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Abstract
Closed-loop kinematics of a dual-arm robot (DAR) often induces motion conflict. Control formulation is increas-
ingly difficult in face of actuator failures. This article presents a new approach for fault-tolerant control of DARs
based on advanced sliding mode control. A comprehensive fractional-order model is proposed taking nonlinear
viscous and viscoelastic friction at the joints into account. Using integral fast terminal sliding mode control and
fractional calculus, we develop two robust controllers for robots subject to motor faults, parametric uncertainties,
and disturbances. Their merits rest with their strong robustness, speedy finite-time convergence, shortened reaching
phase, and flexible selection of derivative orders. To avoid the need for full knowledge of faults, robot parameters,
and disturbances, two versions of the proposed approach, namely adaptive integral fractional-order fast terminal
sliding mode control, are developed. Here, an adaptation mechanism is equipped for estimating a common repre-
sentative of individual uncertainties. Simulation and experiment are provided along with an extensive comparison
with existing approaches. The results demonstrate the superiority of the proposed control technique. The robot
performs well the tasks with better responses (e.g., with settling time reduced by at least 16%).

1. Introduction
Manipulators have been deployed to work in automated production lines to replace human workers to
improve the productivity, quality, and consistency of outputs. Owing to the ability to mimic human
behaviors, dual-arm robots are widely operated in both industrial and human-centric environments.
Controlling dual-arm manipulators is an interesting topic, which can be classified into low-level con-
trol and high-level planning, wherein addressing the low-level control for DARs remains an important
focus. Unlike the recent works [1–3], this paper deals with the tracking and fault-tolerant control of
DARs considering nonlinear viscosity and viscoelastic friction in their joints.

In contrast to the open-loop kinematics of commonly used manipulators, DARs operate in a
kinematic-closed chain. Therefore, controlling DARs is quite challenging and requires feasible tech-
niques. Tracking control of DARs is to assure the precise motion of a gripped load according to desired
paths. This issue can be rendered to the control of desired rotations of joints through the inverse
kinematics.

To improve control performance, model-based control studies often enhance the robot dynamics
to meet real-world requirements. Kinetic constraints in robot lead mathematical model to a form of
Lagrange multipliers. A dynamic model for dual-arm mobile robots is derived in ref. [4] using recur-
sive Gibbs-Appell formulation instead of typically using Lagrange multipliers constraints in robot lead
mathematical model to a form of Lagrange multipliers. Such modeling reduced the dimension of com-
ponent matrices and showed the usefulness to model-oriented control issues. Hence, if considering more
features of robots and practical factors, the control formulation will be more precise and effective. In
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this work, we improve the DAR dynamic model by taking nonlinear fractional frictions at joints into
account. We take into account frictions at robot joints with the lubrication hybridized between wet and
dry modes. This leads to a nonlinear model of damping torque characterized by two individual friction
coefficients. We also consider viscoelastic friction in which damping torque is proportional to fractional
derivative of displacement instead of velocity as usual. Such modeling improvements make the control
formation closer to practical operation of the robots.

Together with disturbances and uncertainties, the influence of motor failures on robot operation
should be adequately treated. We find the way to reduce the impact of actuator faults on the control sys-
tem. Fault diagnosis and fault-tolerant control (FTC) are two typical solutions. The former focuses on
fault detection while the latter tackles the control of robots in the presence of faults [5, 6]. FTC includes
active and passive types. For active FTC, an observer is designed for approximating faults together with
tracking goal. This method shows adaption but takes much processing time [5]. Passive FTC holds the
simple structure without any fault estimation and feedback knowledge of faults [6]. It insists on keeping
consistency of the output against faults without adaptive behavior. In this regard, tracking control of
DARs accounting for motor faults is one of the contributions to our study.

Sliding mode control (SMC) [7–18], a robust control approach, is known to be effective in controlling
manipulators. While possessing strong robustness against uncertainties and disturbances, SMC is, on
the other hand, subject to some drawbacks, for instance, highly switching gains, long convergence time,
and chattering in the response. Fortunately, there have been some techniques dealing with these issues.
Along with tracking and maintaining the system robustness, optimal SMC minimizes the energy of
control inputs using the state-dependent Riccati technique [7]. Terminal sliding mode control (TSMC)
[8] and fast terminal sliding mode (FTSMC) [10] can achieve rapid finite-time stabilization. High-order
SMC [10, 11] reduces the output chattering but takes much time for convergence. Similar to the goal of
super-twisting SMC [12], logarithmic SMC introduces logarithm function in terms of states into control
structure to reduce chattering of control signals [12]. Specifically, integral TSMC [13] is effective in
alleviating chattering and improving further steady-state performance. Therefore, combining integral
action into FTSMC is one of the feasible choices for controlling DARs.

While SMC-based algorithms [7–18] can maintain well the tracking performance, they lack the abil-
ity to adjust control parameters in response to large system uncertainties. As a remedy, adaptive control
approaches have been integrated into the SMC. Along with traditional adaptation approaches such as
model-reference adaptive control and self-tuning control (STC) [19], the modern adaptive trends have
been recently developed and rapidly applied for DARs [20–23]. Advances in computer science have sig-
nificantly contributed to intelligent control of DARs [22–25]. Different types of machine learning have
been applied to many areas including robotics. Machine learning-based techniques, such as neural con-
trol [20, 21], composite learning [22], and brain-actuated control [23], have been successfully applied
for DARs. Although learning often involves complex computation and increases the processing time, it
offers a promising solution to manipulator control. As such, DARs can learn to detect errors and conduct
advanced tasks in unstructured environments intelligently, precisely, and robustly. In ref. [22], learning
algorithms are combined with online neural networks for supporting the DAR controllers. Using the
human-inspired approach and human-robot interactions, bimanual controllers are developed based on
various techniques such as humanoid stiffness identification [24] and impedance control [25]. To this
end, human skills can effectively transfer to DARs for both control and motion planning objectives,
for example, online brain–machine interface and support vector machines have been used to design a
bimanual controller for DARs [26]. Indeed, with artificial intelligence-based techniques [20–25], the
modern DARs nowadays are approaching closer to human responses.

The development of fractional calculus provides an effective mathematical tool for enhancing control
performance [26]. Therein, the control algorithms contain fractional derivatives with adjustable orders.
In reality, fractional-order control (FOC) is not a single technique, but rather is combined with a primary
control core. FOC-integrated SMC was successfully applied to various plants such as single-arm robots
[16, 17, 27] and knee joint [28]. Recently, FOC was also combined with SMC for dual-arm robots [29]
in which their adaptive feature is accompanied by a neural networks-based estimator. While DARs are
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fully actuated systems [29], we enhanced an adaptive fractional-order SMC approach to under-actuated
systems, such as a tower crane [30].

The above review indicates that various control approaches may be attributed to different advantages
and weaknesses. We thus access a suitable control formulation of DARs by utilizing their control mer-
its while overcoming drawbacks. Motivated by the recent works [29, 30] on adaptive fractional-order
SMC-based control approaches, our aim is to develop a control system that can amalgamate the merits of
integral control, FOC, FTC, and adaptive STC. Indeed, the proposed I-FTSMC core can achieve strong
robustness, time-reduction at the reaching phase, and quick finite-time convergence. Fractional deriva-
tives in the control structure play an important role in control parameter fine-tuning to obtain the best
performance. An adaptation observer, set on the feedback loop, can estimate the impact simultaneously
of faults of motors, uncertain robot parameters, and unknown disturbances. Such combination, applied
to DARs, results in the key contributions in terms of modeling and control:

a. For modeling, a comprehensive model for DAR dynamics is obtained as a fractional-order system
considering not only nonlinear viscoelasticity of joints, parametric uncertainties, and system
disturbances but also faults of actuators.

b. For control development, a new control system integrating advantages of I-FTSMC, FTC, FOC,
and adaptive techniques. They feature robustness as well as rapid finite-time stability and chat-
tering reduction by I-FTSMC, flexibility in the control structure with FOC, and adaptation by
FTC combined with STC for concurrently estimating robot parameters, disturbances, and faults
of actuators.

As a result, the proposed control system achieves strong robustness, high adaptation, and resilience
in terms of responding to uncertainties via its self-learning capability. In comparison to ref. [30], the dif-
ference of this work lies in key facts: (i) fractional-order differential equations describe robot dynamics
instead of ordinary differential equations as seen in ref. [30], (ii) A DAR is a fully-actuated system hold-
ing closed-loop kinetic chain while under-actuated systems in ref. [30], such as tower cranes, hold open
kinetic constraint, (iii) Unlike [30] utilizing linear sliding surface, the current study applies an integral
sliding mode for lightening the chartering phenomenon, and (iv) The 2nd scheme of FTSMC controller
in this study is an enhancement of the control core described in ref. [30]. Generally, our adaptive robust
controller for DARs displays the following new features:

1. Unlike the controllers [20–23] containing fixed integer orders of derivatives, here variable
fractional derivatives are used for control. By considering fractional orders as flexible control
parameters, we can tune them to achieve the optimal robot performance.

2. While adaptive approaches using neural networks [20, 21, 29], machine learning [22–25], and
fuzzy logic [31, 32] often encounter a complex configuration and computational latency, our
three-in-one adaptation mechanism shows effectiveness in estimation and processing capabil-
ity. Indeed, the multifunctional mechanism of our development identifies equivalently a unified
component for approximating faults, uncertain parameters, and unknown disturbances.

The article is organized as follows. Section 2 introduces the preliminaries for control design. Section 3
presents a fractional-order dynamic model for DARs taking into account nonlinear viscoelastic lubrica-
tion of joints, faults of motors, parametric variations, and unknown disturbances. Using FTC-combined
I-FTSMC, two robust controllers are developed in Section 4, based on Mittag-Leffler stability. In
Section 5, adaptive features are augmented to the robust controllers via the synthesis of adaptation
mechanism to approximate unknowns and uncertainties. Section 6 provides results to demonstrate effec-
tiveness of the proposed approach in simulation and experiments with a laboratorial DAR. Comparative
analysis with various control approaches is also included. Finally, a conclusion and future work are
discussed in Section 7.
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2. Preliminaries
Some preliminaries on fractional-order systems and terminal stability are briefly reviewed in this section.
In this study, we thoroughly apply Caputo definition for fractional derivatives in the analytical analysis,
numerical simulation, and experiment. From now on, Dα

t (•) indicates Caputo’s derivative of (•) with
fractional order α with respect to time t.

Definition 1[33]: We consider a fractional-order system

Dα

t x(t) = f (x(t)) , (1)

where α∈(0,1), x(t) ∈R
n. The solution x(t) of (1) is said to be Mittag-Leffler stable if

‖x(t)‖ ≤ {m[x(t0)]Eα( − λ(t − t0)
α)}b, (2)

where t0 is the initial time, λ>0, b>0, m(0) = 0, m(x) ≥ 0, m(x) is locally Lipschitz on x ∈R
n, and Eα(•)

is the Mittag-Leffler function defined by

Eα(z) =
∞∑

k=0

zk

�(kα + 1)
(3)

Now recall that a function κi(t) is of the so-called class kappa if it is continuously increasing and
κi(0) = 0. In the following lemma, positive definite functions κi (i = 1–3) are class kappa functions [34].

Lemma 1[33]: If there exists for the system (1) a Lyapunov function V (x, t) continuously differentiable
satisfying

κ1‖x‖ ≤ V(x, t) ≤ κ2‖x‖ (4)

and

Dα

t V(x, t) ≤ −κ3‖x‖ (5)

with α∈(0,1) and κ1, κ2, κ3 being class kappa functions, then system (1) is Mittag-Leffler stable with
equilibrium x = 0.

Notably, Mittag-Leffer stability implies asymptotic stability. When α = 1, Mittag-Leffler function
(3) can reduce to an exponential function, and in that case Mittag-Leffer stability is also exponential
stability.

Lemma 2[35]: Let x(t) ∈R
n be a vector of continuously differentiable real functions. For all time instant

t ≥ to, the following inequality holds:

Dα

t

(
1

2
xT(t)Qx(t)

)
≤ xT(t)QDα

t x(t), (6)

for any fractional order α∈(0,1), in which Q ∈R
n×n is a positive-definite matrix.

Consider fractional-order system (1) with state vector x(t) satisfying (6). By applying Lemma 1 to a
Lyapunov function

V(x(t)) = 1

2
xT(t)x(t), (7)

and Q = 1, one obtains the following corollary.

Corollary 1[36]: If the following condition holds

xT(t)f (x(t)) ≤ 0, (8)
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Figure 1. 2n-DOF modeling of a dual-arm robot.

then the origin x = 0 of system (1) is stable. And if

xT(t)f (x(t)) < 0, (9)

then the system (1) is asymptotically stable to the equilibrium x = 0.

Lemma 3 [37]: If there exists a continuously differentiable positive function V (x) with x(t) ∈R
n of

system (1) such that

V̇(x) ≤ −χV(x) − δVϑ (x)∀t > to (10)

for each gain 0 ≤ϑ≤ 1, χ>0, and δ>0, then V (x) is asymptotically convergent with a terminal time

ts ≤ 1

χ (1 − ϑ)
ln

χV1−ϑ(x(0)) + δ

δ
. (11)

3. Enhanced modeling of dual-arm robots
A conventional model of DARs was represented in ref. [20]. In this paper, we seek a dynamic model
for DARs that can also incorporate practical factors during the robot’s operation. They include (i) non-
linear damping and fractional frictions at joints, (ii) faults of motors, and (iii) uncertain parameters and
unknown disturbances.

Consider the diagram shown in Fig. 1 for a DAR picking up and moving an object m to a destination.
Each arm has r links including its end-effector and n rotating angles at joints. Each link is considered a
rigid body characterized by four physical parameters composed of mass mi, length li, rotational inertia
I i, and distance ki from joint to the mass center. Therein, a DAR has 2r links and 2n generalized coor-
dinates q ∈R

2n in which 2n servo motors having torques T ∈R
2n as control inputs. The DAR dynamics

is described as

M(q)q̈ + C(q, q̇)q̇ + B̂(μ, Dη

t q, b̂)Dη

t q + G(q) = JT(q)F̂(q, q̇, q̈, m̂) + ηT(t − Tf )φ(q̇, q, T) + T + D̂,
(12)

where M(q) = MT(q) ∈R
2n×2n denotes a positive-definite matrix of inertia, C(q, q̇) ∈R

2n×2n indicates a
centripetal Coriolis matrix, G(q) ∈R

2n represents the gravitational torque, J(q) ∈R
2n×2n is a Jacobian

matrix, B̂(μ, Dη
t q, b̂) is a viscoelastic damping matrix, F̂(q, q̇, q̈, m̂) is a vector of reaction forces between
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load and two end-effectors, and D̂ ∈R
2n is a vector of unknown disturbances. In comparison with the

model presented in ref. [20], dynamics (12) extends the model to include the following considerations:

3.1. Nonlinear viscous and fractional friction at joints
The term B̂(μ, Dη

t q, b̂)Dη
t q in dynamics (12) shows nonlinear viscosity and fractional friction at the

robot’s joints. Normally, it is Bq̇ for linear viscous at joints. In many cases, the lubrication at joints
corresponds to adequate Reynolds in which the wet friction lies between linear and quadratic forms,
that is

Tf
i = ci|q̇i|μi q̇i, (13)

where 0 < μi < 1 and ci (i = 1–2n) are viscous coefficients. Additionally, viscoelasticity of lubricating
oil leads to a fractional-derivative model of friction at joints

Tf
i = biD

ηi
t qi, (14)

where ηi∈(0,1) is the fractional order of the derivative and bi is a viscoelasticity coefficient. Combination
of nonlinear viscosity (13) with fractional friction (14) leads to a nonlinear fractional-order model

Tf
i = bi

∣∣Dηi
t qi

∣∣μi Dηi
t qi, (15)

which is represented comprehensively by the term B̂(μ, Dη
t q, b̂)Dη

t q of Eq. (12). Here, for a 2n-DOF
model, B̂(μ, Dη

t q, b̂) = diag(b̂i|Dη
t qi|μi ) ∈R

2n×2n with μ = [μi]T ∈R
2n, 0<η<1, and 0<μi<1. Moreover,

the component C(q, q̇) + B̂(μ, Dη
t q, b̂) is a skew symmetric matrix satisfying qT{Ṁ(q) − 2[C(q, q̇) +

B̂(μ, Dη
t q, b̂)]}q = 0∀q ∈R

2n.

3.2. Faults of motors
The term ηT(t − tf )φ(q̇, q, T) in robot dynamics (12) represents the influence of actuator faults. Here,
φ(q̇, q, T) ∈R

2n is the fault function [6] characterized by faulty components taking place the system.
The term η(t − tf ) = diag[ηi(t − tf )] ∈R

m×m denotes the temporal profile of faults described as

ηi(t − tf ) =
{

0 if t < tf

1 − exp[ − ai(t − tf )] if t ≥ tf

(16)

where ai is the evolution rate of an unknown fault. Here, a fault is considered as incipient or abrupt
respectively for small or big values of ai, tf indicates the time of fault occurrence, and ηi represents the
fault effects.

3.3. Unknown disturbances and parametric uncertainties
Unknown perturbances are described by adjustable term D̂ in model (12) that will be estimated by
an adaptive mechanism. Uncertainties always exist in the system, e.g., mass m may change up to each
operation case, or joint frictions bi may vary depending on working environment and lubrication. Taking
this into account, we introduce vector p̂ = diag(m̂, b̂) ∈R

2n+1 with b̂ = diag(b̂i) ∈R
2n. Correspondingly,

matrix B̂(μ, Dη
t q, b̂) and vector F̂(q, q̇, q̈, m̂) in Eq. (12) can be parameterized in terms of b̂ and m̂. Robot

model (12) is then rewritten as
M(q)q̈ + C(q, q̇)q̇ + G(q) = T + U(q, q̇, q̈, p̂, φ, D̂), (17)

where the complex term
U(q, q̇, q̈, p̂, φ, D̂) = U(q, q̇, q̈, p̂, φ) + D̂, (18)

in which
U(q, q̇, q̈, p̂, φ) = ηT(t − Tf )φ(q̇, q, T) − B̂(μ, Dη

t q, b̂)Dη

t q + JT(q)F̂(q, q̇, q̈, m̂), (19)
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Table I. Two phases of convergence.

Scheme 1 Scheme 2
Phase 1 Terminal sliding manifold

ṡ + βs + λsζ1 + K sgn(s) = 0
Sliding manifold
ṡ + βs + K sgn(s) = 0

Phase 2 Asymptotic convergence of
outputs
Dα

t e + βe = 0

Terminal convergence of outputs
Dα

t e + βe + γeζ2 = 0

containing information of faults φ and uncertain parameters p̂ is bounded by∥∥U(q, q̇, q̈, p̂, φ)
∥∥ < U1 + U2‖q‖ + . . . + U2n‖q‖2n−1 . (20)

Here, U1, U2. . ., U2n are positive constants. Given that disturbances D̂ is a bounded function, condi-
tion (20) implies that U(q, q̇, q̈, p̂, φ, D̂) (18) is bounded. Since M(q) is positive definite, Eq. (17) can
now be rewritten as

q̈ = M−1(q)[T + U(q, q̇, q̈, p̂, D̂, φ) − C(q, q̇)q̇ − G(q)]. (21)

Remark 1: Dynamic model (21) or (18) is effective for constructing an adaptive robust controller.
With the integration of adaptation mechanism, the controller only needs to estimate the equivalence
U(q, q̇, q̈, p̂, φ, D̂) instead of identifying faults φ, uncertain parameters p̂, and unknown disturbance D̂,
separately.

Remark 2: The kinematics of DARs show the relationship between an object path and rotations of links,
from which motion equations of object are obtained [20]. Based on motion path r(x, y, z, t) of object
m, the joint angles q(t) can be derived by using inverse kinematics. Thus, tracking control of a DAR
according to reference trajectory rd(x, y, z, t) of the object is equivalent to tracking joint rotations q(t)
to their destinations qd(t).

4. Integral fractional-order fast terminal sliding mode control
We propose two control schemes for tracking vector q(t) of robot joints to its destinations qd(t). Control
structures contain then fractional derivative, finite integral, and terminal convergence terms. Tracking
the outputs includes two phases: the convergence to the sliding surface in the first phase and driving the
outputs to destinations at the second phase. These control laws hold the distinct ways of convergence
that are summarized in Table I.

We begin with scheme 1 by the following theorem:

Theorem 1: Control scheme

T = M(q){q̈d − D2−α

t [β(e + s) + λsζ1 + K sgn(s)]} + C(q, q̇)q̇ + G(q) − U(q, q̇, q̈, p, D, φ) (22)

with sliding function

s =
t∫

0

(Dα

t e + βe)dt, (23)

asymptotically drives the robot outputs q(t) governed by dynamics (17 and 18) to references qd(t).
Here, e = (q − qd) ∈R

2n is the tracking error and function s(t) ∈R
2n contains a fractional derivative

Dα
t with α∈(0,1); sgn(•) is a signum function; control gains β=diag(β1,. . .,β2n), λ=diag(λ1,. . .,λ2n),

K=diag(K1,. . .,K2n) are positive-definite matrices; and terminal gain ζ 1 is bounded by −1≤ζ 1 ≤1.
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Proof: Consider the positive Lyapunov function

V = 1

2
sTs = 1

2

2n∑
i=1

s2
i (24)

whose time derivative is

V̇ = sT ṡ =
2n∑

i=1

siṡi. (25)

Derivative of function (23) with respect to time is given by

ṡ = Dα−2
t (q̈ − q̈d) + β(q − qd), (26)

that leads the Lyapunov derivative (25) to

V̇ = sT[Dα−2
t (q̈ − q̈d) + β(q − qd)]. (27)

Inserting robot dynamics (21) into (27) results in

V̇ = sT
{
Dα−2

t [M−1(T + U − Cq̇ − G) − q̈d] + β(q − qd)
}

. (28)

Applying control scheme (22) to Lyapunov derivative (28) yields

V̇ = −sTβs − sTλsζ1 − sTK sgn(s) (29)

which leads to

V̇ = −
2n∑

i=1

βis2
i −

2n∑
i=1

λis
ζ1+1
i −

2n∑
i=1

Ki|si|

≤ −βmin

2n∑
i=1

s2
i − λmin

2n∑
i=1

sζ1+1
i −

2n∑
i=1

Ki|si|

= −2βminV(x) − 2λminV(x)
ζ1+1

2 −
2n∑

i=1

Ki|si|
≤ −2βminV(x) − 2λminV(x)

ζ1+1
2

(30)

where βmin = min(β1,. . .,β2n) and λmin = min(λ1,. . .,λ2n). Applying the Lemma 3 for χ= 2βmin, δ= 2λmin,
and 2ϑ=ζ 1 + 1, one concludes that the sliding function asymptotically converges to zero with the
reaching finite-time bounded by

ts = 1

βmin(1 − ζ1)
ln

2βminV
1−ζ1

2 (x(to)) + 2λmin

2λmin

. (31)

Zero convergence of sliding function (28) means

Dα

t (q − qd) + β(q − qd) = 0, (32)

or equivalently,

Dα

t e(t) = f (e(t)) = −βe(t). (33)

By applying Corollary 1 for x(t) = e(t), one can obtain

e(t)T f (e(t)) = −e(t)Tβe(t) ≤ 0 (34)

for every e(t) ∈R
2n and diagonal matrix β = diag(βi) ∈R

2n×2n of gains β i>0. Therefore, Corollary 1
indicates that the tracking error e(t) is Mittag-Leffler stable with a convergence form

e(t) = e(t)Eα(βtα), (35)

In other words, q(t) asymptotically approaches to qd(t).
We propose scheme 2 through the following theorem:
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Theorem 2: Control scheme

T = M(q){q̈d − D2−α

t [βe + γeζ2 + βs + K sgn(s)]} + C(q, q̇)q̇ + G(q) − U(q, q̇, q̈, p, D, φ) (36)

with the terminal sliding function

s =
t∫

0

(Dα

t e + βe + γeζ2 )dt, (37)

asymptotically drives the robot outputs q(t) to references qd(t) in finite time. Here, γ=diag(γ1,. . .,γ2n)
is a positive-definite matrix of control gains, and ζ 2 is an odd integer.

Proof: Again, we choose the positive Lyapunov candidate

V = 1

2
sTs = 1

2

2n∑
i=1

s2
i (38)

with time derivative

V̇ = sT ṡ =
2n∑

i=1

siṡi. (39)

Differentiating (37) with respect to time result in

ṡ = Dα−2
t ë + βe + γeζ2 (40)

that leads Lyapunov derivative (39) to

V̇ = sT(Dα−2
t ë + βe + γeζ2 ). (41)

Respectively substituting robot dynamics (21) and control law (36) into Eq. (41) yields

V̇ = sT
{
Dα−2

t [M−1(T + U − Cq̇ − G) − q̈d] + βe + γeζ2
}

, (42)

which can be reduced to

V̇ = −sTβs − sTK sgn(s) = −
2n∑

i=1

βis
2
i −

2n∑
i=1

Ki|si| ≤ 0 (43)

for all β i>0 and Ki>0. This implies that V(t) ≤ V(0) or s is bounded. Alternatively, the second derivative
of Lyapunov function (38) is

V̈ = −
{

ṡTβs + sTβṡ + sTK
[

d sgn(si)

dsi

ṡi

]
2n×1

+ ṡTK sgn(s)

}
(44)

Notably, derivative of the signum function is equal to zero except at zero. Hence,

V̈ = −[ṡTβs + sTβṡ + ṡTK sgn(s)] ∀s 	= 0 (45)

We substitute reduced-order dynamics (21) and control inputs (36) into manifold derivative (40), then
we get

ṡ = −βs − K sgn(s) (46)

Eq. (46) shows that ṡ is bounded because s is a bounded vector and K and β are positive-definite
matrices. Therefore, V̈ (45) is bounded and thus V̇ is uniformly continuous in time. Application of
Barbalat’s lemma yields limt→∞V̇ = 0, which limt→∞s = 0. Hence, the manifold (37) is asymptotically
stable that results in

Dα

t e = −βe − γeζ2 , (47)

We analyze the stability of dynamics (47) with a Lyapunov function

V = 0.5(eTe + sTs) > 0. (48)
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By applying Lemma 2, fractional derivative of Lyapunov (48) satisfies

Dα

t V = Dα

t 0.5(eTe + sTs) ≤ eTDα

t e + sTDα

t s. (49)

Combining Eq. (47), fractional derivative, Dα
t s = Dα−1

t (Dα
t e + βe + γeζ2 ), of manifold (37), robot

dynamics (21), and controller (36) with inequality (49) leads to

Dα

t V ≤ −eT(βe + γeζ2 ) + sTDα−1
t (Dα

t e + βe + γeζ2 ) = −eTβe − eTγeζ2 − sTβDα−1
t s − sTKDα−1

t sgn(s)
(50)

Once s approach zeros, inequality (50) becomes

Dα

t V � −eTβe − eTγeζ2 = −
2n∑

i=1

βie
2
i −

2n∑
i=1

γie
ζ2+1
i ≤ −

2n∑
i=1

βie
2
i ≤ −κ3‖e‖ (51)

∀βi > 0, γi > 0, where κ3 is an arbitrary positive constant satisfying κ3 ≤ min(βi). Thus, Lyapunov
derivative (51) satisfies condition (5). Meanwhile, Lyapunov function (48) also satisfies κ1‖e‖2 ≤ V =
0.5(‖e‖2 + ‖s‖2) ≤ κ2‖e‖2 or equivalently κ1‖e‖ ≤ V ≤ κ2‖e‖. Therefore, condition (4) holds for all
κ1 ≤ 0.5 and κ2 ≥ 0.5. The application of Lemma 1 for system (47) and given the relationship between
class kappa functions and positive-definite functions, together with Lemma 3, one can conclude that e(t)
is terminally stable to the zero equilibrium, or q approaches to qd within a finite time.

Remark 3: Integral actions of sliding manifolds (23) and (37) tend to mitigate chattering in system
responses. In both schemes 1 and 2, the convergence of the outputs at phase 2 is achieved from the
Mittag-Leffler stability.

5. Adaptive integral fractional-order fast terminal sliding mode with fault-tolerant control
Robustness of controllers (22) and (36) is based on the SMC methodology. However, their structures
are fixed and may not be flexible enough to adapt with large uncertainties in the working environment
while maintaining control performance. To remedy, we respectively propose two adaptive versions for
robust controllers (22) and (36) as follows:

T̂ = M(q){q̈d − D2−α

t [β(e + s) + λsζ1 + K sgn(s)]} + C(q, q̇)q̇ + G(q) − Û(q, q̇, q̈, p̂, D̂, φ) (52)

with respect to manifold (23), and

T̂ = M(q){q̈d − D2−α

t [βe + γeζ2 + βs + K sgn(s)]} + C(q, q̇)q̇ + G(q) − Û(q, q̇, q̈, p̂, D̂, φ) (53)

for sliding surface (37). Therein, we provide an adaptation observer in the feedback loops for estimat-
ing concurrently uncertain robot parameters p̂, unknown disturbances D̂, and faults φ of motors by
estimating the equivalent component Û(q, q̇, q̈, p̂, D̂, φ) as described by

sTDα−2
t M−1

[
U(q, q̇, q̈, p, D, φ) − Û

(
q, q̇, q̈, p̂, D̂, φ

)]
= −[U(q, q̇, q̈, p, D, φ) − Û(q, q̇, q̈, p̂, D̂, φ)]Tϒ[U̇(q, q̇, q̈, p, D, φ) − ˙̂U(q, q̇, q̈, p̂, D̂, φ)] (54)

where ϒ = diag(ϒ1, . . . , ϒ2n) ∈R
2n×2n is a diagonal matrix of adaptation parameters. Notably, only one

adaptive mechanism (54) is effectively utilized for two control laws (52) and (53). Such controllers
achieve both robust and adaptive features, a fast and flexible manner. These advantages are incorporated
in the following theorems.

Theorem 3: Control structure (52), where uncertainty equivalence Û(q, q̇, q̈, p̂, D̂, φ) is estimated by
fractional adaptation observer (54), asymptotically drives the robot outputs q(t) to destinations qd(t).

Proof: We begin with a positive-definite Lyapunov candidate

V = 0.5(sTs + Ũ
T
ϒŨ) > 0, (55)
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where Ũ = U − Û is estimation errors of uncertainties, faults, and disturbances. The time derivative of
Lyapunov function (55) is written as

V̇ = sT ṡ + Ũ
T
ϒ

˙̃U. (56)

Respectively substituting manifold derivative (26) and robot model (21) into Eq. (56), one gets

V̇ = sT
{
Dα−2

t [M−1(T + U − Cq̇ − G) − q̈d] + β(q − qd)
} + Ũ

T
ϒ

˙̃U. (57)

Substitution of controller (52) and its adaptive estimator (54) into Eq. (57) leads to

V̇ = sT
{[

−β(e + s) − λsζ1 − K sgn(s) + Dα−2
t M−1Ũ

]
+ β(q − qd)

}
+ Ũ

T
ϒ

˙̃U. (58)

which is simplified as

V̇ = −sTβs − sTλsζ1 − sTK sgn(s), (59)

similarly to expression (29). Since the derivative (59) of the Lyapunov function (55) is negative definite,
both s and Ũ(q, q̇, q̈, p̃, φ, D̃) approach zero as time goes to infinity. Therefore, upon the convergence of
manifold (23) to zeros, the stability of the outputs can be proven similarly as in the case of Theorem 1.

Theorem 4: Control structure (53) with fractional adaptation observer (54) for estimating total uncer-
tainty Ũ(q, q̇, q̈, p̃, φ, D̃) asymptotically drives generalized coordinates q(t) of dynamics (17–18) to their
destinations qd(t).

Proof: We reconsider a positive Lyapunov candidate (55) with its derivative (56). Similar to proof of
Theorem 3, we respectively substitute manifold derivative (40), robot dynamics (21) into Eq. (56), then
we obtain

V̇ = sT
{
Dα−2

t [M−1(T + U − Cq̇ − G)] + βe + γeζ2
} + Ũ

T
ϒ

˙̃U. (60)

Inserting control scheme (53) and its adaptation mechanism (54) into expression (60) to get

V̇ = sT[ − βs − K sgn(s) + Dα−2
t M−1Ũ] + Ũ

T
ϒ

˙̃U. (61)

which is reduced as

V̇ = −sTβs − sTK sgn(s). (62)

The negative derivative (62) assures the convergence of both s and Ũ. The next steps for proving
stability can be conducted similarly to that of Theorem 2.

Remark 4: Switching action of controllers (52) and (53) with positive gains K=diag(Ki) (i = 1–2n) is
to keep the robustness of robot outputs. Too high gains K cause much chattering at control inputs and
robot responses. Otherwise, low gains K cannot maintain the system robustness. Therefore, choosing
upper boundary of K should be considered to assure the consistency of robot outputs while preventing
much chattering.

To summarize, the proposed adaptive robust control system for fault tolerance (AIFO-FTSMC) is
presented as per the diagram shown in Fig. 2, wherein Block A denotes control laws (52) and (53),
Block B indicates adaptation observer (54), and Block C characterizes for the robot dynamics (17–18).
For teleoperation, Block D shows the path planning, which may be generated by using a joystick in the
case of manual control. Thus, a human-inspired approach [24]-[23] may be integrated into this control
system to serve the purpose.

6. Results and discussion
In this section, effectiveness of the proposed approach is verified by simulation, experiment, and
comparison with other control techniques.
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Figure 2. Control system diagram.

6.1. Simulation
We utilize a 4DOFs-DAR described in ref. [19] as a testbed to verify the control performance for
two versions (52) and (53) coupled with observer (54) of our AIFO-FTSMC. In case of conventional
robot dynamics [32], four nonlinear ordinary differential equations are converted into the form of eight
state-space equations whereas (q, q̇) are state variables. In this study, robot modeling is enhanced as a
fractional-order state-space dynamics. Thus, a couple (q, Dη

t q) is considered as state variables in sim-
ulation. The robot specifications are listed in Table II and control parameters are provided in Table III.
For the sake of simulation, the faults of motors influencing on DAR are adopted from ref. [6] as
φ(q̇, q, T) = [φ1 0 φ3 0]T , whose components given by

φ1 = 103(15 sin q1q2 + 2cos q̇1q2 + 8cos q̇1q̇2) for Tf 1 ≥ 4, (63)

φ3 = −0.8T3 for Tf 1 ≥ 4.5, (64)

and η = diag(1.5,0,1.2,0). This implies that fault φ1 appears at the 1st motor since the 4th sec, the 3rd

motor reduces 80% efficiency after 4.5 s, while the 2nd and 4th motors have no fault.
The path rd(x, y, t) is generated similarly as per [32]. Accordingly, two grippers are controlled to move

from points (−80,70) and (80,70) to the points (−60,150) and (−50,150), pick an object up, transfer
it following a half-quarter of a circle of radius 55 mm to avoid an obstacle placed at center (0,150).
Notably, the initial positions of grippers are given by conditions q(0) and q̇(0) through the kinematic
relation.

The DAR responses are presented respectively in Figs. 3, 4, 5 and 6. It is observed that various
fractional-order (FO) values make a difference in transient states while the robot links rotate to desired
angles asymptotically. Without any overshoot, responses of control law 2 with finite-time tracking of
the outputs appear better than those of law 1. The overshoot occurs at the case FO = 0.95 of law 1 while
no overshoot is observed at the other cases. The adaptation mechanism compensates well for faults of
motors. Their impact on the outputs looks insignificant but when zooming in, the 1st motor’s fault causes
a small deviation at motions of links 1 and 2 from the 4th s, and fault at the 3rd motor causes a slight
divergence at rotations of links 3 and 4 from 4.5 s. Changing FO may influence the fault compensation.
Despite the advantage from fault compensation, the impact, although negligible, is still observed in the
tracking errors as shown in Figs. 7 and 8. Faults cause a small deformation of e1 and e2 at 4 s, e3 and
e4 at 4.5 s. Generally, the steady-state tracking errors approach zeros owing to the integral action in the
controller.

6.2. Experiments
A laboratory set up for the dual-arm robot is depicted in Fig. 9. Here, we used two Magician R© manipu-
lators as a dual-arm cooperative manipulation. Each manipulator has four DOFs. However, this work is
concerned with only two DOFs but not the base rotation and end-effector motion. Four servo motors are
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Table II. Robot parameters.

DAR
m1 = m3 = 0.25 kg; m2 = m4 = 0.27 kg; l1 = l3 = 135 mm; l2 = l4 = 147 mm;
I1 = I3 = 0.03 kgm2; I2 = I4 = 0.036 kgm2; k1 = k3 = 65 mm;
k2 = k4 = 70 mm; m = 0.3 kg; ζ = 0.35; d1 = 10 mm; d2 = 147 mm;

Nonlinear frictions at joints

b1 = b2 = b3 = b4 = 110; μ1 = μ2 = μ3 = μ4 = 0.4; η = η1 = η2 = η3 = η4 = = 0.65;

Initial conditions

q̇(0) = 01×4; q(0) = [0 5π/6 π − 5π/6]T ;

Table III. AIFO-FTSMC gains.

Scheme 1 Scheme 2
β = diag(5,4,4,3);
λ = diag(4,5,3,5) × 10-2;
K = diag(4,4,5,5);
ζ 1 = 0.8; ε = 0.05;
ϒ = diag(1.2,1.6,0.8,1.4);

β = diag(4,5,3.5,3);
γ = diag(1,2.5,2,3) × 10-1;

K = diag(5,4,6,5);
ζ 2 = 3; ε = 0.05;

ϒ = diag(1.4,1.2,1.7,0.9);

Figure 3. Simulation – link 1 rotation.

Figure 4. Simulation – link 2 rotation.
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Figure 5. Simulation – link 3 rotation.

Figure 6. Simulation – link 4 rotation.

Figure 7. Simulation – tracking errors of scheme 1.
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Figure 8. Simulation – tracking errors of scheme 2.

Figure 9. Diagram of experimental setup.

Figure 10. Experiment – link 1 rotation.
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Figure 11. Experiment – link 2 rotation.

Figure 12. Experiment – link 3 rotation.

Figure 13. Experiment – link 4 rotation.

used for rotating joints with integrated encoders of 4096 resolution. For connecting the DAR for com-
puter control, we use an embedded device, namely myRIO-1900. This device includes a Xilinx FPGA,
a dual-core Cortex processor, and DAC/ADC module. Control algorithms are coded and compiled on
MATLAB R©/Simulink R©. We use Desktop Real-TimeTM that provides a real-time kernel for executing
a Simulink-connected DAR model on a laptop. DAR runs real-time with PWM control signals while
feeding joint rotations measured by encoders back to myRIO device.

Consistently with simulation, we run AIFO-FTSMC algorithms for three fractional orders α = 0.8,
0.9, and 0.95. The experiment results are shown in Figs. 10, 11, 12, 13, 14, and 15. As clearly observed
in Figs. 10, 12, and 13, scheme 2 displays better performance than scheme 1. Outputs of scheme 2 are
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Figure 14. Experiment – tracking errors of scheme 1.

Figure 15. Experiment – tracking errors of scheme 2.

kept consistently when changing fractional orders. While simulation outputs are smooth, experimental
ones exhibit some oscillations. Simulation responses reach destinations precisely while some negligible
deviations are observed in experimental ones. Depicted in Figs. 14 and 15, the tracking errors, especially
e2 and e4, still display some little oscillations due to perturbances and noises induced by sensors and
actuators, signal processing at ADC/DAC module, and faults. A low-pass filter is used for eliminating
noises at feedback signals from encoders. The impact of noises on experimental outputs is thus reduced.
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Figure 16. Experiment – control inputs of scheme 1.

The influence of faults in experimental outputs is not demonstrated on a new laboratory DAR in which
no fault is detected.

Notably, experiment platform does not involve force sensors. Thus, control inputs at Figs. 16 and
17 are acquired from PWM block of Desktop Real-TimeTM and processed via three others including
PWM–speed and speed–torque blocks together with a low-pass filter. Control inputs that torque at robot
joints show steady-state oscillations due to implementation issues of the practical control system and
the signum function in the control structure.

Object trajectories r(x, y, t) depicted in Figs. 18 and 19 are obtained from rotations q(t) of links and
robot kinematics. The robot completes its duty of picking up and moving objects to their destination
precisely. The various cases exhibit a little bit of difference in followed paths, all reaching the same
destinations.

Remarkably, the main objective of the adaptive approximator is not to estimate robot parameters,
disturbances, and faults separately. This adaptive mechanism supports controller by finding proper val-
ues Û(•) to converge the robot outputs following the desired trajectory. Figure 20 shows an illustrative
result of three-in-one estimation by adaptive mechanism. Four components of estimated function Ũ(•)
asymptotically reach zeros. This implies that estimated values Û(•) approach to true values U(•).
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Figure 17. Experiment – control inputs of scheme 2.

6.3. Comparison
In the control of DARs, the techniques reported in refs. [20, 32] and our current study adopt the same
SMC core while backstepping is used in ref. [22] to achieve robustness. The structure of AIFO-FTSMC
appears to be more complex than that of the SMC core used in refs. [20, 32] as it can deal with more
control objectives, faulty conditions, and incorporates components for fast terminal stability. In practical
applications, using only backstepping would make it hard to maintain the output consistency, especially
in face of disturbances.

For adaptive features of DARs, different approaches are developed in the works mentioned. In the
development of the adaptive estimator, our study utilizes STC, while [32] relies on fuzzy logic, [20]
uses neural networks and [22] combines neural networks with composite learning. Integrating such
adaptive features is expected to make the robot operations more resilient and intelligent. Notably, control
performance is verified by simulation only in ref. [32] while our study and [20] involve simulation
and experimental verifications. The backstepping approach [22] needs recursive manipulation and may
assure robustness against both structural and unstructured uncertainties if combined with SMC. The
SMC cores use fixed first/second derivative orders, assuring asymptotic convergence [20, 22, 32] while
our I-FTSMC involves variable orders of fractional derivatives and flexible control gains, making a quick
finite-time convergence. This improves the adaptation of control system.
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Figure 18. Experiment – object path of scheme 1.

Figure 19. Experiment – object path of scheme 2.

Fuzzy adaptation in ref. [32] does not directly approximate uncertain parameters and disturbances.
Rather, it adjusts control gains to adapt with uncertainties and disturbances. Neural adaptation proposed
in ref. [20], addresses particularly on a certain type of nonlinearities, the output hysteresis. Here, in
our STC adaptation, a three-in-one observer can concurrently estimate motors fault, parametric uncer-
tainty, and disturbance. Indeed, fuzzy estimator [32] requires many intermediate steps (preprocessing,
fuzzification, inference, defuzzification, and processing) and needs many local parameters. Since neural
mechanisms [20, 22] use many weight gains in multi-inputs, multi-layers, and multi-outputs of the neu-
ral network, the resulting controllers represent complex structures and, hence, involve a computational
burden with a certain time for estimation and identification. Our STC mechanism is simpler in structure
and easy to implement with fewer gains, yet able to estimate simultaneously several targets. While the
bimanual controller based on composite learning algorithm and online neural network [22] can display
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Figure 20. Approximating equivalent component Û(•)for scheme 2 and FO = 0.95.

two important features of DARs, namely, mimic human behavior and learning ability, along with refs.
[20] and [32], do not consider the impact of motor failures. On the contrary, our AIFO-FTSMC can
operate in harsh conditions with the occurrence of motor faults.

In summary, key features of the mentioned control approaches are presented in Table IV. The perfor-
mance comparison together with simulation and experimental results shown above have confirmed the
merits of our proposed AIFO-FTSMC schemes.

For comparing the quantitative achievements of various control approaches, Table V shows speci-
fications of robot outputs including maximum overshoot, settling time, and steady-state error for each
control method. It seems that with the same methodology, for a control system being more complex with
many functions, its quality is not better than control systems having fewer functions.

7. Conclusion
This paper has presented a fault-tolerant tracking control system for dual-arm robots using adaptive
fractional-order integral fast terminal sliding mode. By combining prominent features of the integral, fast
terminal sliding mode, fault-tolerant control, and self-tuning control with fractional-order systems, we
have designed new controllers for dual-arm robots to achieve both robustness and adaptive capability. As
shown qualitatively and quantitatively, advantages of the proposed control system include reaching the
desired inputs and maintaining the tracking performance, mitigating chattering, while achieving rapid
and terminal convergence without knowledge of actuator faults, uncertain parameters, and unknown dis-
turbances. The adaptive behavior can be attributed to a three-in-one observer with a reduced estimation
time as only one equivalent term needs to be estimated instead of three separate components. With the
support from the adaptive observer, the control system exhibits superior performance with self-adjusting
ability to immunize large uncertainties. Such proposed control framework along with its merits consti-
tute the new contributions of this paper. Extensive simulations and experiments confirm the advantages
of our control approach in comparison with other advanced control techniques available. Our future
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Table IV. Features of various control systems.

Approach AIFO-FTSMC Fuzzy SMC Neural SMC Machine learning
[32] [20] [22]

Core FO-I-FTSMC SMC SMC Backstepping

Features Adjustable
derivative
orders.

Fixed derivative
orders.

Fixed derivative
orders.

Fixed derivative
orders.

Multi-goal
estimation.

Single estimation. Single estimation. Multi-goal
estimation.

Rapid and
finite-time
convergence.

Infinite
convergence.

Infinite
convergence.

Infinite
convergence.

Adaptive
technique

STC. Fuzzy logic. Neural networks. Composite
learning.Neural
networks.

Estimation ability Faults, uncertain
parameters,
and

Controller gains. Output hysteresis. Modelling
uncertainty.

Table V. Characteristics of robot responses among various control approaches.

AIFO-FTSMC Fuzzy SMC Neural SMC MRAC-SMC
Approaches (FO = 0.95) [32] [20] [19]
Rotation of links q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4 q1 q2 q3 q4

First phase
Settling time(s) 0.97 0.89 1.09 0.94 1.2 1.1 0.95 1.05 1.9 1.8 1.4 1.9 2.1 2 1.7 2
Overshoot(o) 0 0 0 0 X X X X 0 0 0 0 0 0 0 0
Steady error(o) 1.8 2.04 1.6 2.7 X X X X 0.84 0.3 1.7 0.3 0.4 0.2 0.2 0.6
Second phase
Settling time(s) 1.04 0.95 0.43 1.1 0.9 1.1 1.05 1.05 1.4 1.4 1.1 1.6 1.7 1.4 1.6 1.8
Overshoot(o) 7 7 12 6 X X X X 0 0 0 0 0 0 0 0
Steady error(o) 1.28 2.78 1.6 1.9 X X X X 1.02 0.5 0.1 0.9 0.8 0.6 0.5 0.2
“X” indicates that this value cannot be measured exactly on figures representing robot responses in ref. [32].

work will aim at incorporating learning schemes into the control structure and optimizing the fractional
orders and control gains in order to further improve DAR’s performance.
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