈ X \ R | there are a positive integer m and

x ∈ Xm
F such that x(0) = x and x(m) ∈ R}.
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For each x ∈ A, let mx be a positive integer such that for each x ∈ X
mx

F , x(0) �= x, and
let mA = max{mx | x ∈ A}. Let n = |X \ R|. Note that for each x ∈ B, for each positive
integer m > n and for each x ∈ Xm

F ,

x(0) = x �⇒ x(m) ∈ R.

For each x ∈ B, let �x = |{x ∈ Xn+1
F | x(0) = x}|. Then |{x ∈ Xm

F | x(0) = x}| = �x for
each positive integer m > n. Let m0 = max{n+ 1, mA}. It follows that for each positive
integer m > m0, |Xm

F | ≤ |R| +
∑

x∈B �x . Therefore, for any open cover α for X and for
any positive integer m,

m ≥ m0 �⇒ N(Xm
F , αm+1) ≤ |R| +

∑
x∈B

�x .

Let α be any open cover for X. Then

ent(F , α) = lim
m→∞

log N(Xm
F , αm+1)

m
≤ lim

m→∞
log(|R| +∑

x∈B �x)

m
= 0

and it follows that ent(F ) = 0.

LEMMA 5.4. Let X be a non-empty compact metric space and let F be a non-empty closed
relation on X. If for each positive integer k, for each ε > 0 and for each a ∈ X, F has no
(k, ε) returns on {a}, then the following hold.
(1) For each a ∈ X and for each positive integer m, there is at most one point x ∈ Xm

F

such that x(0) = x(m) = a.
(2) For each positive integer m, for each a ∈ X and for each x ∈ Xm

F such that x(0) =
x(m) = a, we use x ∈ X+F to denote the periodic point that is defined by:
(a) π[0,m](x) = x; and
(b) x(i +m) = x(i) for all i ∈ Z+.
Then for each positive integer m, for each a ∈ X, for each x ∈ Xm

F such that x(0) =
x(m) = a and for each y ∈ X+F , the following holds:

y(i) = a for infinitely many non-negative integers i �⇒ y = x.

Proof. Suppose that for each positive integer k, for each ε > 0 and for each a ∈ X, F
has no (k, ε) returns on {a}. The first part of the lemma is obvious. To prove the second
part of Lemma 5.4, let m be a positive integer, let a ∈ X and let x ∈ Xm

F such that
x(0) = x(m) = a. Also, let y ∈ X+F be such that y(i) = a for infinitely many non-negative
integers i. To show that y = x, suppose that y �= x. Then there is a positive integer i such
that y(i) �= x(i). Choose and fix such a positive integer i and let m1 > i and m2 > i be
positive integers such that y(m1) = x(m2) = a. Then

π[0,m1](y) � π[0,m2](x), π[0,m2](x) � π[0,m1](y) ∈ X
m1+m2
F

are such points that:
(1) (π[0,m1](y) � π[0,m2](x))(0) = (π[0,m1](y) � π[0,m2](x))(m1 +m2) = a and (π[0,m2]

(x) � π[0,m1](y))(0) = (π[0,m2](x) � π[0,m1](y))(m1 +m2) = a; and
(2) (π[0,m1](y) � π[0,m2](x))(i) �= (π[0,m2](x) � π[0,m1](y))(i).
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It follows that F has an (m1 +m2, (d(y(i), x(i)))/2)-return on {a}, which is a contradic-
tion.

LEMMA 5.5. Let X be a non-empty compact metric space and let F be a finite subset of
X ×X. If ent(F ) �= 0, then X+F is uncountable.

Proof. Assume that ent(F ) �= 0. First, let Z = p1(F ) ∪ p2(F ). Then Z is finite and F is
a relation on Z, so we can use Theorem 5.3 for (Z, F). Let x ∈ X and let k be a positive
integer such that Mk

xx > 1. It follows from Theorem 5.3 that such a point x and such a
positive integer k do exist. Let n = Mk

xx and let x0, x1, x2, . . . , xn−1 ∈ Zk
F be n distinct

points such that for each i ∈ {0, 1, 2, . . . , n− 1}, xi (0) = x and xi (k) = x. Next, let
Y = {xi (j) | i ∈ {0, 1, 2, . . . , n− 1}, j ∈ {0, 1, 2, . . . , k}} and let

G = {(xi (j), xi (j + 1)) | i ∈ {0, 1, 2, . . . , n− 1}, j ∈ {0, 1, 2, . . . , k − 1}}.
Note that Y ⊆ X and that G ⊆ F is a relation on Y such that p2(G) ⊆ p1(G). Also note
that ent(G) �= 0 since G has a (k, ε)-return on Y. By Theorem 3.16, the topological entropy
of the shift map σ on Y+G is non-zero. Therefore, by Theorem 5.1, the dynamical system
(Y+G , σ) is Li–Yorke chaotic, which implies that there is an uncountable scrambled set in
Y+G . Therefore, Y+G is uncountable. Since Y+G ⊆ X+F , it follows that X+F is uncountable.

THEOREM 5.6. Let X be a non-empty compact metric space and let F be a finite subset of
X ×X. The following statements are equivalent.
(1) ent(F ) �= 0.
(2) There are a set A ⊆ X, a positive integer k and an ε > 0 such that F has a

(k, ε)-return on A.
(3) There are:

(a) positive integers kx and ky;

(b) points x ∈ X
kx

F and y ∈ X
ky

F such that x(kx) = x(0) = y(0) = y(ky); and
(c) a positive integer j such that 0 < j ≤ min{kx , ky} and x(j) �= y(j).

(4) X+F is uncountable.

Proof. The implication from statement (1) to (4) is Lemma 5.5, the implication from
statement (2) to (1) is Theorem 4.5 and the implication from statement (3) to (1) is
Corollary 4.15.

Now we prove the implication from statement (4) to (1). Assume ent(F ) = 0. By
Theorem 4.5, there do not exist a non-empty set A ⊆ X, a positive integer k and an
ε > 0 such that F has a (k, ε) return on A. According to Lemma 5.4, for each a ∈ p1(G),
there is at most one point in X+F with first coordinate a and in which a occurs as a
coordinate infinitely many times. Let B be the set of all points in X+F whose first coordinate
occurs infinitely many times as a coordinate. Since F is finite, B is finite. Also, for each
element x ∈ X+F , some coordinate must be repeated infinitely many times, so there is a
non-negative integer k such that σk(x) ∈ B. Since σ−1(x) is finite for each x ∈ X+F and
since X+F =

⋃∞
k=0 σ−k(B), it follows that X+F is countably infinite or finite.

We prove the implication from statement (1) to (2) similarly as the implication from
statement (4) to (1): if we assume that there does not exist a set A ⊆ X, an integer k and
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an ε > 0 such that F has a (k, ε)-return on A, then again Lemma 5.4 can be used as above
in the proof of the implication from statement (4) to (1) to show that X+F is countable, and
thus, by Lemma 5.5, it follows that ent(F ) = 0.

Finally, we prove the implication from statement (2) to (3). Let A ⊆ X, let k be a positive
integer and let ε > 0 such that F has a (k, ε)-return on A. Also, let a∗ ∈ A and let � :
	2 → X+F be an (F , A, k, ε)-return function for a∗. Since F is finite, there are at least two
different sequences s, t ∈ 	2 of 0s and 1s for which there are strictly increasing sequences
(in) and (jn) of positive integers such that:
• i0 = 1 and j0 = 1;
• for each positive integer �, �(s)i� , �(t)j�

∈ A; and
• for all positive integers �1 and �2, �(s)i�1

= �(s)i�2
= �(t)j�1

= �(t)j�2
.

Since s �= t, it follows that there is a positive integer m such that �(s)m �= �(t)m. Fix such
a positive integer m. Then, let:
• �1 and �2 be such positive integers that i�1 > m and j�2 > m and let

kx = i�1 and ky = j�2 ;

• x = π[1,kx ](�(s)) and y = π[1,ky ](�(t)); and
• j = m.
Note that for constructed kx , ky , x, y and j, statement (3) follows. This completes the
proof.

The following is a corollary of Theorem 5.6.

COROLLARY 5.7. Let X be a non-empty compact metric space and let F be a finite subset
of X ×X. If ent(F ) �= 0, then there are elements s1 and s2 of F such that

p1(s1) = p1(s2) and p2(s1) �= p2(s2),

and there are elements t1 and t2 of F such that

p2(t1) = p2(t2) and p1(t1) �= p1(t2).

Proof. Let ent(F ) �= 0. By Theorem 5.6, there are:
(1) positive integers kx and ky ;

(2) points x ∈ X
kx

F and y ∈ X
ky

F such that x(kx) = x(0) = y(0) = y(ky); and
(3) a positive integer j such that 0 < j ≤ min{kx , ky} and x(j) �= y(j).
Fix such kx , ky , x and y, and let j1 be the smallest among all positive integers j ∈
{1, 2, 3, . . . , kx} such that x(j) �= y(j). Let

s1 = (x(j1 − 1), x(j1)) and s2 = (y(j1 − 1), y(j1)).

Then p1(s1) = p1(s2) and p2(s1) �= p2(s2). This proves the first part of the claim.
Next, we prove the second part of the claim. Suppose that there are no elements t1

and t2 in F such that p2(t1) = p2(t2) and p1(t1) �= p1(t2). Then F is a graph of a
single-valued function f : p2(F )→ p1(F ). Note that ϕ : p2(F )→ XF−1 , defined by
ϕ(x) = (x, f (x), f 2(x), f 3(x), . . .) for any x ∈ p2(F ), is a homeomorphism. Since F is
finite, it follows that p2(F ) is finite. Therefore, X+

F−1 is finite, which is a contradiction since
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by Theorem 5.6, X+
F−1 is uncountable (since ent(F−1) is also non-zero). This completes

the proof.

Definition 5.4. Let X be a non-empty compact metric space, let f : X→ X be a
continuous function and let x, y ∈ X such that x �= y. The set {x, y} is called a DC2-pair
for f if

lim inf
(

1
n
·

n∑
i=1

ρ(f i(x), f i(y))

)
= 0 and lim sup

(
1
n
·

n∑
i=1

ρ(f i(x), f i(y))

)
> 0.

Definition 5.5. Let X be a non-empty compact metric space, let f : X→ X be a
continuous function and let S ⊆ X. We say that the set S is a DC2-scrambled set in (X, f )

if for all x, y ∈ S,
x �= y �⇒ {x, y} is a DC2-pair for f .

Definition 5.6. Let X be a non-empty compact metric space and let f : X→ X be a
continuous function. The dynamical system (X, f ) is called DC2-chaotic if X contains
an uncountable DC2-scrambled set.

Observation 5.8. Let X be a non-empty compact metric space and let f : X→ X be a
continuous function. If (X, f ) is DC2-chaotic, then (X, f ) is Li–Yorke chaotic. See [8]
for more information.

Putting these facts together, we see that the case where F is a finite subset of X ×X

produces a dynamical system (X+F , σ) where several forms of chaos are equivalent. See
the following corollary. Note that it is a known fact that, in general, Li–Yorke chaos does
not imply positive entropy, see [23] for more information.

COROLLARY 5.9. Suppose X is a non-empty compact metric space and F is a finite subset
of X ×X. The following statements are equivalent.
(1) ent(F ) �= 0.
(2) (X+F , σ) is Li–Yorke chaotic.
(3) (X+F , σ) has a DC2-scrambled Cantor set.

Proof. First, we show the implication from statement (1) to (3). Suppose that ent(F ) �= 0.
A similar argument as in the first part of the proof of Lemma 5.5 gives that h(σ) �= 0,
where σ is the shift map on X+F . By [9, Theorem 1.1, p. 138] (X+F , σ) is DC2-chaotic and
it follows from [9, Remark 3, p. 148] that (X+F , σ) has a DC2-scrambled Cantor set.

The implication from statement (3) to (2) follows from Observation 5.8.
Finally, we prove the implication from statement (2) to (1). Suppose that (X+F , σ) is

Li–Yorke chaotic. Then X+F contains an uncountable scrambled set. It follows that X+F is
uncountable. By Theorem 5.6, ent(F ) �= 0.

The following examples, where a countable closed subset F of [0, 1]× [0, 1], such that:
(1) ent(F ) = 0; and
(2) X+F is uncountable,
is presented, together with two problems, is a good place to finish the paper.
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Example 5.10. Let X = [0, 1] and let F = {(0, 0)} ∪ {(1/2i , 1/2i+1) | i ∈ {0, 1, 2,
3, . . .}} ∪ {(1/2i , 1/2i+1) | i ∈ {0, 1, 2, 3, . . .}} ∪ {(1/2i , 1/2i+2) | i ∈ {0, 1, 2, 3, . . .}}.
Then ent(F ) = 0 since F ⊆ {(x, y) ∈ [0, 1]× [0, 1] | y ≤ x} (see [10]), and X+F is
uncountable since each coordinate a of an element of X+F can be followed by either
1
2a or 1

4a.

Problem 5.11. Let X be a non-empty compact metric space and let F be a countable closed
relation on X such that ent(F ) �= 0. Is it true that either F or F−1 has a (k, ε)-return for
some positive integer k and some ε > 0?

Problem 5.12. Let X = [0, 1] and let f : X→ X be a continuous function such that
h(f ) �= 0. Is it true that �(f ) has a (k, ε)-return for some positive integer k and some
ε > 0?
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