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Abstract

We denote the complete graph on n vertices by Kn. A proper k -colouring of Kn is a way of
assigning colours from a set of k colours to the edges of Kn in such a way that no monochromatic
triangles are formed. It is known that there are precisely two proper 3-colourings of K,6 each of
which has exactly one proper 3-colouring of K,5 embedded in it. We show that these two are the
only proper 3-colourings of K,5.

Subject classification (Amer. Math. Soc. 1970): *05C15, 05C99

Throughout this paper the usual definitions of graph theory are used. The
complete graph on n vertices is denoted by Kn. A proper k -colouring of Kn is
a way of assigning colours from a set of k colours to the edges of Kn in such a
way that no monochromatic triangles are formed. Alternatively, a proper
k -colouring is a factorization of Kn into k factors, none of which contains a
triangle. These factors are called monochromatic subgraphs and the coloured
Kn is obtained by assigning one colour to all edges of each monochromatic
subgraph.

We shall customarily use the colours R, B and G; in figures we denote
these by solid, broken and dotted lines respectively. Two vertices joined by an
edge coloured R will be called R -adjacent, and so on. Two proper colourings
are isomorphic if one can be obtained from the other by a relabelling of
vertices or an exchange of colours. (If we say a proper colouring is "unique"
we mean "unique up to isomorphism".) Suppose that C and D are k-
colourings of Kn and Kn + , respectively and that there exists a vertex v in D
such that D - v is isomorphic to C. Then we say that C is embedded in D.

When k = 2 the maximum value of n such that Kn can be properly
2-coloured is 5 and the colouring is unique. This colouring and the two distinct
proper 2-colourings of K4 are shown in Figure 1. Only one of the K4

colourings can be embedded in the K5 colouring. When k = 3 the maximum
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Figure 1.

value of n is 16 and (Kalbfleisch and Stanton) there are precisely two proper
3-colourings of K16. Each colouring of K16 has only one colouring of K15

embedded in it as the automorphism groups of both K16 colourings are
transitive (see Street and Wallis (1976)). These two colourings of K,5 are not
isomorphic. This leads to the question as to whether there are any other
proper 3-colourings of K15. Following the procedure used by Kalbfleisch and
Stanton we show that, apart from the two colourings of K15 which can be
embedded in the colourings of K16, there are no others.

Let C be a proper 3-colouring of K,5 and let CR, CB and CG be the
monochromatic subgraphs of C. In a monochromatic subgraph of C the
maximum degree is five. For, suppose CR contains a vetex v of degree six.
Then the subgraph of C induced by the six vertices adjacent to v, a coloured
K6, must have each of its edges coloured either B or G. But we know that the
maximum size of a complete graph that can be properly 2-coloured is K5, a
contradiction. If any vertex has degree three in one monochromatic subgraph
then it must have degree at least six in one of the other two, a contradiction.
Thus in any monochromatic subgraph of C all vertices have degree four or
five. If all the veritces in any monochromatic subgraph of C have degree five

15x5
the subgraph will have —r— edges which is obviously impossible. Therefore,

at least one vertex has degree four and the maximum number of edges in a

subgraph is * TT- = 37. By a similar argument we see that in any

monochromatic subgraph there is always an odd number of vertices with
degree four.

We shall associate with C an edge-vector (x, y,z) which signifies that CR

105has x edges, CB has y edges and Ca has z edges. As K\5 has I - ) =

edges, x + y + z = 105. Obviously, we can assume that x g y g z. Thus there
are seven possible edge-vectors for C. These are

(37,37,31), (37,36,32), (37,35,33), (37,34,34),

(36,36,33), (36,35,34),

(35,35,35).
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[3j Proper colourings of K,, 467

First, we show that C satisfies a lemma which was proven by Kalbfieisch
and Stanton to be valid for any proper 3-colouring of K,6; we use the lemma
extensively in the remainder of the paper. In Theorem 1 we prove that the
only possible edge-vector is (35,35,35) and in Theorem 2 we show that the
only proper 3-colourings of K,5 having this edge-vector are those two
embedded in proper 3-colourings of KI(,.

LEMMA 1. Consider any two vertices of C. If the edge joining them is
coloured R, then at most two vertices are adjacent to both of the given ones in CB

and in CG-

PROOF. Let the two vertices be labelled 1 and 2. Assume the three
vertices 3, 4 and 5 are adjacent to both 1 and 2 in CB. Label the remaining
vertices 6, • • •, 15.

There are three cases to consider.

CASE 1. Vertices 1 and 2 both have degree four in CB.

CASE 2. Vertex 1 has degree four and vertex 2 degree five in CB.

CASE 3. Both vertices 1 and 2 have degree five in CB.
For each case a figure will be drawn showing all possible ways of

colouring the edges incident with vertices 1 and 2. Any edge for which there is
no choice of colour or which can be coloured without loss of generality is then
coloured.

Notice that:
(*) In either proper 2-colouring of K4 no vertex has degree three in either
colour and in the unique proper 2-colouring of Ks all vertices have degree two
in each colour; see Figure 1. Thus, if we have a 2-coloured K5, say the colours
are R and B, on the vertices v,, v2, u.i, u4 and u5 and the edges (v,,v2) and
(u,, u3) are R then the edges (u,, u4) and (v,, u5) must be B. A 2-coloured K3,
K4 or K5 arises as a subgraph of K,5 when the three, four of five points
involved are the endpoints of three, four or five edges of the same colour
drawn from some other point.

An adjacency matrix A = (a.i) showing the edges coloured so far is
constructed. The symbol "B/G" means that either B or G can be used, but
not R; for example, if a,, and a,k are both R, a,k will be labelled B/G.
Whenever the edge (i, y)can be coloured either R, B or G, â  is left empty.

We then attempt to colour the remaining edges. This is done in each case
by using the given binary decision tree. At each point of the tree an edge for
which there were only two possible colours, say R and B, is on one branch
coloured R and on the other coloured B. This procedure is continued until a
monochromatic triangle cannot be avoided.
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Points of the tree are drawn as, °, V, D, • or • and the meanings of these
symbols are given in Table 1.

Symbol

TABLE 1. Notation Used in Binary Decision Trees

Meaning

O (i>i, v2) O
R B

PC

V{v,,v2,v,,vi,v,}

V{u,,u,, u.,, u.,}

• or T

The edge (u,, v2) is chosen to be one of two possible colours, in this case

R or B, and this is assumed for all other point symbols.

The edge (u,,i)2) is coloured in the above manner. If we then apply the

permutation p to the vertices of the graph we see that the colouring with

(v,,v2) R is isomorphic to that with (u,,i)2) B. This is illustrated in

Diagram lb.

The edge and its colour are chosen so that we have a 2-coloured K, on

the vertices {u,, v2, v,, t>4, vs} which either has a vertex v of degree two in

one of the colours and so all edges incident with v in this K, can be

coloured, or four of these vertices yield a properly 2-coloured K4 which is

then uniquely extended to a properly 2-coloured K5 on these vertices.

In the 2-coloured K4 on {v,, v2, v,, t>4} we have a vertex v of degree two in

one of the colours and so all edges of the K4 incident with u can be

coloured.

The meanings are as for ° and V respectively but in both cases a

monochromatic triangle can no longer be avoided.

CASE 1. Vertex 1 must have degree five in CR so colour the edges
(1,7), (1,8), (1,9) and (1,10) R. At least three of the edges (2,7), (2,8), (2,9)
and (2,10) must be coloured G as at most one of them can be B. Colouring C
as in Figure 2, we see that we cannot colour the edges (7,8), (8,9) and (7,9) in
such a way as to avoid a monochromatic triangle in C.

CASE 2. Here there are two subcases to consider.

2.1. The four vertices 3, 4, 5 and 6 are all adjacent to vertices 1 and 2 in
CB. This case is now eliminated using a similar argument to that of CASE 1.

2.2. Only the three vertices 3, 4 and 5 are adjacent to both 1 and 2 in CB.
Vertex 2 must have degree four in CR otherwise an argument similar to that
of CASE 1 can be applied. The edges incident with vertices 1 and 2 must now
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be coloured as in Figure 3. If the edge (2,6) is G, then three of the vertices 11,
12, 13, 14 and 15 must be G-adjacent to 1 and R-adjacent to 2. This would
lead us to a triangle on these three vertices with three B edges. Hence (2,6)
is R.

Edges (7,8), (9,10) and (14,15) must be coloured as shown.

^fr. 2
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Consider the K3 on {3,4,5}. There must be at least one R and one G
edge, say (3,4) R and (4,5)G. As neither (4,7) nor (4,8) can be B and both
cannot be G, at least one must be R, say (4,7) is R (note that this choice is
equivalent to choosing (4,8) R). Hence (3,7) is G and then (3,8) is R. The K5

on {3,4,5,7,8} can now be uniquely completed. Consider the K4 on {3,4,5,6}.
Obviously (5,6) must be R as in a proper 2-colouring of K4 no vertex has
degree three in either colour (see Figure 1). One of the edges (8,9) or (8,10)
must be G and as 9 and 10 are interchangeable colour (8,9) G and complete
the K, on {2,7,8,9,10}. One of the edges (11,12), (12,13) and (11,13) must be
R so colour (12,13) R. Either (13,14) or (12,14) is B so colour (13,14) B.
Then (13,15) is R and (12,15) is B. The K5 on {11,12,13,14,15} can now be
completed. Looking at the K5 on {9,10,11,12,13} we see that (9,11) and
(10,11) must both be R.

We have thus arrived at the partial colouring shown in Diagram la and
the search is continued via the tree shown in Diagram lb; no completion can
be found.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R

B

B

B

B

R

R

R

R

G

G

G

G

G

B

B

B

R

B

B

G

G

G

G

G

R

R

R

G

R/G

G

R

R/B

G

R/G R

R R

G R

R/B

B/G

B/G G

B

G

B/G

B/G

G

B B

R R

R/B

R/B

B/G

B/G

R/B

R/B

B/G

B/G

B

B R

R R B

R B R B

7 8 10 11 12 13 14 15

Diagram la.
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8) (9 10)

R B

Diagram lb.

CASE 3. Here there are three subcases to consider.

3.1. If five vertices are B -adjacent to both 1 and 2 then we can use a
similar argument to that of CASE 1 to show we must have a monochromatic
triangle.

3.2. If four vertices are B -adjacent to both 1 and 2 then vertices 1 and 2
must both have degree four in CR by the same argument as was used in CASE
2.2. Thus C contains the subgraph drawn in Figure 4.

Figure 4.
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Obviously we can complete the K5 on {3,4,5,6,7} without any loss of
generality and hence complete the K5 on {3,4,5,6,10} by colouring (3,4),
(4,5), (5,6), (6,7), (6,10), (10,3) and (7,3) R and the other edges G. One of the
edges (13,14), (14,15) and (13,15) is coloured R so colour (13,14) R. Then,
one of (12,13) and (11,12) is R so colour (12,13) R and complete the Ks on
{11,12,13,14,15}. Now, one of (8,13) and (9,13) is coloured R so colour
(9,13) R and complete the K5 on {8,9,13,14,15}. We see now that the edge
(7,10) must be B and the edges (8,11) and (9,12) must be G. The partial
colouring is shown in Diagram 2a and the search uses Diagram 2b. No
completion can be found.

3.3. Only three vertices, 3, 4, and 5, are B-adjacent to both 1 and 2.
There are three subcases to consider.

3.3.1. Vertices 1 and 2 both have degree five in CR. Hence C must
contain the subgraph of Figure 5. This is seen by first colouring the edges
incident with 1. Consider the K5 on {8,9,2,10,11}. We can colour the edges

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R

B

B

B

B

R

R

R

B

G

G

G

G

G

B

B

B

B

B

G

G

R

R

R

G

G

G

R

G

G

R

R

R

G R

G G

G G

R

B/G

B/G B

R B

G

B/G

B

R

R

B/G B/G

G B/G

R

B

R

B

B R

R B R

* R B B

1 2 3 4 5 6 10 11 12 13 14 15

Diagram 2a.
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Diagram 2b.

i3 / /

\ /

Figure 5.

(2,8) and (2,9) G, and (2,10) and (2,11) B. As vertex 2 has degree five in CR it
then follows that the edges (2,6), (2,7), (2,12) and (2,13) are coloured R.

In the K, on {3,4,5} there must be at least one R and one G edge so
colour (3,4) R and (4,5) G. Then colour (3,6) and (3,8) R and complete the
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K, on {3,4,5,6,7} and the K5 on {3,4,5,8,9}. One of the edges (9,10) and
(9,11) must be G to avoid a B triangle on {9,10,11}. Colour (9,10) G and
complete the K5 on {2,8,9,10,11}. Similarly (6,12) or (6,13) must be G so
colour (6,12) G and complete the K5 on {1,6,7,12,13}. As a 2-coloured K4

has no vertex of degree three in either colour one of (13,14) and (13,15) must
be R. Colour (13,14) R. We must now colour both (6,8) and (7,9) B. Diagram
3a shows the partial colouring and Diagram 3b the tree used in the search.
Again no completion can be found.

3.3.2. In CR vertex 1 has degree five and vertex 2 degree four. There are
two ways in which the edges from vertices 1 and 2 can be coloured and these
are shown in Figure 6.

Note that if in case a we exchange the colours B and G then we have the
colouring shown in Figure 3 which has already been dealt with. This leaves
only case b to consider. Here we colour the edges (3,4) R and (4,5) G. Then
colour (3,6) R and complete the K5 on {3,4,5,6,7}. One of (7,8) and (7,9) is

1

2

3

4

5

6

7

8

9

10

11

2

3

4

5

R

B

B

B

B

B

R

R

R

R

G

G

G

G

B

B

B

R

R

B

B

G

G

R

R

G

G

R

G

R

G

R

G

R/B

R/B

G

G

R

G

R

R/B

R/B

R

R

R

R

G

B

B/G

R/G

G

B

B/G

B

R/G

B

G

G

B G

G B B

R/G

R/G

R/B

R/B

B

R/B R/B R

R/B R/B R/B R/B

10 12 13 14 15

Diagram 3a.
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15 Figure 6.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R

B

B

B

R

R

R

R

B

B

G

G

G

G

B

B

B

B

B

G

G

G

R

R

R

G

G

R

G

R

G

R/B

R/G

R/G

G

G

R

R/B

R/G

R/G

R

R

R

R

G

G

B

B/G

B/G

B

G

B/G

B/G

B

R/B R/B

G

R/B R/B R/B

R/B R/B R/B

B/G

B/G B

R/B R

R/B R/B R/B

7 8 9

Diagram 4a.

10 11 12 13 14 15

(3"O(67)(89)

{8,9,10,1"*,15}

Diagram 4b.
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£ 3 * . 2

<*5

/

•• ft
/ / / <r

# % > ^

\ \ \

A
'/^

—ii9—

10

12 ..'

V/
\ 14 /x5

V

/ / / /

/ / / /

/ / /
• • / /

• /

Figure 7.
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coloured G so colour (7,9) G and complete the K5 on {2,6,7,8,9}. As no
vertex in a 2-coloured Kt on {12,13,14,15} has degree three in either colour,
colour (13,14) R. Looking at the K5 on {3,4,5,10,11} we see that (5,3) and
(5,4) are G. Therefore we must have (5,10) and (5,11) R and hence (10,11)
G. We illustrate this partial colouring in Diagram 4a and in Diagram 4b the
search tree used. Again, no completion can be found.

3.3.3. In CR vertices 1 and 2 both have degree four. There are four ways
in which the edges from vertices 1 and 2 can be coloured. These are shown in
Figure 7.

a: This case is, by exchanging the colours B and G, the same colouring as
that of Figure 4 and is immediately eliminated.

b: Colour the edges (3,4) R and (4,5) G. One of (7,9) and (7,10) is R so
colour (7,9) R. As one of (7,14) and (7,15) is B (see (*)) we can colour (7,14)
B. Colour (12,13) R. The partial colouring is shown in Diagram 5a and the
search tree in Diagram 5b. No colouring can be found.

1

-}

3

4

5

6

7

8

9

10

11

12

13

14

15

R

B

B

B

B

B

R

R

R

G

G

G

G

G

B

B

B

R

G

B

G

G

R

R

B

G

G

R

R/G

R/G

R/G

R/G

R/G

G

R/G

R/G

R/G

R/G

R/G

R/G

R/G

R/G

R/G

B/G

B/G

R B/G

R/B B/G B

R/G

B R/B R/B

R/B R/B R/B

B

R/B R

R/B R/B R/B

R/B R/B R/B R/B

10 12 13 14 15

Diagram 5a.
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{3,i*,5,6,7} and {3,4,5,8,13}

{11,12,13,14,1s}

{3,4 ,5 ,6 ,7} and {3,4,5,8,13}

{11,12,13,14,15}

(45), 1 0 )

(11 12)

Diagram 5b.

c: Colour the edges (3,4) R and (4,5) G. Then colour (3,8) R and
complete the K5 on {3,4,5,8,9}. Now colour (13,14) R and (14,15) B ; then
(12,13) can be coloured R and the K5 on {11,12,13,14,15} can be completed.
We must colour (5,6) and (5,7) R, as 5 is incident with two G edges in the K5

on {3,4,5,6,7}, and hence (6,7) is G. Similarly (10,15) and (7,15) must be R
and hence (7,10) is G. The partial colouring and search tree are given in
Diagrams 6a and 6b. Again, no colouring can be found.

d: By exchanging the colours B and G it is immediately seen that this is
the same case as c and as such has already been considered.

This completes the proof of the lemma.

THEOREM 1. Any proper 3-colouring of KI5 must have edge vector
(35,35,35).

are

PROOF. The only possible edge vectors for a proper 3-colouring of K,

(37,37,31), (37,36,32), (37,35,33), (37,34,34),

(36,36,33), (36,35,34) and (35,35,35)

as the maximum number of edges in a monochromatic subgraph of Kl5 is 37.
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1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

R

B

B

B

B

B

R

R

R

G

G

G

G

G

B

B

B

R

G

B

B

G

R

R

G

G

G

R

G

R/G

R/G

R

G

G

R/G

R/G

G

R

R

R

R

R

B/G

G

B/G

B/G

B/G

B/G

B/G

B/G

B

B/G

B/G

B/R

B/R

R

G

B/G B/G

B/G

B/G

B/R

B/R

R

B

B R

R B R

R R B B

1 2 6 7 8 9

Diagram 6a.

10 11 12 13 14 15

(11 12)(13 14)

We show that there is no monochromatic subgraph of C with either 37 or
36 edges. Only CR need be considered. At least one vertex in CR, say vertex 1,
has degree four. Thus C must contain the subgraph of Figure 8 in which the
remaining vertices have been labelled arbitrarily. Figure 9 shows the edges of
this subgraph which are contained in CR.

Recall that in a properly 3-coloured K1S each vertex has degree four or
five in CR. Assume that CR has 37 edges. Then each vertex, except for vertex
1, has degree five. Each of the vertices 7, 8, 9, 10 is adjacent to two vertices in
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.2 \

Figure 9.

both the sets {2,3,4,5,6}= V and {11,12,13,14,15} = W. At most two of the
vertices 7, 8, 9 and 10 can have two adjacent vertices in common. This follows
from the lemma; as if (say) (7,8) is B then there are at most two vertices
R -adjacent to both 7 and 8 and at most two G -adjacent. Hence we can draw
the edges (2,7), (4,7), (3,8), (5,8), (4,9), (6,9), (5,10), (2,10), (8,12) and (8,15)
as in Figure 10.

All arguments are based on both avoiding a triangle and not contradict-
ing the lemma.

Vertex 3 is adjacent to two of 11, 13, 14. As it must be adjacent to 11 and
hence one of 13 and 14 we can draw the edges (3,11) and (3,14). Vertex 5
must now be adjacent to 13 so draw (5,13). To avoid a triangle vertex 4 can
only be adjacent to one of 12 and 15 but in both cases the lemma is
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Figure 10.

contradicted. Thus 4 cannot have degree five and hence CR cannot have 37
edges.

Assume that CR has 36 edges. Then twelve vertices have degree five and
three have degree four. Vertex 1 is already degree four and so there are only
two others. There are three cases to consider.

CASE 1. None of 7, 8, 9 and 10 has degree four.

CASE 2. One of 7, 8, 9 and 10 has degree four.

CASE 3. Two of 7, 8, 9 and 10 have degree four.

CASE 1. If both vertices of degree four are in V then a simple count of
the total degrees in V and W shows that we need to draw five edges from V
to W but seven from W to V in order to have 36 edges This is obviously
impossible. Therefore there is one vertex of degree four in V and one in W.
Thus we can begin with the edges of Figure 10.

If one of the vertices 2 and 6 has degree four then the argument used is
that of the case when CR has 37 edges.

If one of the vertices 3 and 4 has degree four then as 5 cannot be adjacent
to 11, 12 or 15 without contradicting the lemma we can draw (5,14). Vertex 6
is now adjacent to 13. For the same reason 10 must also be adjacent to 13 but
now the lemma is contradicted.

The only case remaining is when 5 has degree four. Here we have the
edges (3,11) and (3,14), and hence (4,13). But now 9 and 7 must both be
adjacent to 12 and 14, contradicting the lemma.

CASE 2. We can assume that 8 has degree 5 and so we again begin with
Figure 10. If the third vertex of degree four is in V, then six edges must be
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drawn from V to W but eight edges from W to V. Since this is impossible the
third vertex of degree four must be in W. The argument now follows as in the
case with 37 edges.

CASE 3. Let 7 and 10 be the vertices of degree four. Starting with
Figure 9 there are three ways to draw the edges from 8 and 9 to V and W. The
two vertices, 8 and 9, can have no adjacent vertex of V or W in common; they
can have one of V (or equivalently one of W) in common; or one vertex of V
and one of W in common. These are shown in Figure 11. We can assume that
7 is adjacent to two vertices in V and that 10 is adjacent to two vertices in W.
If both 7 and 10 were adjacent to two vertices of V, say, we would need seven
edges from V to W but nine from W to V.

3.1. Vertex 4 must be adjacent to two other vertices. It cannot be
adjacent to both 7 and 10 as then there are three vertices R -adjacent to both 1

3 . 1 :

10

3 . 2 :

3 . 3 :

Figure 11.
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and 4. Hence we must have the edge (4,13). The same argument when applied
to vertex 3 gives the edge (3,13) but we now have a triangle on the vertices 3,
4 and 13.

3.2. As no distinction has yet been made between vertices 8 and 9 we see
that vertex 7 is adjacent to either vertices 6 and 3 or 2 and 5. If we draw (6,7)
and (3,7) then we must have the edge (3,15) and hence (4,10) and (4,12). It
follows that as 5 is to have degree five it must be adjacent to both vertices 14
and 15 but this results in a triangle. If, instead, we draw (2,7) and (5,7) then 6
must be adjacent to 10, as it cannot be adjacent to three of B, but then 3 can
only be adjacent to 15 and thus only has degree four.

3.3. Here we see that the lemma is contradicted.
Thus any proper 3-colouring of K15 must have edge-vector (35,35,35).

This completes the proof of Theorem 1.
As was pointed out there are exactly two proper 3-colourings of K,6.

From these, two proper 3-colourings of K15 can be obtained by deleting, in
each of the K16, a vertex and the edges incident with it. On deleting vertex 1 in
each case we have the K15 as shown in Diagrams 7 and 8.
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Diagram 7.
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Diagram 8.

THEOREM 2. There are exactly two proper 3-colourings of K,* and each
can be embedded in a proper 3-colouring of K,6.

PROOF. From Theorem 1 we know that any proper 3-colouring of K,5 has
edge-vector (35,35,35). We look at the monochromatic subgraph CR which
must contain the edges shown in Figure 12. (The B and G edges of Figure 8
are also assumed.)

10

Figure 12.
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There are five cases to consider as CR has five vertices of degree four
(including vertex 1) and ten of degree five. The cases are as follows.

CASE 1. Vertices 7/8, 9 and 10 have degree four.

CASE 2. Vertices 7, 8 and 9 have degree four whilst vertex 10 has
degree five.

CASE 3. Vertices 7 and 8 have degree four and vertices 9 and 10 have
degree five.

CASE 4. Vertex 7 has degree four whilst the other three, 8, 9 and 10,
have degree five.

CASH 5. The four vertices 7, 8, 9 and 10 have degree five.
Each case will be considered in turn.

CASE 1. There must be two edges from each of 7 and 8, and one from
each of 9 and 10, to the vertex set V = {2,3,4,5,6}. Also, there must be two
edges from each of 9 and 10, and one from each of 7 and 8, to the set
W — {11,12,13,14,15}. This yields the three possibilities shown in Figure 13.

1 . 1 :

Figure 13.
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As no vertex in V can be adjacent to more than two vertices in W, and vice
versa, we can add the edges (8,14) and (5,9) in 1.1, (8,14) and (7,11) in 1.2 and
(8,11) and (7,14) in 1.3.

1.1. Vertex 5 must be adjacent to vertices 10 and 14. Hence we have the
edges (4,13) and (4,15), but now vertex 3 cannot be adjacent to any two of the
vertices in W.

1.2. Vertex 14 cannot be adjacent to any two vertices in V without
contradicting the lemma or forming a triangle.

1.3. Here the argument of 1.2 applies to vertex 11.

CASE 2. We are required to draw two edges from each of 8, 9, 10 and
one from 7 to W; two edges from each of 7 and 10 and one from each of 8 and 9
to V. The fifth vertex of degree four must be in V. Draw the edges from 10 to
V and W. There are then four ways that the edges from 8 and 9 can be drawn
to W. These are shown in Figure 14. In both cases 2.1 and 2.4 the edge from 7
to W can be drawn uniquely.

2 . 1 : 2 .2 :

Figure 14.
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2.1. Vertex 11 is adjacent to two of 2, 4 and 5 so draw the edges (2,11)
and (4,11). But now vertex 7 cannot be adjacent to any two of V without
forming a triangle or contradicting the lemma.

2.2. Vertices 12 and 15 must both be adjacent to one of 4 and 5 and to
vertex 7. But this is impossible.

2.3. Again vertex 12 is adjacent to 7 and one of 4 and 5. Hence we can
draw the edges (2,11), (4,11) and then (5,12) and (7,12). But now vertex 7
cannot be adjacent to two vertices of V.

2.4. Vertex 12 cannot be adjacent to any two vertices of V.

CASE 3. Here we require that vertices 9 and 10 are each adjacent to
two of V and two of W. Two cases arise and these are shown in Figure 15.
Either V and W both have one vertex of degree four or one of them has two
vertices of degree 4.

l

3 . 1 : 3 . 2 :

Figure 15.

3.1. As yet we have made no distinction between the sets V and W and
so can assume that vertices 3 and 4 have degree five. Thus we have the edges
(3,8) and (3,14). Vertex 2 can now only be adjacent to vertex 7 and so has
degree four. But now vertex 4 has only degree four, a contradiction as we
have assumed that it has degree five.

3.2. There are three possibilities to be considered.

3.2.1. Both other vertices of degree four are in V. Then we have the edge
(5,11) and hence (7,15), (8,15); one of (2,15) and (4,15); (7,12), (8,12) and
one of (3,12) and (16,12). But the edges now drawn contradict the lemma.
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3.2.2. There is a vertex of degree four in each of V and W. We can
assume that vertices 3 and 4 have degree five. We have the edges (3 8), (3,12)
and (4,7) and 4 is adjacent to one of 14 and 15. Vertex 2 can be adjacent to
only one of 14 and 15 and so has degree four. Thus we need to have (5,8) as 5
has degree five. To ensure the same number of edges from W to V as from V
to W vertices 7 and 8 cannot be adjacent to any more vertices in V. But then
vertex 6 cannot be adjacent to two vertices in W without forming a triangle or
contradicting the lemma.

3.2.3. If two vertices in W have degree four then all vertices in V have
degree five. We then have the edges (3,12), (3,7), (2,15) and (2,8). However
vertex 4 now has maximum degree four as it can only be adjacent to vertex 14.

CASE 4. Vertices 8, 9 and 10 are all adjacent to two vertices in both V
and W. Let vertex 7 be adjacent to two vertices in V and one in W. There
must then be one vertex of degree four in V and two in W. The two
possibilities are shown in Figure 16.

4 . 1 : 4 . 2 :

Figure 16.

4.1. We can add the edges (8,12) and (8,15). Vertex 2 can be adjacent to
13 or 14, but only one of them. Therefore vertex 2 has degree four and we
have the edges (4,14), (2,13) and (3,11). We now need to have (5,12) and
(5,15) so that 5 has degree five but this contradicts the lemma.

4.2. Add the edges (8,12), (8,15), (9,12) and (9,14). Vertex 4 must have
degree four as the only vertex it can be adjacent to is vertex 13. This then
gives the edges (5,15) and (3,11). Vertex 6 now cannot be adjacent to any two
of W, a contradiction.
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CASE 5. Here 7, 8, 9 and 10 are all adjacent to two vertices in V and in
W as in Figure 17.

l

Figure 17.

There are two vertices of degree four in both V and W. Add the edges
(8,12), (8,15), (7,12), (7,14), (9,15) and (9,13). The following edges must also
be added: (4,14), (3,11), (2,13), (5,12) and (6,15). This is the required
monochromatic subgraph, CR.

The incidence matrix is given in Diagram 9; the vertices have been
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rearranged to exhibit the isomorphism between CR and the R edges in
Diagrams 7 and 8. The B and G edges of Figure 8 are also included.

The tree of Diagram 10 shows that there are exactly six ways to colour all
the remaining edges of the graph whose partial incidence matrix is given in
Diagram 9.

Diagram 10.

Look at each of the six cases in turn. The incidence matrices of the
completed colourings appear in Diagram 11.

(i) It is seen that the edges (2,10), (2,9), (5,8) and (5,7) must be G and
the colouring can then be completed.

(ii) Here we have that (5,7), (5,8) and (6,9) must be G whilst (10,15)
must be B. The colouring is then completed.

(iii) The edges (6,8), (6,9), (3,10) and (7,10) must all be G. Then
complete the colouring.

(iv) We have that (2,9), (2,10) and (3,8) must be G whereas (7,12) must
be coloured B.

(v) In this case (2,9), (2,10), (5,7) and (5,8) must all be G and the
colouring can then be completed.

(vi) As above the edges (2,9), (2,10), (5,7) and (5,8) must all be G and
then we can complete the colouring.

It is immediately seen that (iii) and (vi) are identical colourings to those
of Diagrams 8 and 7 respectively. A simple check shows that the remaining
four colourings can all be extended to proper 3-colourings of K,6 and so must
be isomorphic to the colourings of Diagrams 7 and 8.

This completes the proof of the theorem.

The author would like to thank Professor W. D. Wallis for his assistance
during the writing of this paper.
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Diagram 11 (cont)
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Diagram 11 (cont.)
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