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The CREAM conjecture for the
subvarieties of certain
abelian-by-nilpotent varieties

Y.K. Leong

It is proved that the subvarieties of the variety A @2@_” )
are CREAM in the sense of Higman when m, n are coprime and n

is an odd integer not divisible by qh for any prime gq .

Brady, Bryce and Cossey [Z] have made a claim (now withdrawn) that the

subvarieties of ém N Agn) , where m, n are coprime, are CREAM in the

25

sense of Higman [4]. The work in [6] confirms this in the case when n is

an odd integer not divisible by qh for any prime ¢q . Our solution is
essentially an application of the methods of Higman [4] to the case when

W= As the calculations are both tedious and technical, we shall

22 A En .
omit some of the details which can be found in [6]. We refer to [4] and

(8] for the relevant terminology and concepts.

In view of results ([4], [6]) on the irreducible linear groups

belonging to 22 A gn > We only need to show that for each closed class X

of irreducible linear groups belonging to 22 A 2:3 s, where q 1is an odd
q

prime, the following function is CREAM:

n+— cn(é) , n=1,2, ...
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Here ¢ (X) = } e (X) , and ¢ (X) = (deax)%k (X)/|1in autX| , vhere
n x& " n n

degX is the degree of the irreducible linear group X over a splitting
field, kn(X) is the eulerian function of X and 1lin autX is the group

of linear automorphisms of X .

1. Symplectic modules and linear automorphisms

The calculation of 1in autX is reduced to a calculation of a certain
subgroup @Sp(U) of the group of isometries Sp(U) of a symplectic module

U over 2 o ? the ring of integers modulo qa for a prime ¢q . Although
q

the structure of symplectic spaces over a field is well-known (see, for

example, [1], [5]), that of symplectic modules over 2 o ® ring with zero
q
divisors, is, to my knowledge, not explicitly mentioned anywhere in the

literature. However, the latter is found (in [6]) to be very similar to
the former, and we shall merely state the relevant results.

A finitely-generated 2 a—module U is a symplectic module [over
q
Z o ) if there is an alternating 2 a—bilinear form f definedon U . U
q q
is said to be non-degenerate if f is non-degenerate. We write

V= 1 V, to mean that V =7V, ® V, and f'(vl, 02) =0 for all

v, € Vi , =1, 2 , and (ul, e ur) to denote the submodule generated

by u u_ . Two non-degenerate symplectic modules U, V are

10 e Uy
isomorphic if there is a module isomorphism from U onto V which

preserves their bilinear forms.

THEOREM 1.1. Let U be a non-degenerate symplectic module over
Z . Then

where for 1 <1 =<=a, U.=0 or

U; =<ug,, v 1l-.. -L<uini’ vini> s My >0,
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] 1-1

with f(uij’ vi. =q s J=1, vo., N,

J
U 1is determined up to isomorphism by the sequence of non-negative

integers (nl, N na)

An isometry of U 1is an automorphism of U which preserves the
bilinear form f on U . We denote the group of isometries of U by

Sp(U) or Sp(na, ceny nl) where nl, veas na are the invariants of U

given by Theorem 1.1. Without loss of generality, we shall assume that

nl > 0 so that there exist elements u and v in U such that

flu, v) =1 . An ordered pair (u, v) of elements of U 1is called a
hyperbolic pair of U if f(u, v) =1 . We denote the set of hyperbolic

pairs of U by U) and write w(na, cees nl) = |Q(U)| . The order of

Sp(U) 1is calculated by an enumeration of hyperbolic -pairs (ef. II.9.13 in
[51).

LEMMA 1.2. Sp(U) acts transitively on Q(U) .

n.
o 7

LEMA 1.3, [sp)| =TT TT w[na, cees Moo J) , where
=1 =1

B 2m
]_ong(mB, ceesmy) = (2m-1)8 + 2m (B-1) + b izg m.(B-i+1) + 10gq[q 1_1]

LEMMA 1.4. We have

a
. 2 .
108q|3p(na, PN nl)l = izl {(2a—2¢+1)ni+(a—z)ni}
a-1 a-1 a i pi
+4 7 7 (a-j)nin.+l + ¥ 7 1og (¢-1) .
i=1 j=i i=1 g=1 9

Kovacs has shown (see Lemma 4.2.1 in [6]) that if X is an

irreducible linear group in 22 A gn , then the group of linear

automorphisms, 1lin autX , of X is the group autZX of automorphisms of

X which act trivially on the centre 2(X) of X . Now if X € 5, AB,
q

where q 1is an odd prime, then it is shown in [7] that X is uniquely

determined by an abstract group of the form (see [2] for the definition of
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the @(n, r) J:

G = Q(nl, rl) .. Q(na,

where n, >.... >n_ > 1 n,>r. >...>pr =
1 (o} ° o 1 a 0,

v
o
M
o
n
-
M
N
-
-
=~

0<n-r <...<n-r o = €.
171 o Ta 0 0, &

By factoring off by the centre Z(G) of G , we can consider U = G/Z(G)

as & non-degenerate symplectic module over Z  , where qm = |2(6)| , with
q L
the alternating bilinear form f given by:

for all z,y €G, flz,y) =Ar,

- = A
vhere x, ¥ are the corresponding cosets in U , [z, y] = z and 2 is

a fixed generator of Z(G) .

Let a, bi’ Aigs bjk , =1, ...,0, k=1, ..., €5 1sd=1,
be canonic generators (see [7]) of G . Define the following sets of

elements of U :

r, r,

A, = {E ev:a? = ai } , =1, ,a,
r,
- Z

Bi = {x €v:al = 1} R =1, > Oy
- 1

D, = {x ev:al = 1} , i=1, ..., 1.

Then the set of isometries ¢ of U such that

Z;¢ €4, , Z;w €B,, ©=1, ..., a,

IA
o~

§ﬂ¢,§ﬂ¢el7, k=1, ...,€,, 154

forms a subgroup &Sp(U) of Sp(U) . If innG denotes the group of inner
automorphisms of G , it is not difficult to show that

THEOREM 1.5. @sp(U) = autZG/innG .

A detailed analysis of @Sp(U) enables us to calculate its order.
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The calculations are found in [6] and we merely state

THEOREM 1.6. Let Mo = My» Ty = 1, My =M= max{Z, ry, na—ra}‘,
o+l 1
IB={1, r8+151,_n8+1-n6+r6}, 0<B=<a,
JB = {z : g1 Mg <7< PB} s 1=B=a,
o m—nB+l if 1 € IB » 0=B=a,
8, = 2 X T +
k=B+1 m-nB+PB if 1 € JB s 1=B=a,
28 if 1€I,, 0s@=a,
ti=
28-1 Zf ieJB, l1=B=a.
Then
|asp(0)] I I r-1 ) b ogeity)
log |@Sp(U)| = 20m + &4 r, - r. -2 n. + 2 s.+it.]E.
9 i=1 =t ¢ 4= * = =
+ 1 Sp(U s
og, |sp(v)]
where
L 2
logq|Sp(U)| = Lzl {(21—1)€i+(z-1)6i}
T E Y e o)
+ L Je.e. o+ log |g7“-1
i=1 451 I 45y a1 4

2. The closed classes of irreducible linear groups

We refer to [4] for the meaning of linear factors and closed classes.
We summarize the following elementary observations (see [6]) on the
relation —{ of being a linear factor. In this section A4, B, ¢, D will
denote irreducible linear groups (over a splitting field) belonging to

N

AB . Thus A <XB means that A 1is a linear factor of B .
=2 =

LEMMA 2.1. ¢ —<B and B HA implies that C —4 .

LEMMA 2.2. ¢ <4 and D «B <implies that CD —AB , where AB, CD
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denote central products with cyclic centres.

LEMMA 2.3. Let Aqg = A such that 4 has cyclic centre. Then Ay

18 an irreducible linear group and Ay —4 .
LEMMA 2.4. (Z) Q(n, 0) <@Q(n, 1) «... XQ(n, n-1) <Q(n, n)

(i2) Q(n-1, r-1) X@(n, r) , 0<r<n.

Henceforth ¢q will denote an odd prime. In this section, we
introduce a convenient way of partitioning the infinite closed classes of
irreducible linear groups of a fixed exponent. This will be useful in
Section 4. We denote the closed class of all irreducible linear groups in

N,AB; by Q; . Wewrite Qk) =@k, k) . Let n>1 be a fixed
q
integer. Suppose X Sgn is a closed class not contained in g‘n—l .

Define the following (not necessarily closed) classes of linear groups:

;=Xn@n, 4)g o, £=0,1, ..., 11,

S
=¥

>

s =xnamiy . d=0,1, ...,

Wwhere Xgn 1 denotes the set of central products with cyclic centres of X

and Y for each Y €Q . and X =Q(n, ) or Q)7 . We call the
, 87 the derived classes of X . Note that go is closed.

We classify the derived classes as follows. We say that the rank of

8§, is 0 if 8, is finite (or empty); that the rank of 8, is 1 1f'

€ €

Q(n, 1)8(1) 1 € é'z, for all g, = 0, 1, ... , but Q(n, 2)g(2)

2{5__S_'L for

some 22 > 0 ; and in general, that the rank of ib is k , where

€ &
1sk<n,if Qn, 2)@(k) ™ ... @(1) ~ € 8, for all

€41
=0,1, ... , but @(n, 2)Q(k+1) té'z, for some >0 .

el, cees € €k+1
Likewise, for each J > 0 , we say that the rank of 2‘7 is 0 if 2‘7 is

finite (or empty); and that the rank of 2‘7 is k , where 1<k <n, if
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. € € .
an)er) ¥ ... @1) L € g’/ forall e, ..., € =0, 1, ... , but

l’

. € .
Q(n)?q(x+1) ket {5’ for some ¢ >0 . Note that g? consists of

k+1
linear groups in gn 1 and we do not define the rank of g? .
We shall need the following observations.

LEMMA 2.5. (Z) If rank of go =k >0, then rank of éi =k for
1=0,1, ..., k.

(i2) The following chain of inequaiities holds:
rank ofgozrank ofilz Zrankof_s__n_lz

> rank of S = rank of

flcn
tv

Proof. (i) Since S, has rank k > 0 ,

=0
e €
k 1
Q(n, 0)Q(k) © ... @(1) ~ ¢ 8y
for all €5, ..., € = 0, 1, ... . It is clear from Corollary 2.3 of [Z]

€ €
and Lemmas 2.1, 2.2, 2.3 that if 0 =% <k , @(n, 1)Q(k) koo (1) 1 X

for all El’ cees ek =0, 1, ... and hence are in éi . Moreover if
Fr+1
Q(n, 72)Q(k+1) € §; for all €,, =0, 1, ... , then
€x+1
Q(n, 0)Q(k+1) €8, for all €41 = 0» 15 ... , which is not so. Hence

S. has rank k .
2

(i) Let 0 =1 < n-1 . Suppose rank of §¢ = ki . Then rank of

€
. . A
cannot exceed ki . Otherwise @(n, 1+1)Q(1) € §i+l for all

€ = 0,1, ... , where 1 = ki + 1 , and since Q(n, 7) <Q(n, i+1) by

8i41

€
Lemma 2.4 (Z), it follows from Lemma 2.2 that @(n, 2)Q(1) t € éi for all

EZ =0,1, ... , which is a contradiction. Similarly, we can easily prove:
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>
rank of én—l > rank

The next lemma

LEMMA 2.6. X

v = sup{J : Q(n)j €

We call v in

Y.K. Leong

of st > ... . //

e

is immediate.

n-1 v .
={U s vy g
=0 J=0

x} .

the above lemma the index of X .

s where the union is disjoint and

For our purposes, we

need a detailed description of the derived classes in some simple cases.

LEMMA  2.7. Suppose Xcg, is a closed class not contained in 8 -

The derived classes

8,

[¢2]
1

o]
.,
[}

of X of rank 1 are of the forms

ez, 0)@(1)" : »=0, 1, ...},
{Q(za l)Q(l)p :r=20,1, } >
fe2Ye(1) :r=0,1, ...}, 7>0.

Proof. From [7], the irreducible linear groups of exponent q2 are

a2, 0)@(1)7, (2, 1)e(1)T, e(2)%(1)", >0, rzo0.

LEMMA 2.8. Suppose §=5333 is a closed class not contained in 8, -

The derived classes

of X of rank 1 are of the forms

1
8% U Bies 0%o <o, t=012,
8=0
M.
. J .
QJ—UE(J’S),05U-<°°: j>0,
=0 J
where
, » ,
g'i,0={Q(3a 2)Q(1Y : r =0, 1, }-‘ ©=0,1,2,
R, = {@(3, 1)e(2)%(1)" : r=0, 1 0. < wf
=¢’s 3 LY LY o000y ‘Ls___ 3
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290 - fe3)e()” i r=0, 1, ...}, ji>o,

i

(3:8) _ (a(3)%0(2)%(0)" : » =0, 1, ..., A, s},

=

The derived classes of X of rank 2 are of the forms

)1‘

{e(3, ©)(2)%q(1

tr,8=0,1, ...} , ©=0,1,2,

s/ = (e3)e@®e1)” s rys=0, 1, ...}, >0,

Proof. From [7], the irreducibdle linear groups of exponent q3 are

. 8 r / s . .
o3, 9)e2%(1)”, @(3)%9(2)°e(1)" , i=0,1,2, j>0, r,520.
If the derived class g{b has rank 1 , then by definition, there is a

o.
unique largest integer o,z 0 for which @Q(3, 7)Q(2) * ¢ % . If

Oi > 0 , we define pis for each 0 < g =< Oi , to be the largest integer

p.
for which Q(3, 7)@(2)%q(1) *® « 8; - Note that p, may be infinite.

Similarly for gj » J >0 ,or rank 1 . The forms of the derived classes

of rank 2 are obvious. //
LEMMA 2.9, Suppose X < 8, is a closed class not contained in 8 -
If the derived class §-0 has rank 1 , then io u go u il 18 the class of
all irreducible linear groups in A , v (X qu) .
q

Proof. 8° =g , 8, ={e(2 941" :r=0,1, ...} , i=0,1.//

LEMMA 2.10. Suppose X E% i8 a closed class not contained in 32 .

2
If the derived class S. has rank 2 , then §0 u [ U S.} 18 the class
=0 = -0 %

T

of all irreducible linear groups in A 3V [52/\2 2] .
q q

Proof. _§__o = 32 and =S=L s, £ =0,1, 2, are given by Lemma 2.8.
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Evidently the union of these classes gives all the irreducible linear

groups in the stated variety. //

3. Some calculations of cn(X)

In this section, we carry out some calculations of cn(X) for the

relevant linear group X . We shall denote the qz-cycle by Ci and write

_ _ -1
C,Ci=CpxCs, cﬁ = cicﬁ , k=2

LEMMA 3.1. (Z) For mn=zr=0, degldin, r)=q" .

(ii) Suppose XY 1is a central product with cyclic centre of X ,
Y ¢ 8; - Then deg(XY) = degX - deg? .

Proof. (4) Since we are working in a splitting field, the result is

trivial if r» = 0 . So suppose r > 0 . We may assume that the field

r
contains a primitive ¢ -th root of unity, & say. Then it is easily
checked that

r
1 0 g1

gives a matrix representation of @(r, r) so that degQ(r, r) = qr .
Since Q(n, 0)@{(n, r) = @(n, 0)@(r, r) by [2, Corollary 2.31, it follows

that degd(n, r) = q"

(i¢2) 1If XY =X , then Y 1is cyclic, and so the assertion follows
from (7). Now suppose XY # X or Y . Let U and V be the vector
spaces on which X and Y act respectively. Then the outer tensor
product U # V 1is the space on which XY acts, and so
dim(U#V) = dimly + dimV . //

The next lemma is a special case of a theorem of Gaschitz (Satz 1 in
[3]) and reduces the calculation of k (X) to that of kn(Cq) .

LEMMA 3.2. Let G be a finite group and H 2 G, H =< &(G) . Then
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- n
k (G) = |H|"% (G/H) .

We can calculate kn[Cgﬂ using another theorem of Gaschutz [3].

- -1
LEMMA 3.3, For mz 1, kn{dZ] = (4" l)kn[dz ] .

Proof. Consider CT as a vector space V of dimension m over

cees Up oo Then by Satz 2 of [31,

o] e

where ¢ is the number of complements of (vl) in V. Let

GF(q) , generated by v

4= {a € gutV : vie = le for some QO # X € GF(q)} .

Then A is a subgroup consisting of linear transformations of V of the

form

v.a = AV, , >\l¢o, via=)‘ivi+“i’ 1 =2, so.,m,

where Al’ cees Xm €GF(q) , u

easily checked that u

vy Uy €U =V v) . Itis

ps o by tees
STEEREE um are linearly independent. Hence

m-1
|4} = (g-1)¢" “|eL(m-1, q)| . Let Q={V=V:V-= (v)) ® W} . For every

o €A, WEQ, we have V=Vu=(vl)©W. For any two W, W' € Q ,

there exists & € A such that Wa = W' . We may define a by
vla=vl,wia=wé, 1=2, ..., m,

where {we, cees wm} . {wé, cees wé} are bases of W, W' respectively.

Hence A acts transitively on Q and so |4} = |A0| + |9] , where

4y = @ €a: Wod = Wy and Wy =(v,, ..., vm)} . Plainly A, consists

of all those o € A for which l2, ey Xm are all zero. Hence
m-1
1451 = (g-1)|oLim-1, q)| , end s0 |@] =q" . /1

COROLLARY 3.4. For m=z 1,

https://doi.org/10.1017/5S0004972700041113 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700041113

440 Y.K. Leong

m .
() - D T ()

In the next four technical lemmas, we shall assume that »n, > 71 >0 ,

1

A A
€, > 0 , and write A=2 J e, , u=2 7

. i ,

=1 1=1
3.8, ¢ is the Kronecker delta.

Z,nl—l

(i—l)ei . In Lemmas 3.6 and

LEMMA 3.5. We have

€ €
(i) kn[Q(Z) L) 1] = q(Z+U)nkn[C>‘] ,

1
. ) ey (=vn oy (A
(ii) kn[Q(nl, 0)Q(2) “ ... Q1) ] =q (¢ -q )kn(Cl] s
€ €
(i) kn[Q(nl, e L. e 1] .
(n -l+u)n
g * (@ (qn-qx)kn[c‘i] ,

EZ El
(iv) kn{Q(nl, nl-l]Q(Z) ... Q1) ]=

[3n1-5+u)n n _1+A
(¢"-q

q ICOTACAR

Proof. As an example, we prove (iZ). The others are similarly

€ £
proved. Put X = Q(nl, 0)Q(2) Loam?t , so that |Xx'| = qZ and
- 2 28 n, =
X =X/x'= Cnl_ZCZ vee Cl . By Lemma 3.2, kn(X) =q kn(X) . Now put
_ _ _ _ n.-1-1+u _
F=(x? :Zz¢X <&X) , so that |¥| = ¢ 1 and X/N = Ci+x .
Hence by Lemmas 3.2, 3.3, kn(?) = ]ﬁ]n(qn-qx]kn[Ci] . //

In the following lemma, Sp(sl, ey ez) is the group in Section 1

and its order is given in Lemma 1.4. The next lemma is a direct

application of the results in Section 1.

LEMMA 3.6. We have

https://doi.org/10.1017/5S0004972700041113 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700041113

The CREAM conjecture 441

£ £
) |ain aut[Q(Z) Lo e 1],

€ €
lin aut(Q(nl, 0)Q(12) L) l]l

A
q |Sp(el, cees sz)l s

€1 1
(i1) |lin aut(Q(nl, 1)e(z) “ ... q(1) ]I

3*2X sp(e

=q 13 ees ez)l s

€ &
(i3i) |1in aut[Q(nl, n-1)e(1) L .. Q1) ]l

5n_ +3A+2u<7-2¢€,6
1 17 l,m-1
=q ™ ISp(el, cees EZ)I .

The following two formulae are obtained by direct substitution into
the formula for cn(X) using Lemmas 3.1, 3.5, 3.6.

LEMMA 3.7. We have

€ € € €
cn[Q(nl, o)) ¢ ... a(1) l] + cn(Q(nl, De(z) ¢ ... q(1) 1]

(nl-Z)n—l
=4q

€ €
(qn—k-l)c [Q(Z) t e Q1) 1] .

n

LEMMA 3.8. Let vy = [3nl—l—5)n - 3ny +5+ 2 Then

1%2,m-1
[ €
7 1

e (el mem) t L e ]

€ €
= qY{qe("'A'“)-(q+1)qn_k-2u+ql'2u}cn[Q(l) Lo et

Henceforth we shall use the following notation:

e r, s, t) = q2n(s+2t)+r(r—l)—(s+t)(s+3t)-2s—3t
no* 72

2(r+s+t) . r . . 8 ..t —
x TT @) TT @) 1T @07 TT @@,
1=1 1=1 =1 i=1

vhere ®, », 8§, ¢ are non-negative integers. For given r, s, t ,

n cn(r, 8, t) defines a function on the non-negative integers. In the
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next section, we reduce the study of the relevant CREAM problem to a study

of some properties of cn(r, 8, t} . But first a straightforward

observation.

LEMMA 3.9. (i) For r=21, cn(Q(l)”) = qnan(r, 0, 0)

(i) For >0, s=1, cn(Q(l)PQ(2)s) = qgncn(l”, s, 0)
(iit1) For r,s =20, t=1,

e, (Q(1)7(2°%(3)%) = ¢ (», s, ¢)

4. The CREAM problem
In considering tbe CREAM problem for subvarieties of A W where
W= 52 A —Es with », 8 coprime, we only need to consider those sub-

varieties satisfying W =V =AW where p is a prime and & is a prime
power qa with p # g . This follows from §§1.1, 1.3, 2.2, 2.7 of [4] and
Lemma 4.4 below. Thus Theorem L.1 follows from Theorem 4.2,

THEOREM 4.1. Let r, s be coprime positive integers where s 18

odd and not divisible by qh for any prime q . Then the subvarieties of
A, @2/\2_3 ) are CREAM.

THEOREM 4.2. et p, q be distinct primes with q odd. Then the
subvarieties of éP [gggq_,}] are CREAM.

We shall use the notations and concepts of Section 2. We say that a
non-empty (not necessarily closed) class § of irreducible linear groups

is CREAM if the following function is CREAM:

n—c (8, n=1,2, ...

Theorem 4.2 then follows from the next theorem.

THEOREM 4.3. Every nom-empty closed class X gg3 is CREAM.

Proof. (i) ég__@il . If £=_gl » then X is CREAM by Lemma k4.5.
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If X # gl > then X is clearly finite and so is CREAM.

(11) X<Q,, x¢Q - Suppose go,gl,§‘7, j =0, are the

derived classes of X . We may assume that the index of X =V <,

Otherwise X = 9‘_2 and so is CREAM by Lemma L.

closed and hence CREAM by (i).

r has rank O , then so do §,, 8

8,
1

5. Also 80 cg is

, J >0, by Lemma 2.5 (7%).

Hence S, US. ug u...ug’ is finite and CREAM. Thus, by Lemma 2.6,

2 A
X is CREAM.

If go has rank 1 , then S ugoug_l

Lemma 2.9. If §” has rank O for J = 1,

is CREAM by §2.4 of [4] and

AY] .
..» vV, then U g is
J=1

finite and hence CREAM. So suppose S‘7 has rank 1 for some 1 =j =v ,

Let 1 = A =V be the largest integer for which g]‘ has rank 1 . Then

s/ = {@2%e1)" : r=0,1, ...} , 1 =7 <\, and so is CREAM by Lemma

L.12. Since U s
J=A+1

CREAM. Hence X 1is CREAM.

is finite (or empty),

J

1

it follows that is

e

d

J

(iii) ;533, ;$g2. Suppose S., S;» 8,, 8" , § 20, are the

derived classes of X . Again we may assume

that the index of X=v <o,

Since 20 ng is closed, go is CREAM by (i) and (ii).

By Lemma 2.5 (ii), we may assume rank of

>
éo o . If §0 has rank

0, I, ..., DOS}’

1, then so has 8, by Lemma 2.5 (Z). We have from Lemma 2.8,
%
S r

S,= U {43, 00(2)°(1)" : r =
8=0
9

5. = U {&3, 19(2)%1)" : r =
8=0
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where 00, cl < o , Clearly Pog = @ if and only if pls = ., Let
0=T1*= max{oo, ol} be the largest integer for which pOT = o ., Then
r 8 r
8= U {3, 0)e@%)” : »=0,1, ...} usg/,
8=0
T 8 r
5 = U {e3, 1)e2)%1Q)" : r=0,1, ...} us,,
8=0
where the unions are disjoint and Ed, éi are finite (or empty). By Lemma

b1k, {Q(3, 0)Q(2)%@(1)", (3, 1)@(2)%@(1)" : r =0, 1, ...} is CREAM for

every 0 =< s =1 . Hence §O U Ei is CREAM,

Without loss of generality, suppose rank of §Q >0 . Ifitis 1,

then by Lemma 2.8,

2
s
8,= U {a(3, 2)e(2)°1)" : r=0,1, ...y pp}l s 0y <
8=0
Let 0=1'=< 0, be the largest integer for which p, , =« . Then
T'
5,= U {Q3, 2% : r=0,1, ...} us!
=5 s > 1, .. 5,
8=0
where the union is disjoint and éé is finite (or empty). By Lemma k.15,
each of the infinite classes in the above union is CREAM. Hence §2 is
2
CREAM, and so is _U §¢ .
1=0
0 2
If S. has rank 2 , then by Lemma 2.10 and [4, §2.41, S u | U S.
=0 - i=0=¢

is CREAM. Thus it remains to prove that §’ , 1 =g =v , is CREAM for
s? of rank 1 or 2 . Firstly if § has renk 1 , then from Lemma 2.8,

Y.

. J .
s/ = U {93)%e2)%1) s r=0,1, ..., A
8=0

by om <.

Js J
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Let 0 = Gj < uj be the largest integer for which Aj6 = o , Then
J
%
s/ = U {e3e(2)%)" i r=0,1, ...} v
s=0

where the union is disjoint and 2? is finite (or empty). Each of the

infinite classes in this union is CREAM by Lemma 4.13. Hence g? is
CREAM.

Finally if g? has rank 2 , then by Lemma 2.8,

s? = {e(3V%e(2% )7 i r, s =0, 1, ...}
and so is CREAM by Lemma L4.16. //

We now prove the lemmas used above.
_ Jmn+1)
LEMMA 4.4. |F, (B )| =5 .

Proof. We have

G, = Fn(EQAgs) = (xl, cees T xi = [xi, xj]s =

=[[xi’xj]’xk] l’i¢j$ i’ j: ks=11"-5 1’I,>-

Since Gn is of class 2 , Exixj, xk] = in, xk]ij, ka and so
G; = (Exi, xj] 14, 4=1, ..., n) . Now G; is a direct product of

Zn(n-1) s-cycles and Gn/Gé is a direct product of »n g-cycles. Hence

6,1 = 16,7611 - lgy = sT™) gy

LEMMA 4.5. 9, is CREAM for i =1 .
Proof. From [4, §2.4], cn(gi) = (Fn N Agbi]l > and hence 3% is

CREAM by Lemma 4.L. //

We say that f(n) is CREAM if the function n+—> f(n) ,
n=0,1, ... , is CREAM. ©Note that there is no difficulty in adding
n = 0 to the domain. This is done to facilitate the proofs of the

following lemmas. Note also that in each of the following (apparently)
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infinite sums there are only finitely many terms for each fixed non-

negative integer 7n so that these sums are finite.

LEMMA 4.6. cn(r, 0, 0) is CREAM.
r=1

Proof. For n > 0 , we have

cntgl) =c (1) +c (Q(1, 0)) + rgl cn(Q(l)r]
1+ (qn"l) + qn z c (I‘, o, O)
p=1 "

using Lemma 3.9 (7). Hence from the proof of Lemma k4.5,

[+2]
Y} el(r, 0,0)= q%n(”'l) -1, n>0.
n
r=1
Clearly co(r, 0, 0) =0 for r >0 . So the above relation holds for
n =2 0 . Hence the result. //

If we use the explicit expression for cn(r, 0, 0) in the above
proof, we obtain the following polynomial identity.

LEMMA 4.7. For any real number x and positive integer n ,

(%n] 2r , r .
Z xr(r-l) ]——r an—z+l_l) Lnei—l)—l - x%n(n—l) .
r=0 =1 =1
LEMMA 4.8. § ] cn(r, 8, 0) is CREAM.
r=0 s=1

Proof. From Lemma 2.9, we have
r
g =rofeme@®r=0,1, ... ,8=1,2, ...},

wvhere Y 1is the class of all irreducible linear groups in

Wy=4A,vV @%qu) . It is not difficult to deduce from §2.h of [4] that

q
cn(l) = |Fn(!0)l . Since ébz A (£2A§q) = éq , 82.2 of [4] gives

.
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17, e ) |

a1 15,601 = [e, (o)

Hence by Lemmas 3.9 (i), 4.4 and the proof of L.5,

I I e,r, s, 0 =qc (a)-c, )} = JD) _ gmn1)
r=0 s=1

Clearly the above relation is also true for n = 0 . Hence the result. //

LEMMA 4.9, § q-zkrcn(r, s, 0) is CREAM for s, k=0 .
r=1

kr

Proof. Write bn k(r, s, 0) = q'2 cn(r, s,0), 8§, k=20 and

k(r, 0, 0) . We use induction on k to show that fk(n)

E)

(o]
fk(n)= z bn
r=1
is CREAM for k =20 . Clearly fb(n) is CREAM by Lemma 4.6. Suppose now

k >0 and fk—l(n) is CREAM. It is easily verified that for n = 2 ,

r=1,
2r -2k, n n-1
(@ -1b, 4 (r, 0, 0) = ¢ -1} (¢ -1), , 4 (21, 0, 0)
or
_ -2k n n-1
by (s 0500 =B 4 (7, 0,0) -q " (q-1) (@ -1)p, , 4, (r-1, 0, 0)
Summing from r =1 to r =® , we have for n 22 ,
(1) fom) = £y () = Fm) {1sfy_ (n-2)}

where f(n) = q_2k(qn-l)(qn-l-1) is obviously CREAM, By hypothesis,
fk_l(n) is CREAM and hence so is fk_l(n-E) . Since

fk(o) = fk(l) =0, k=0, relation (1) also holds for n =0, 1 . Hence

fi({n) is CREAM.

(o]
For a fixed k z 0 , write g.(n) = ) b, 4 (r,s,0), s20. Ve
r=1 ?

use induction on & to show that gs(n) is CREAM for 8 2 0 . Clearly
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go(n) = fk(n) is CREAM. So suppose s > 0 and gs_l(n) is CREAM. It
can be checked that for », 821, n=2,

b, x(r> 8, 0) = g{mb, _, (v, -1, 0) ,

where g(n) = q2n-23—5(qn_1)(qn-l_l)(q2s_l)-l . Hence for n= 2,

(2) gs(n) = g(n)gs_l(n-z)

Now gs(O) = gs(l) =0 for & 20 . Hence relation (2) also holds for

n=0, 1. Since g(n) is obviously CREAM, gs(n) is CREAM, //
w0
LEMMA 4.10. ] c (r, s, t) <s CREAM for s, t =0 .
r=1 "
o
Proof. For a fixed s 20 , write h,(n) = ! efr,s,t), tzo0.
r=1

Since the proof by induction on ¢ 1is similar to the second part of the

proof of Lemma 4.9, we omit the details. We merely note that ho(n) is
CREAM by the preceding lemma and that for ¢t >0, n=20,

ht(n) = c(n)ht_l(n—z)

where c{n) is CREAM. //

(=]

LEMMA 4.T0. § ¥ c (r, s, t) is CREAM for t =20 .

r=0 8=0
[oe] [o+] =]
Proof. Write ut(n) = 7 cn(r, 0, t) + § 7§ cn(r, s, £) ,
r=0 r=0 g=1

t >0 . It is clear that uo(n) is CREAM by Lemma 4.6 and k.8. Also

ut(O) = ut(l) =0, t>0. As in the proof of Lemma 4.10, we have
ut(n) = c(n)ut_l(n—z) , t>0, n=0,
where e(n) is CREAM. We then induct on ¢ . //

We shall now relate the above CREAM results to the classes of

irreducible linear groups in 33 .
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LEMMA 4.12. {@(2)%°Q(1)" : r =0, 1, ...} <s CREAM for s >0 .
Proof. By Lemma 3.9 (ZZ), we have for n =1, 2, ... ,
o 8 ry _ 2n P
T e (e(2)°q(1)) =¢q {cn(O, g, 00+ ] e/l(r,s, 0)} s
r=Q e 4 r=1
which is CREAM by Lemma 4.9 (with k =0 ). //
LEMMA 4.13. {e(3)%@(2)°(1)" : r =0, 1, ...} is CREAM for s 20,
t>0.
Proof. From Lemma 3.9 (47%1), we have for n =1, 2, ... ,
I e, @3%@%0" = o0, 5, 8) + ] o (r s, 1)) .
=0 r=1
The result then follows from Lemma 4.10. //
LEMMA 4.14. {Q(3, 0)Q(2)%¢(1)", @(3, 1)e(2)°e(1)" : » = 0, 1, ...}
18 CREAM for s =2 0 .

Proof. It is sufficient to show that

{a(3, 0)e(2)%(1)7, @(3, De(2)%(1)" : r =1, 2, ...}

is CREAM. Considering the cases s = 0 and s > 0 separately, we have

from Lemmas 3.7 and 3.9,
I {e, (a3, 0)a(2)°Q(1)")+e, (@(3, 1)(2)%(1)")}
r=1

_ lbn.2s-1 T -or 3n-1
=q ! q
r=1

) e, (r, 8, 0)

e (r, s,0) -¢q
n r=1

for n=1, 2, ... . The result then follows from Lemma 4.9. //

LEMMA 4.15. {@(3, 2)9(2)%°9(1)" : r =0, 1, ...} is CREAM for

§20.

Proof. It is sufficient to show that

@(3, 2)(2)%(1)" : r =1, 2, ...}

is CREAM. Considering the cases s = 0 and s > 0 separately, we have

from Lemmas 3.8 and 3.9,
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I e (03, 202" = &5 5 Ve (v, 5, 0)

r=1 r=1

hs-lh T -2
an s-h z q 7

- (g+1) cn(r, s, 0) + qhn—23-3 ) cn(r, g, 0)

r=1 r=1
for n=1,2, ... . The result then follows from Lemma L4.9. //
LEMMA 4.76. {Q(3)tQ(2)sQ(l)r tr,8=20,1, ...} is CREAM for
t>0.

Proof. By Lemma 3.9 (iii),

o] 0o [e] o0
I I e @%2%07) =¢" § ] clr, s, )
r=0 s=0 r=0 s=0
for n=1, 2, ... . Hence the result follows from Lemma 4.11. //
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