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Wall modelling in large-eddy simulation (LES) is of high importance to allow scale
resolving simulations of industrial applications. Numerous models were developed and
validated for incompressible flows, including a simple quasi-analytical model based on
Reichardt’s formula that approximates the law of the wall. In this paper, a scaling is
proposed to generalize this wall model to highly compressible flows. First, the results
of wall-resolved LES (wrLES) of adiabatic compressible turbulent channel flows at
Reτ = 1000 and at centreline Mach numbers of Mc = 0.76 and 1.5 are presented. Then,
three potential scalings of the incompressible wall model are proposed, and their a priori
performance is evaluated : (i) the Howarth–Stewartson scaling, (ii) an improved Van Driest
scaling and (iii) a new scaling obtained from a blending of those two. The results of
wall-modelled LES (wmLES) of compressible channel flows using these three models
are compared with the reference wrLES data, showing the superior accuracy of the hybrid
scaling. The consistency of the new wall model at low Mach numbers is also verified by
comparing the results of a wmLES at Mc = 0.25 with those of reference incompressible
DNS data at Reτ = 1000 and 5200. Finally, the proposed wall model is also applied to a
turbulent channel flow at Mc = 1.5 and Reτ = 5200.

Key words: turbulence modelling, channel flow

1. Introduction

Scale-resolving simulations of flows at industrial scales and high Reynolds numbers Re
can currently not reasonably be performed using wall-resolved large-eddy simulations
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(wrLES) because of their too high computational cost. Indeed, according to Choi & Moin
(2012), the number of grid points increases as Re13/7 for such simulations. Moreover, it
was shown by Piomelli & Balaras (2002) that, for Reynolds numbers above O(106), 99 %
of the grid points in the mesh are used to resolve the inner layer (= near-wall region) of the
boundary layer which only represents around 10 % to 15 % of its thickness. The grid-point
requirements can thus be drastically reduced by modelling the effect of this inner layer on
the flow using a so-called wall model. When such a model is used, the number of grid
points scales linearly with Re, as also shown by Choi & Moin (2012).

Wall models for large-eddy simulation (LES) rely on the relative decoupling between
the inner part of the boundary layer and the rest of the flow. The flow is assumed to follow
a universal profile in the near-wall region of the boundary layer whereas the rest of the flow
is assumed to be properly captured by the LES. The LES thus still captures a significant
part of the boundary layer and is driven by the problem geometry. Three main types of
wall models can be distinguished:

(i) Algebraic (or analytical) models where the wall shear stress is directly computed
from the LES flow data using the law of the wall for the near-wall region.
These models were the first used to perform wall-modelled LES (wmLES) by
Deardorff (1970) and later by Schumann (1975). Piomelli et al. (1989) proposed
an improvement of such model by using the velocity a short distance downstream
to evaluate the local wall shear stress. In such a framework, Reichardt’s formula
(Reichardt 1951) is often used to approximate the law of the wall in a convenient
way as it reproduces, in a single formula, the laminar viscous sublayer, the buffer
region and the fully turbulent outer region (with the log law); hence allowing us
to maintain accuracy when the y+ value of the used LES data falls below the log
region.

(ii) Two-layer models, where a separate set of equations is solved within the near-wall
part of the boundary layer. The equations solved there are the so-called boundary
layer equations, as in Balaras, Benocci & Piomelli (1996), Duprat et al. (2011),
Kawai & Larsson (2012), Piomelli & Balaras (2002) and Park & Moin (2014), and
which all require an appropriate modelling of the turbulent viscosity profile. Frère
et al. (2018) studied the balance of the different terms constituting the boundary
layer equations using wrLES data of the flow around an airfoil and observed that, for
values of y+ sufficiently large ( y+ ≥ 30), the convective and pressure gradient terms
essentially compensate each other. This observation allows us to further simplify the
boundary layer equations to only consider the diffusive terms, which can then be
integrated on a one-dimensional mesh.

Other authors (Chung & Pullin 2009; Wu & Meyers 2013) use a specifically
modified Subgrid-Scale (SGS) model in the near-wall region (thus relying only on
the LES solver but also requiring us to discretize this near-wall region). In Davidson
& Peng (2003), the near-wall layer is modelled using a turbulent viscosity obtained
from the k − ω Reynolds-averaged Navier–Stokes (RANS) equations. Even though
these approaches solve the same set of equations in the whole domain, they can
still be considered as two-layer modelling as the unresolved scales are modelled
differently in the near-wall layer and the rest of the domain.

(iii) Machine learning and in particular neural networks (NN) were also used by several
authors, such as Zhou, He & Yang (2020) or Boxho et al. (2022). Such approaches
could possibly allow the development of models for non-equilibrium flows; yet they
require the training of NN, hence the need for reference data.
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Developments were made to generalize the former two approaches to take
compressibility effects into account. For instance, Bocquet, Sagaut & Jouhaud (2012)
used a two-layer model in which the compressible boundary layer equations were solved
and compared it with a quasi-analytical model based on Reichardt’s formula with the
temperature, viscosity and density measured at the wall. This was, however, proposed for
an isothermal wall and the Kader law (Kader 1981) was used to provide the wall heat flux.
Even though the proposed quasi-analytical model and the compressible boundary layer
model showed similar performance for low Reynolds number supersonic channel flow test
cases, the error on the velocity profile was significant.

A similar quasi-analytical wall model was used by Catchirayer et al. (2018) for an
isothermal wall. They also proposed a model to compute the wall temperature in the case
of an adiabatic wall, using a Crocco–Busemann-type relation and the off-wall temperature
and velocity data. This wall model was, however, only tested on the adiabatic wall in
quasi-incompressible cases, yielding satisfactory results.

The present work proposes to investigate the possibility of using a quasi-analytical
wall model where the compressible flow data are scaled before being fed to the wall
model. Such scalings have already been proposed to better collapse the compressible
simulation data on the universal incompressible laws, the most commonly used being the
Van Driest transformation (Van Driest 1951). However, in the late 1940s, Howarth (1947)
and Stewartson (1949) proposed scalings to deduce the results of compressible flows from
equivalent incompressible results. To the authors’ knowledge, such scalings have never
been investigated to propose a simple wall model for compressible flows.

In this paper, the results of wrLES of adiabatic compressible turbulent channel flows at
a friction Reynolds number of Reτ � 1000 and at two centreline Mach numbers Mc (one
subsonic, one supersonic) are first presented, as they will later be used as reference for the
evaluation and validation of our proposed wall model for wmLES. Then, the complete
wall-modelling strategy is explained, including the specific tabulated nonlinear solver
of Reichardt’s formula, the determination of the wall temperature and the investigated
scalings to take into account compressibility effects. The results of wmLES of the same
compressible turbulent channel flow cases are presented and compared with those of
the reference wrLES. The consistency of the new wall model at low Mach numbers is
also verified by comparing the results of wmLES at Mc = 0.25 with those of reference
incompressible direct numerical simulation (DNS) data from Lee & Moser (2015) at
Reτ = 1000 and 5200. Finally, the proposed wall model is also applied to a turbulent
channel flow at Mc = 1.5 and Reτ = 5200.

2. Wall-resolved simulations of compressible channel flows at Reτ � 1000

In order to obtain reference data for the wall-model assessment, two wrLES of
compressible and turbulent channel flows have been performed. The target Reynolds
number was set to Reτ = 1000 and two centreline Mach numbers Mc were investigated: (i)
a subsonic case at Mc � 0.76 and (ii) a supersonic case at Mc � 1.5.

2.1. Fluid properties
For all simulations, the fluid is air and is treated as a perfect gas with R = 287.1 J (kg K)−1

and γ = 1.4. The Prandtl number is Pr = μcp/κ = 0.71 and the Sutherland law is used
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�x+ y+
1 �z+

Mc � 0.76 29.1 1.2 14.5
Mc � 1.51 20.4 0.8 10.2

Table 1. Resolution in wall coordinates for the wall-resolved simulations at Reτ � 1000.

for the dynamic viscosity

μ

μref
=
(

T
Tref

)3/2 (Tref + S
T + S

)
, (2.1)

with μref = 1.716 × 10−5 Pa s at Tref = 273.15 K and S = 110.4 K. The specific heat at
constant pressure, cp, is considered constant. The thermal conductivity κ is determined
from the dynamic viscosity and the Prandtl number.

2.2. Simulation set-up
The simulations are performed using the Argo code developed by Cenaero (Hillewaert
2013), which uses a discontinuous Galerkin method (DGM). For the wall-resolved
simulations, a third-order ( p = 3) polynomial finite element space is used over the whole
domain, as this offers a good compromise between accuracy and computational cost.
The modified simple low dissipation advection upstream splitting method, proposed by
Kitamura & Shima (2010), is used as an approximate Riemann solver at interfaces between
elements. For the diffusive terms, a symmetric interior penalty (SIP) method is employed
(Arnold et al. 2002). The time integration is implicit and second order, using the 3-point
backward difference formula. The nonlinear system is solved using a Newton/Generalized
Minimal Residual (GMRES) method preconditioned with block Jacobi. A reduction in
residual of 10−4 compared with the value of the residual at the beginning of each time
step is imposed in order to obtain a good convergence. The solver performs implicit LES
(ILES). The ILES approach using DGM/SIP was shown to produce results comparable
to those of reference solvers when tested on channel flows at Reynolds numbers up to
Reτ � 1000 by de Wiart et al. (2015).

Adiabatic walls are considered and the meshes are identical for both cases. The domain
size in the three directions is Lx × Ly × Lz = 2πh × 2h × πh (where h is the channel
half-height) and the mesh is composed of Nx × Ny × Nz = 64 × 32 × 64 structured
hexahedra. Since p = 3 elements are used, this represents 256 × 128 × 256 degrees of
freedom per equation. The mesh is uniform in the homogeneous directions (x and z) and
is stretched in the y direction using

y
h

= 1 + tanh (α (ξ − 1))
tanh (α)

, (2.2)

where ξ = 2i/Ny with i = 0, . . . ,Ny. The stretching parameter is set to α = 2.6. The
resolution in wall coordinates for both cases is given in table 1. Note that the computation
of the resolution is based on the distance between two successive degrees of freedom
within an element instead of the usual element length, in order to take into account the
higher resolution capability of high-order finite element methods.

A second simulation was performed in the supersonic regime with a doubling of the
elements in the vertical direction to ensure that the proposed mesh allows us to have an
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Figure 1. Velocity profiles in wall coordinates for the cases at Mc � 0.76 (dashed line) and Mc � 1.51 at
normal (thick solid line) and higher resolutions (dotted line). The incompressible flow DNS data from Lee
& Moser (2015) (thin solid line) and the wrLES data from de Wiart et al. (2015) at Mc � 0.10 (dash-dotted
line) are also shown for comparison. (a) Using the semi-local normalization for both quantities. (b) Using the
semi-local normalization for y and the Van Driest transformation for ū.

accurate reference. This mesh preserves the wall resolution but reduces the stretching,
effectively increasing the resolution in the centre of the channel. The results of this
simulation are superimposed on those of the base mesh presented previously and are
observed to match almost perfectly with the coarser mesh.

The flow statistics are averaged in time over roughly 11 normalized times t+ = h/uτ ,
and in the homogeneous directions. The time averaging operation is noted (·̃). With that,
we define the time-averaged density ρ̃ and pressure p̃. Favre averaging is then applied to
the time-averaged velocity u and temperature T , defined as

ū = ρ̃u
ρ̃
, T̄ = ρ̃T

ρ̃
= p̃

Rρ̃
. (2.3a,b)

The notation μ̄ stands for μ(T̄) and the notation τ̄w stands for the time-averaged wall
shear stress. The fluctuating velocity components associated with the Favre averaging are
defined as

u′′
i = ui − ūi. (2.4)

The mean pressure gradient imposed in the x direction is dynamically adapted so as to
maintain a constant mass-flow rate. To maintain thermal equilibrium, the power produced
by the forcing pressure gradient is omitted in the total internal energy equation.

2.3. Results
The friction Reynolds number, defined as Reτ = h+ = h

√
ρ̃cτ̄w/μ̄c for a compressible

channel flow, was measured as Reτ = 1001 in the subsonic case, with a centreline Mach
number of Mc � 0.76; while it was measured as Reτ = 955 in the supersonic case, with
Mc � 1.51.

Figure 1 shows the velocity profile for both cases: first using the semi-local
normalization for both quantities, i.e.

y+ =
√
ρ̃τ̄w

μ̄
y,

ū∗ =
√
ρ̃

τ̄w
ū,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2.5)
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Figure 2. Velocity profiles in outer coordinates for the cases at Mc � 0.76 (dashed line) and Mc � 1.51 at
normal (thick solid line) and higher resolutions(dotted line). The incompressible flow DNS data from Lee &
Moser (2015) are also shown for comparison (thin solid line).

in figure 1(a); and then using the non-dimensionalization recommended by Huang,
Coleman & Bradshaw (1995) which uses the semi-local normalization for y and the Van
Driest transformation (Van Driest 1951) for ū

ū+ =
√
ρ̃w

τ̄w

∫ ū

0

√
ρ̃

ρ̃w
dū

′
, (2.6)

in figure 1(b).
This figure shows that the Van Driest transformation allows us to reduce the Mach

number dependence on the normalized velocity profile, while still not perfectly collapsing
on the incompressible DNS or wrLES data. This is due to the relatively low Reynolds
number and the related large contribution of the viscous sub-layer. Several authors have
proposed more advanced transformations to better take the effect of the viscous sub-layer
into account, see Huang & Coleman (1994), Brun et al. (2008), Zhang et al. (2012),
Modesti & Pirozzoli (2016) and Trettel & Larsson (2016).

The velocity profiles are also shown in outer coordinates in figure 2, i.e.
non-dimensionalized using the centreline velocity ūc and the channel half-height h. The
observed behaviour is very similar to that seen in LES of channel flows at lower Reynolds
numbers performed by Brun et al. (2008) with a steeper (respectively flatter) velocity
profile close to the wall (respectively centreline) with increased Mach number.

The root-mean-square (r.m.s.) velocity fluctuation profiles are shown in figure 3. These
fluctuation profiles are non-dimensionalized using the wall shear stress and the local
density. Thus

u′′
i,rms

+ =
√

u′′
i u′′

i
τ̄w/ρ̃

where u′′
i u′′

i =
˜ρu′′

i u′′
i

ρ̃
. (2.7)

The evolution of the near-wall streamwise fluctuation peak with increasing Mach
number is similar to what is obtained by Modesti & Pirozzoli (2016) in DNS and using
the same normalization. They indeed observed an increase of the streamwise velocity
fluctuation u′′

rms
+

peak when increasing the Mach number. For the spanwise and vertical
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Figure 3. Velocity fluctuation profiles in wall coordinates for the cases at Mc � 0.76 (dashed line) and Mc �
1.51 at normal (thick solid line) and higher resolutions (dotted line). The incompressible flow DNS data from
Lee & Moser (2015) and the wrLES data from de Wiart et al. (2015) at Mc � 0.10 (dash-dotted line) are also
shown for comparison (thin solid line). Top: u′′

rms
+

, middle : w′′
rms

+
, bottom: v′′

rms
+
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Figure 4. Temperature profiles for the cases at Mc � 0.76 (dashed line) and at Mc � 1.51 at normal (thick
solid line) and higher resolutions (dotted line).

profiles, a slight decrease of fluctuation amplitude is observed when increasing the Mach
number. Overall, the dependence in Mach number of the velocity fluctuation profiles is not
as significant as for the average velocity profile.

Figure 4 shows the temperature profile, normalized by the total temperature at the centre
of the channel

T̄0,c = T̄c

(
1 + γ − 1

2
M̄2

c

)
. (2.8)

The normalized wall temperature is seen to decrease when the Mach number is increased,
which is consistent with the experimental observations of Van Driest (1951) for fluids
with Prandtl number lower than unity (see also later the modelling of the profile using a
recovery factor with (3.3)).
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Figure 5. Instantaneous views of the case at Mc � 1.51. (a) Volume rendering of the temperature field.
(b) Mach number fluctuations in a slice.

Finally, a volume rendering of the instantaneous normalized temperature field, as well
as the instantaneous Mach number fluctuations in a slice of the domain, computed as
M′′ = M − M̄, are shown in figure 5. We observe that the Mach number fluctuations are
significant, with amplitudes up to 0.75.

3. Wall-modelling strategy

The different wall models used to perform the wmLES of the compressible channel flow
cases are presented in this section. First, the base wall model, validated for the wmLES
of incompressible flows by Frère et al. (2017), is introduced. Then, the three scalings for
compressible flows are presented and their implementation is detailed. Since these scalings
partly rely on unknown wall quantities, the approach used to estimate these quantities is
explained and its accuracy assessed on the two compressible channel flow cases.

3.1. Baseline wall model for incompressible flows
The base wall model used in this study relies on the law of the wall for incompressible
flows, and fitted using Reichardt’s formula

ū+
Reichardt

(
y+) = 1

κ
log

(
1 + κy+)+

(
C − 1

κ
log κ

)(
1 − exp

(
−y+

11

)
− y+

11
exp

(
−y+

3

))
.

(3.1)
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We use 1/κ = 2.61 and C = 4.25, in accordance with latest calibrations (see also
Winckelmans & Duponcheel 2021). This equation can be solved for τ̄w given the averaged
values of ū1 measured at the wall-model injection location y1. Only the component of
velocity tangent to the wall is used to compute the wall shear stress. Several authors
(Schumann 1975; Piomelli & Balaras 2002; Gillyns, Buckingham & Winckelmans 2022)
choose to average the velocity in time and/or space. However, as investigated by Lee,
Cho & Choi (2013) and Frère et al. (2017), imposing the value of the wall shear stress
instantaneously and locally is sufficient to predict the mean velocity profile. This pointwise
and instantaneous approach is also used in the present work, as it can be generalized to
transient and non-homogeneous flows. The complete wall-modelling strategy will thus be
presented using local and instantaneous quantities.

To solve (3.1), instead of using a Newton–Raphson method, as done by Bocquet et al.
(2012), a tabulated approach is used here, as proposed by Maheu, Moureau & Domingo
(2012). In this version, the value of log( y+

1 u+
1 ) = log( y1u1ρ/μ) is computed. The value

of y+
1 is then retrieved from pre-calculated tabulated values of log( y+u+

Reichardt) stored as
a function of log( y+). The use of the logarithmic version of the relation is based on the
observation that the relation between log( y+u+) and log( y+) is almost linear; hence, an
accurate value of y+ can be efficiently computed from the look-up table with only a few
tabulated entries and using a linear interpolation between nearby entries. The wall shear
stress is finally computed as

τw = 1
ρ

(
μ

y+
1

y1

)2

. (3.2)

This wall model was shown to provide accurate results in the framework of DGM/ILES
by Frère et al. (2017) for high Reynolds number incompressible flows, and it will serve as
the baseline model for the present work. It will also be the foundation of the wall models
investigated further.

3.2. Scalings for compressible flows
In order to derive a wall model compatible with compressible flows, the flow quantities
measured in the simulation must be scaled so as to better follow the law of the wall valid
for incompressible flows. The baseline wall model described above is then applied on those
scaled quantities to finally obtain the wall shear stress.

Three transformations are studied in this work to achieve the necessary scaling: (i) the
Howarth–Stewartson (HS) transformation which maps a compressible boundary layer to
an incompressible boundary layer with same mass-flow rate, (ii) a modified Van Driest
transformation proposed by Brun et al. (2008) and (iii) a blending of those two scalings.

These transformations rely on the density and temperature variations close to the wall;
an estimation of these quantities at the wall is thus necessary. In the following, the
quantities related to the transformed flow will be noted with uppercase symbols.

3.2.1. Estimation of thermodynamic quantities at the wall
In order to find an estimation of the wall temperature, Walz’s relation (Walz 1969) is used

T = Tw + (Tr − Tw)

(
u
ue

)
+ (Te − Tr)

(
u
ue

)2

, (3.3)
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Figure 6. Comparison between the temperature profile measured in the wrLES (lines) and the modelled
temperature profile (symbols) for the cases Mc � 0.76 and Mc � 1.51.

where

Tr = Te

(
1 + r

γ − 1
2

M2
e

)
, (3.4)

is the recovery temperature and the index e denotes the edge of the boundary layer. In this
study, the recovery factor r is taken as r � Pr1/3, as proposed by Van Driest (1951) for
a turbulent boundary layer. As this study only deals with adiabatic walls, the recovery to
wall temperature ratio is unitary and (3.3) can be simplified to

T = Tw − r
γ − 1

2
u2

γR
. (3.5)

Introducing the quantities measured in the flow at the location where the wall model is
injected, noted with subscript ‘1’, (3.5) becomes

Tw = T1

(
1 + r

γ − 1
2

M2
1

)
, (3.6)

thus providing an estimation of the wall temperature using only the local velocity and
temperature at y1.

We also note that combining (3.6) with (3.5) taken at any location in the boundary layer
gives

T = T1

(
1 + r

γ − 1
2

M2
1

)
− r

γ − 1
2

u2

γR
, (3.7)

which makes it possible to compute the temperature at any location in the boundary
layer from the velocity data. Using (3.7) with the velocity data from the wrLES of the
compressible turbulent channel flows and comparing the result with the actual temperature
data of the wrLES, as done in figure 6, shows that this simplified model accurately
approximates the real temperature profile in the compressible cases.

The injection location of the wall model will here be taken at y/h � 0.14, which is
a typical first cell height for wmLES of a turbulent channel flow. The error on the Tw
prediction is then 0.05 % and 0.11 % for the subsonic and supersonic cases, respectively.
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Finally, to fully characterize the thermodynamical state at the wall, the pressure is
considered constant across the first element. Thus

pw = p1, (3.8)

⇒ ρw = p1

RTw
. (3.9)

3.2.2. Howarth–Stewartson transformation
This transformation requires the definition of a reference state to which the initial
compressible flow is mapped; in our case, an incompressible flow with constant density
ρw and constant viscosity μw = μ(Tw).

The wall-normal coordinate of the scaled flow is then defined as

Y1 =
∫ y1

0

(
ρ

ρw

)
dy. (3.10)

A compressible streamfunction ψ is introduced so that ρu = ρw(∂ψ/∂y) and ρv =
−ρw(∂ψ/∂x). To ensure conservation of mass-flow rate between physical and transformed
flow, this compressible streamfunction must have the same value as its scaled
incompressible counterpart ψ̂(X, Y). This condition results in a unitary scaling for the
velocity

U1 = u1. (3.11)

The baseline model, described in § 3.1 is then applied on the transformed Y1 and U1,
along with the fluid properties of the transformed flow (ρw and μw), providing the wall
shear stress τw. However, the integral in (3.10) cannot be computed explicitly as the density
profile is not known below the first grid point. An iterative approach, using Walz’s relation
(1969) and the velocity profile given by the Reichardt formula could be implemented.
However, this method was found in a priori testing to yield a value for Y1 only around
0.5 % different from that provided when using a simple explicit trapezoidal integration
method; the latter was thus implemented to perform the y-coordinate scaling.

3.2.3. Modified Van Driest scaling
The Van Driest (VD) transformation was used in previous sections to scale the velocity so
as to better fit the near-wall incompressible flow velocity profile in wall coordinates. This
transformation consists of a scaling of the velocity derivative

dU
du

=
√
ρ

ρw
. (3.12)

Brun et al. (2008) proposed an improved scaling that also acts on the derivative of the y
coordinate. The complete transformation is

Y =
∫ y

0

μw

μ
dy, (3.13)

U =
∫ u

0

y
Y
μw

μ

√
ρ

ρw
du. (3.14)

It was pointed out by Brun et al. (2008) that applying this transformation on the velocity
profile decreases the spread of the value of the C coefficient in the log region for different
flow configurations, yet does not cancel it entirely.

980 A9-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1086


R. Debroeyer, M. Rasquin, T. Toulorge, Y. Bartosiewicz and G. Winckelmans

In the present work, the y-coordinate transformation is approximated, at the first grid
point, using

Y1 = μw

μ1
y1, (3.15)

as this yields better results when used in the complete wall model than using a trapezoidal
rule. Equation (3.14) is then simplified to the expression of the classical VD transformation
and can be integrated analytically, recalling that the pressure is uniform near the wall and
that the temperature follows Walz’s relation (Walz 1969)

U1 =
∫ u1

0

√
Tw

T
du, (3.16)

=
∫ u1

0

(
1 − r

2 cp Tw
u2
)−1/2

du, (3.17)

=
√

2cpTw

r
arcsin

(√
r

2cpTw
u1

)
. (3.18)

A difference of at most 1 % is observed on the input value of the baseline wall model (i.e.
U1Y1ρw/μw) between the result provided by the numerical integration of (3.13) and (3.14)
using the wrLES data, and the value obtained using (3.15) and (3.18).

3.2.4. Present scaling
The third proposed scaling can be seen as a blending of the two previous ones. As for the
HS scaling, it relies on a scaling of the y-coordinate and the conservation of mass-flow
rate between the initial and transformed flows. However, the y-coordinate transformation
contains now a factor to take the viscosity variation into account

Y1 =
∫ y1

0

μw√
ρw

√
ρ

μ
dy, (3.19)

U1 =
√
ρ1

ρw

μ1

μw
u1. (3.20)

The (μw/
√
ρw)(

√
ρ/μ) scaling factor for y is inspired by the recommendation of Trettel

& Larsson (2016).
As was the case when using the HS transformation, the integral for Y1 is evaluated using

a trapezoidal rule, providing a simple explicit scaling. When comparing the numerical
integration of (3.19) using wrLES data with the trapezoidal rule, the error done on Y1
is lower than 2 % for both Mach numbers as long as y1/h � 0.15 − 0.20, which is a
necessary condition to use such wall model solely based on the law of the wall.

Other scalings exist to collapse compressible flow results to equivalent incompressible
flow results, such as those proposed by Volpiani et al. (2020), Trettel & Larsson (2016) and
Griffin, Fu & Moin (2021). These more recent scalings proved to collapse more accurately
the compressible flow data onto incompressible results in the post-processing phase.
However, the latter two rely on using derivatives of the time-averaged flow quantities in
the wall-normal direction. Using such derivatives, evaluated locally and instantaneously in
the simulation, would be prone to large errors, and also in the under-resolved first off-wall
elements; hence introducing large deviations in the model. The scaling proposed by
Volpiani et al. (2020) is also similar to the modified VD transformation Brun et al. (2008)
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Figure 7. Wall-modelling workflow.

but the integral present in the velocity scaling cannot be evaluated analytically, which then
also introduces large errors when evaluated using the trapezoidal rule. The a priori error
was nevertheless computed for this scaling as well, and is shown in figure 8.

3.3. A priori error estimation
Based on the results of the wrLES at Reτ � 1000 and at the two centreline Mach numbers,
the error on the wall shear stress prediction can be evaluated a priori. To do so, the
wall-modelling workflow is followed, taking as input the flow quantities all along the
wrLES profiles. The complete workflow, including the baseline wall model, is summarized
in figure 7. Note that, in the case where no scaling is used, the centre dotted box is bypassed
and thus Y1 = y1 and U1 = u1.

Applying this methodology to the wrLES data, we obtain the results shown in figure 8
for the error on τw when using the different wall models compared with the actual wrLES
wall shear stress. This figure shows the range between y+ = 100 and 250, although the
present wall model should not be used above � 200 for such wmLES at Reτ � 1000, as
the contribution of the complement function that adds to the law of the wall becomes
important.

This figure clearly demonstrates how the scaling procedure improves the results
concerning the estimation of the wall shear stress that will be further applied via the wall
model. In both cases, the use of a scaling decreases the error on τw. At y+ = 150, which
would be a reasonable first cell height for wmLES at Reτ � 1000, the error when going
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Figure 8. Error on the wall shear stress in per cent when using the wall models on the wrLES data compared
with the wrLES wall shear stress; (a) Mc � 0.76, (b) Mc � 1.51.

from Mc � 0.76 to Mc � 1.51 goes from 14.3 % to 38.5 % when no scaling is applied, and
from 12.4 % to 30 % when the VD scaling is used. At the same location, the error only
increases from 9.3 % to 17 % when the HS scaling is used, and from 6.2 % to 6.5 % when
the present scaling is used. The present scaling thus performs best. We also note that its
error remains at the same level when increasing the Mach number.

4. Wall-modelled simulations of compressible channel flows at Reτ � 1000

This section presents the results of the wmLES of compressible turbulent channel flows at
Reτ � 1000 and at Mc � 0.76 and Mc � 1.51 using the baseline wall model and the three
scaled versions. Moreover, the wmLES of a channel flow at Mc � 0.25 is also performed,
thus a quasi-incompressible case. The mean velocity, temperature and density profiles are
shown, as well as the velocity fluctuation profiles. Then, the error on the mass-flow rate
compared with the wrLES is computed for the different wall models and analysed for
increasing Mach numbers.

4.1. Simulation set-up
The computational domain size for the wall-modelled simulations is the same as that for
the wall-resolved simulations. The order of the interpolation polynomials is set to 3 in
the bulk of the domain and is increased to 4 in the first wall-adjacent elements as this
was observed to give the best results in the framework of wall-modelled ILES/DGM by
Frère et al. (2017) using the same code. For the wall-modelled simulations, the number
of elements in the three directions is Nx × Ny × Nz = 26 × (11p3 + 2p4)× 13. The same
stretching function is used (see (2.2)) and the stretching parameter is set to α = 0.4.

Still following the recommendations of Frère et al. (2017), the computation of the wall
shear stress through the wall model is based on the flow quantities measured at the bottom
degree of freedom of the second wall-adjacent element. The mesh is shown in figure 9 with
the degrees of freedom at which the wall model is evaluated shown using a star. There is
thus one discontinuous Galerkin (DG) element (with five degrees of freedom) between the
wall and the location (bottom of the second DG element) where the flow quantities are
measured to evaluate the wall shear stress, allowing us to have an accurate measurement
of the flow quantities in the LES, as was also shown by Frère et al. (2017) and as was
also recommended by Kawai & Larsson (2012). The resolution in wall coordinates for the

980 A9-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
86

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1086


A wall model for LES of highly compressible flows

xz

y

(a) (b)

Figure 9. Mesh used for the wall-modelled simulations. (a) Whole domain and (b) zoom on the near-wall
region. The degrees of freedom are shown in grey in the buffer element ( p = 4) and in black in the bulk
elements ( p = 3). The stars represent the degrees of freedom where the quantities are measured to compute
the wall shear stress using the wall model.

�x+ y+
1 �z+

Mc � 0.25 60 140 60
Mc � 0.76 60 135 60
Mc � 1.51 50 115 50

Table 2. Resolution in wall coordinates for the wall-modelled simulations at Reτ � 1000, rounded to 5. The
resolution in the x and z directions corresponds to the distance between 2 successive degrees of freedom,
whereas y+

1 is the height of the first element.

wmLES, rounded to 5, is given in table 2. Note that, in this case, the resolution in the x and
z directions corresponds to the distance between 2 successive degrees of freedom, whereas
y+

1 is the height of the first element.
Contrary to the wrLES, these wall-modelled simulations are driven using a constant

imposed streamwise pressure gradient. The use of this forcing source term was preferred
as it does not require information from the first wall-adjacent cell to be determined.
This forcing source term is computed using the incompressible DNS results to reach
Reτ = 1000 for the case at Mc � 0.25. For the higher Mach number cases, it is taken as
the time-averaged pressure gradient of the wrLES. The wall shear stress of each wmLES
will thus be essentially equal to that of the corresponding wrLES, and the error will be
evaluated on the mass-flow rate.

4.2. Results
The velocity profiles in wall coordinates are shown in figure 10 for the
quasi-incompressible simulations and are compared with the incompressible DNS results
of Lee & Moser (2015) at the same Reynolds number. Moreover, the quasi-incompressible
wall-resolved ILES data obtained using DGM/SIP at Reτ = 950 and Mc � 0.10 and
presented by de Wiart et al. (2015) are also shown for a full comparison over the
whole range of resolutions of scale-resolving simulations. The wmLES profiles of the
compressible channel flows are shown in figure 11 and are compared with the wrLES
profiles presented in § 2.
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Figure 10. Velocity profiles in wall coordinates for the channel flows at low Mach numbers: reference
incompressible flow DNS (Lee & Moser 2015, solid black), wrLES at Mc � 0.10 (de Wiart et al. 2015, dotted
black), wmLES at Mc � 0.25 without scaling (blue) and with present scaling (red). The vertical dashed black
lines show the element boundaries (for readability reasons, those are only shown for the profile obtained using
the present scaling).
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Figure 11. Velocity profiles in wall coordinates for the channel flows at (a) Mc � 0.76 and (b) Mc � 1.51. The
vertical dashed black lines show the element boundaries (for readability reasons, those are only shown for the
profile obtained using the present scaling).

The semi-local normalization, defined in (2.5), is used for the wall distance and velocity
in figures 10 and 11 because, with the solution computed in the first wall-adjacent element
being non-physical, the integral present in the classical VD transformation (see (2.6))
cannot be performed with sufficient precision.

Computation element boundaries are shown by vertical dashed lines. There are no
degrees of freedom on the channel centreline as it cuts the centre p3 element in two. The
degrees of freedom in the first off-wall element will be omitted in all the following graphs
as they do not bring any meaningful information. The first degree of freedom shown in
those graphs is thus where the flow quantities are evaluated for the calculation of the wall
shear stress.
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Figure 12. Velocity profiles in outer coordinates for the channel flows at (a) Mc � 0.76 and (b) Mc � 1.51.
The vertical dashed black lines show the element boundaries.
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Figure 13. Temperature profiles for the channel flows at (a) Mc � 0.76 and (b) Mc � 1.51.

As expected, the proposed wall model yields virtually identical results to the baseline
incompressible wall model at low Mach numbers, see figure 10. The obtained velocity
profile is also found to be very close to that of the reference incompressible flow DNS.

It can be seen in figure 11 that the error on the velocity profile follows the trends
obtained in the a priori error analysis (§ 3.3). Indeed, the velocity profiles obtained with
the unscaled wall model exhibit the largest error in both cases, its magnitude increasing
with Mach number. The HS and modified VD scalings yield very similar results at
subsonic speeds but the accuracy of the former decreases less than that of the latter when
going to the supersonic case. Lastly, the presently proposed scaling produces the most
accurate velocity profile in both cases, with a significant error reduction for increasing
Mach number.

The same velocity profiles are shown in outer coordinates in figure 12. In this figure,
the velocity is normalized by the centreline velocity of the wrLES uc,wr as this better
highlights the error on the velocity profile for the different scalings. This figure shows
the same trends as what was observed in wall coordinates, the unscaled wall model
underevaluating the centreline velocity by 6 % in the subsonic case and by 14 % in the
supersonic case, whereas the proposed scaling maintains this error below 2 % in both
cases. The error when using the other two scalings lies between these boundaries. A similar
behaviour can be observed on the temperature profile in figure 13.
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Figure 14. Density profiles for the channel flows at (a) Mc � 0.76 and (b) Mc � 1.51.

Error on Qm (%) Error on Qres
m (%)

Mc � 0.25 Mc � 0.76 Mc � 1.51 Mc � 0.25 Mc � 0.76 Mc � 1.51

No scaling 1.33 6.90 14.48 1.07 6.60 14.22
HS / 4.86 7.71 / 4.60 7.55
Modified VD / 4.78 11.03 / 4.36 10.82
Present 0.67 2.19 1.14 0.43 1.82 1.03

Table 3. Error on the total mass-flow rate Qm and on the mass-flow rate in the resolved part of the wmLES
Qres

m , at Mc � 0.25, Mc � 0.76 and Mc � 1.51.

The density profiles are shown in figure 14. At the lower Mach number, the three scaled
wall models, as well as the baseline wall model, produce essentially the same results,
accurately retrieving the density variation of the wrLES. When the Mach number is
increased to Mc � 1.51, a more significant difference is observed between these models,
and the HS and present scalings provide the best overall results.

The differences in velocity and density profiles yield differences in the computed
mass-flow rate for each of the scalings and the error on this global quantity compared with
the reference simulation (DNS for the quasi-incompressible case at Mc � 0.25 and wrLES
for the cases at Mc � 0.76 and Mc � 1.51) is summarized in table 3 for all studied cases.
Two mass-flow rates are computed: (i) the total mass-flow rate in the channel, including
the under-resolved buffer element, noted Qm and (ii) the mass-flow rate in the resolved
part of the channel in the wmLES (i.e. excluding the region covered by the under-resolved
buffer element) and noted Qres

m . The use of this second diagnostic makes it possible to
better appreciate how the unphysical data of the buffer element impact the evaluation of
the total mass-flow rate.

As expected from the profiles previously shown, the scaled and unscaled wall models
have a similar accuracy in terms of mass-flow rate at low Mach number. For the higher
Mach numbers, the present scaling provides the best results while all the scaled wall
models perform better than the unscaled wall model. For all the considered wall models,
the error on the resolved mass-flow rate is slightly lower than the error on the total
mass-flow rate but this is not significant. The increase of centreline Mach number from
Mc � 0.76 to Mc � 1.51 has the effect of increasing the error on the mass-flow rate by
more than a factor two for the unscaled wall model and the wall model scaled using the
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Figure 15. Fluctuation profiles for the channel flows at low Mach numbers: reference incompressible flow
DNS (Lee & Moser 2015, solid black), wrLES at Mc � 0.10 (de Wiart et al. 2015, dotted black), wmLES at
Mc � 0.25 without scaling (blue) and with present scaling (red).
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Figure 16. Fluctuation profiles for the channel flows at (a) Mc � 0.76 and (b) Mc � 1.51.

modified VD scaling. For the HS scaling, a slightly lower, yet very high 50 % increase in
error is observed. For the present scaling, the evolution of the error on mass-flow rate is
non-monotonic: it first increases when increasing the Mach number from Mc � 0.25 to
Mc � 0.76; then a slight decrease in error is observed when going to the supersonic range.
This decrease is, however, marginal. When using the ‘resolved’ mass-flow rate, it is even
less significant. Concerning the increased error for the wmLES at Mc � 0.76 with respect
to the wmLES at Mc � 0.25, it can also be partially attributed to the fact that the reference
used in the low subsonic case is an incompressible flow DNS, whereas that used for the
high subsonic case is our compressible flow wrLES.

Globally, the proposed scaling clearly provides improved performances on the prediction
of the local quantities (velocity and temperature profiles) and of the global mass-flow rate,
both for high subsonic flows and for supersonic flows (at least up the Mach number of 1.5
so far investigated).

The velocity fluctuation profiles are shown in figures 15 and 16. For all cases, the
variations in results depending on the used scaling are much less significant than those
obtained for the mean velocity profiles. For the low subsonic case in figure 15, both
wmLES retrieve well the reference DNS profiles for the vertical and spanwise directions.
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In the streamwise direction, the fluctuation amplitude is underestimated in the wmLES.
However, the obtained profile compares well with that of a wrLES at similar Reτ and
Mc � 0.10. The underestimation of the fluctuation amplitude is thus inherent to the LES
framework.

For the high subsonic and supersonic cases in figure 16, the same accuracy is obtained in
the transverse directions. In the longitudinal direction, the present scaling provides slightly
better results in the region close to the channel centre in the subsonic case, and results
similar to those of the other models in the lower part. In the supersonic case, the wmLES
profiles are similar and they follow well the wrLES profile.

5. Wall-modelled simulations of compressible channel flows at Reτ � 5200

In order to investigate the behaviour of the proposed wall model in more practical cases
where the inner and outer regions of the boundary layer are well separated, two cases at
Reτ � 5200 are studied with the wmLES. In a first case, an adiabatic channel flow with
Mc � 0.24 is computed. The results can thus be compared with the incompressible DNS
database of Lee & Moser (2015) at the same Reynolds number. The second case is a
supersonic channel flow with centreline Mach number Mc � 1.46. No reference data are
available for this Mach number at such high Reynolds number; the computational cost of
a wrLES would be too high and is beyond the scope of this study. The results obtained for
this case are thus analysed in a more qualitative manner.

5.1. Simulation set-up
The simulation set-up is similar to that of the wmLES at Reτ � 1000 (see § 4.1): the
domain dimensions, the number of elements and their interpolation orders are the same.
Maintaining the number of elements constant when increasing the Reynolds number by a
factor of five might seem in contradiction with the requirements of Choi & Moin (2012).
However, the proposed mesh resolution is the same as that used by Frère et al. (2017)
for a channel flow at the same Reynolds number (and even for a case at Reτ = 50 000),
and was shown to give good results in the frame of an ILES/DGM. The only change in the
mesh compared with that used for the channel flows at Reτ � 1000 concerns the stretching
in the vertical direction, which has been removed here, hence exactly matching the mesh
from Frère et al. (2017) with the same interpolation orders. This mesh gives a theoretical
wall-model injection location of y+

1 � 800 or y1/h = 0.154, which lies at the end of the
log layer (as also measured by Winckelmans & Duponcheel 2021), thus within the range
of validity of the law of the wall.

The other solver parameters are the same as previously. The Reynolds number is
enforced by imposing a constant pressure gradient in the streamwise direction. The
friction Reynolds number obtained for the low Mach number simulation (Mc � 0.24) is
Reτ = 5178 whereas the supersonic channel reached Mc � 1.46 and Reτ = 5166. The wall
resolution is �y+

1 = 790 and 700 for the subsonic and supersonic cases, respectively.

5.2. Results

5.2.1. Low subsonic channel flow
The obtained mean velocity profile is shown in figure 17 in both wall and outer coordinates.
A slight over-prediction of the velocity over the whole channel span is observed. This does
not exceed 1 %, which also corresponds to the actual density variation across the channel.
Thus, the observed deviation can be attributed to the rather small compressibility effects
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Figure 17. Velocity profiles for the channel flow at low Mach number: wmLES at Mc � 0.24 with present
scaling (red) and incompressible flow DNS (Lee & Moser 2015, solid black). (a) In wall coordinates. (b) In
outer coordinates.
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Figure 18. Velocity fluctuation profiles for the channel flow at low Mach number and high Reynolds number:
wmLES at Mc � 0.24 with present scaling (red) and incompressible flow DNS (Lee & Moser 2015, solid
black).

when increasing the Mach number, resulting in an upwards shift in the velocity profile, as
was also observed in figure 1.

Concerning the fluctuations, shown in figure 18, the wmLES underestimates the
longitudinal velocity fluctuations compared with the DNS, as usual for LES simulations.
The fluctuation profiles in the y and z directions are well represented by the wmLES.

5.2.2. Supersonic channel flow
The obtained mean velocity profile for the supersonic channel at high Reynolds number is
shown in figure 19 in both wall and outer coordinates. Given the lack of reference to assess
the validity of the results for this case, the wrLES results at Reτ � 1000 and Mc � 1.51,
as well as the incompressible flow DNS data from Lee & Moser (2015) at Reτ � 5200, are
used as a basis for comparison.

Figure 19(a) shows a significant upward shift of the velocity profile in wall coordinates
when compared with the incompressible flow at the same Reynolds number. This shift
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Figure 19. Velocity profiles for the wmLES of supersonic channel flow at high Reynolds number using the
present scaling (red). The profiles of the wrLES at similar Mach number and Reτ � 1000 (solid black) and of
the incompressible flow DNS at Reτ � 5200 (Lee & Moser 2015, dotted black) are provided for comparison.
(a) In wall coordinates. (b) In outer coordinates.
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Figure 20. Velocity fluctuation profiles for the wmLES of supersonic channel flow at high Reynolds number
using the present scaling (red). The profiles of the wrLES at similar Mach number and Reτ � 1000 (solid
black) and of the incompressible flow DNS at Reτ � 5200 (Lee & Moser 2015, dotted black) are provided for
comparison.

is physical and is essentially due to the high Mach number; it is indeed seen to be very
similar to that observed at Reτ � 1000 in figure 1(a). In outer coordinates, the previously
observed lower slope near the centre of the channel with an increase of the Mach number
is also physical; it is clearly visible when comparing with the incompressible flow profile.
The profiles at Reτ � 5200 and Reτ � 1000 almost overlap. This very low dependency
on the Reynolds number for the bulk velocity profile can also be observed in the DNS
results of Yao & Hussain (2020) for cooled channel flows at the same Mach number and
at increasing Reynolds numbers (Reτ = 145–1266). The above elements allow us to have
some confidence in the quality of the velocity profiles obtained in our wmLES using the
present scaling for supersonic flows at high Reynolds number.

The obtained fluctuation profiles are shown in figure 20. It was observed (figure 3)
for wrLES that the spanwise and vertical fluctuations were not strongly dependent on the
Mach number. The deviation observed between the incompressible flow and the supersonic
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Figure 21. Density (a) and temperature (b) profiles for the wmLES of supersonic channel flow at high
Reynolds number using the present scaling (red). The profiles of the wrLES at similar Mach number and
Reτ � 1000 are provided for comparison.

channel flows at similar Reynolds numbers should thus exhibit a similar behaviour; it
is indeed the case with the usual slight underestimation by the wmLES (attributed to
the intrinsic under-prediction of the fluctuations by a LES compared with a DNS). This
shift was also observed in the wrLES results. Moreover, the velocity fluctuations in these
transverse directions for the wmLES are slightly increased compared with the wrLES at
similar Mach number and Reτ � 1000. This evolution with increasing Reynolds number
is also observed in reference incompressible flow DNS data (see for instance Lee & Moser
2015). The above observations strengthen our confidence in the spanwise and vertical
velocity fluctuations obtained by our wmLES.

In the streamwise direction, the obtained wmLES profile is similar to that of the wrLES
profile at similar Mach number and Reτ � 1000. As expected, they both stand above the
profile for incompressible flow.

Finally, figure 21 shows the obtained density and temperature profiles for this wmLES.
These profiles can only be compared with those obtained in the wrLES at similar Mach
number and Reτ � 1000. As no values are computed at the wall, the profiles were here
non-dimensionalized using the channel centreline values. This figure shows, for both
quantities, a slightly flatter profile for the wmLES compared with that of the wrLES at
a lower Reynolds number. This is expected when increasing the Reynolds number as the
near-wall variations will be larger, giving some confidence in the temperature and density
profiles obtained in our wmLES.

6. Conclusions and perspectives

In this study, different scalings were recalled that are used to map the mean profiles of
compressible flow into their equivalent incompressible flow. They were simplified with the
objective to design a simple quasi-analytical wall model for wmLESof highly compressible
flows, and still using the Reichardt formula for the law of the wall in incompressible flows.
In this work, an additional scaling was proposed, originating from the combination of the
existing ones. The accuracy of the obtained wall models was evaluated on three cases of
turbulent channel flow at Reτ � 1000: a low Mach number subsonic case (thus directly
comparable to an incompressible flow), a high Machnumber subsonic case and finally a
supersonic case. For each case, a wrLES was also performed to serve as reference.
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The comparison of the wmLES with their wrLES counterparts showed that the proposed
hybrid wall model accurately replicates the wrLES profiles in terms of velocity as well
as temperature and density. For the velocity fluctuations, no significant differences were
observed between the wall models and they all satisfactorily reproduced the wrLES
profiles. The error on the mass-flow rate in the channel was used as global metric to
compare the wall models and it was shown that the model based on the proposed new
scaling achieved a consistent error of approximately 2 % for both the high subsonic and
the supersonic cases, whereas the other scalings produced an increase in the error (by a
factor of 1.5 to 2). As expected, the unscaled wall model yielded consistently the worst
results. In the low subsonic regime, using the proposed new scaled version also led to
smaller deviations from the reference wrLES data than when using the unscaled version.

The proposed wall model was then further investigated on a channel flow at high
Reynolds number of Reτ � 5200: for the low subsonic and the supersonic regimes. The
low subsonic wmLES correctly predicts the reference incompressible DNS data, with
a deviation on the mass-flow rate of only 0.3 % (also attributed in part to the small
compressibility effects). For the supersonic case, the velocity profile was shown to be
aligned with its lower Reynolds number counterpart at identical Mach number, which
corresponds to the expectations. In terms of fluctuations, both cases gave expected results
(in comparison with wrLES at lower Reynolds number and with incompressible DNS at
similar Reynolds number). However, the lack of a reference for a supersonic channel at
high Reynolds number makes it difficult to provide here a more quantitative analysis of
the wmLES performance.

The wall model developed here will be used to perform wmLES of supersonic
ejectors where the Mach numbers and the Reynolds numbers are comparable to
those investigated here. The results of these simulations will complement the results
and observations of previous experimental studies and RANS simulations (Lamberts,
Chatelain & Bartosiewicz 2017; Lamberts et al. 2018).

The accuracy of the wall model for flows at Mach numbers higher than Mc � 1.5 should
also be further evaluated. Furthermore, this study only focused on a scaling valid for flows
with adiabatic walls. Its extension to flows with other boundary conditions will also have
to be investigated.
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