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Abstract

Given a variety K of lattice-ordered algebras, A e K is catalytic if for all B e K, K(A, B) is a lattice
for the pointwise order. The catalytic objects are determined for various varieties of distributive-
lattice-ordered algebras. The characterisations obtained do not show an overall unity and exhibit
diverse behaviour. Duality is employed extensively. Its usefulness in this context depends on the
existence of an order-isomorphism between K(A, B) and the corresponding dual hom-set. Criteria for
the existence of such an order-isomorphism are investigated for dualities of the Davey-Werner type.
The relationship between catalytic objects and colattices is also discussed.

1980 Mathematics subject classification (Amer. Math. Soc): 03 G 10, 06 A 10, 06 D 15, 18 D 35,
54 F 05.

1. Introduction

Kucera and Sands (1978) considered the following problem: given a variety K of
lattices, under what conditions on A e K is it true that, for all B e K, the set
K(A, B) of homomorphisms from A to B is a lattice under the pointwise
ordering? We shall be concerned with the structure of hom-sets in categories of
distributive-lattice-ordered algebras and in dually equivalent categories.

Suppose that C is a category. For A, B e C , denote by C(A, B) the set of
C-morphisms from A to B. There are two natural hom-functors from C to Set:

C(A,-)\ B-> C(A,B) and C(-, B): A >-> C(A, B).

This research was carried out while the second author held a visiting research fellowship at La Trobe
University and was supported by La Trobe University and ARGS grants B8115287I and B8315711I.
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[2] Lattices of homomorphisms 365

For many of the categories C we wish to consider, C(A, B) has, defined in a
natural way, more structure than merely that of a set. Suppose X is a concrete
category, so that we have an underlying set functor | - |: X -» Set. We may then
ask whether either of the natural hom-functors factors through X.

Suppose now that C is a category of sets with structure and that the objects in
C are equipped with a natural order which is preserved by C-morphisms. (This is
the case whenever C is a variety of lattice-ordered algebras.) These assumptions
imply that, for any ,4, B e C , C(A, -) and C(-, B) can be factored through Poset
(the category of ordered sets). For every C e C , the hom-sets C(A,C) and
C(C, B) are then pointwise ordered. We shall say that A e C is lattice-catalytic
(in C) if C(A, B) is, for every B e C, a lattice in the pointwise order; B is said to
be lattice-cocatalytic (in C) if C(C, B) is, for every C e C , a lattice in the
pointwise order. We shall customarily drop the prefix "lattice", since the only
other catalyticity notion we introduce (semilattice-catalytic, defined in the obvi-
ous way) we need only briefly. The set of catalytic objects in C is denoted by
Cat(C), that of cocatalytic objects in C by Cocat(C).

If C(A, -) factors through Lat (the category of all lattices), then A is said to be
a colattice in C, while if C(-, B) factors through Lat, then B is said to be a lattice
in C.

Let D be the variety of bounded distributive lattices. An algebraic characterisa-
tion of Cat(D) was given by Balbes (1980). Balbes' characterisation was trans-
ferred to the dual category P of compact totally order-disconnected spaces by
Priestley (1982a); she showed that Cat(D) constitutes those objects whose dual
spaces are lattices in P. Wherever, as for D and P, we have a full duality between
categories C and 3E established by contravariant adjoint functors D: C -> X and
E: 3£ -» C, there is a natural bijection, given by D, between the hom-sets C(A, B)
and £(D(B), D{A)). If the hom-sets carry a naturally induced pointwise order,
and if the bijection above is actually an order-isomorphism, then £>(Cat(C)) =
Cocat(X) and Z)(Cocat(Q) = Cat(X). This occurs for the D-P duality and also
for its restriction to subcategories (not necessarily full). In Section 3 we exploit
this fact to find Cat(C) for many varieties of distributive-lattice-ordered algebras.
In many cases |Cat(C)| = |C| n Cat(D), where | - |: C -> D is the forgetful
functor. Interestingly it is possible to find examples in which |Cat(C)| is strictly
larger, or strictly smaller, than |C| n Cat(D).

In Section 4 we consider whether, in general, given a full duality of the type
investigted by Davey and Werner (1983a) in which order structure is present in
both categories, each hom-set is order-isomorphic to the corresponding dual
hom-set. Section 5 is devoted to illustrative examples.

Finally, in Section 6 we interpret our earlier catalyticity characterisations in
terms of lattices in dual categories. We discover that for many familiar varieties
the catalytic objects are in fact colattices. In general we should not anticipate this,
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given the distinction between the factorisation of a hom-functor C(L, -): C -» Set
through Lat and through Poset; in the former case the map from C(L, A) to
C(L,B) induced by a homomorphism <j> e C(A, B) will be a lattice homomor-
phism, while in the latter case it is only known to be order-preserving.

2. The D-P duality

We shall make extensive use of the duality between the category D of bounded
distributive lattices and the category P of compact totally order-disconnected
spaces (Priestley spaces). We summarise below only the basic facts about the
duality; further information can be found in the survey articles by Davey and
Duffus (1982) and Priestley (1982c) and the references therein. For lattice theory
we take Balbes and Dwinger (1974) as our reference; this contains full discussions
of the algebraic properties of almost all the varieties we shall consider. The
category theory we require can be found in Balbes and Dwinger (1974) and in
Davey and Werner (1983a). Our notation is standard, except perhaps for our use
of the symbols | and I: if X is an ordered set and Y c X, then

T y = {x e X\x>yfor some y <= Y} and
IY= {x e X\x *iy for some y e Y).

Given y e X, we write T y in place of T { y } and \ y in place of i{y}-
By definition, an ordered topological space (X; T, <) belongs to P if T is

compact and, given x £ y in X, there exists a T-clopen set U with U = t U such
that x e U and y <£ U.

The 2-element chain acts as a schizophrenic object living in both D and P; 2
denotes the chain in D with bottom element 0 and top element 1, and 2 denotes
the member of P obtained by giving the ordered set {0,1}, with 0 < 1, the
discrete topology. In categorical terms the duality may be stated as follows:

THEOREM 2.1. The categories D and P are dually equivalent under the con-
travariant functors

Z):= D(-,2):D->P
{where the image D(A,2) of A e D has the pointwise order and inherits its topology
from 2A) and

£:= P(-,2):P->D

(where the image P(X,2) o / I e P has pointwise operations). The unit e: 1D -»
P(D(-, 2), 2) and counit e: 1P -> D(P(-, 2), 2) of the adjunction are given (for
A e D, X G P) by eA, ex, where

eA(a)(f)=f(a) (a e A, / e
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and

These evaluation maps are isomorphisms.

On the object level, the duality allows us to identify A e D with the lattice of
clopen increasing subsets of its dual space X = D(A, 2). The set D(A,2) is
order-isomorphic to the set of prime filters of A ordered by inclusion, and dually
order-isomorphic to the set of prime ideals of A, also ordered by inclusion. In the
survey articles cited above, A is identified with the lattice of clopen decreasing
subsets of its ordered set of prime ideals, appropriately topologised. Since it is
more natural, in the context of hom-sets, to work with 2-valued homomorphisms
rather than with prime ideals, we have to reverse the order when quoting results
from the survey articles.

The adjunction between D and P produces a natural bijection between D(A, B)
and P(D(B), D(A)) (for every A, B <= D). We shall show that the bijection is
always an order-isomorphism for the pointwise orders. A much more general
result is proved in Section 4.

LEMMA 2.2. Let A, fieD. Then the pointwise-ordered hom-sets D(A, B) and
P(D(B), D(A)) are isomorphic via the natural bijection D.

PROOF. Let h, k e D(A, B). Then

h < k inD(v4,fi)« (Va (EA)h(a) < k(a) in B

«• (Va <E A)(\/xP e D(B,2))t(h(a)) ^ t(k(a)) in 2

D(2?,2))(Vfl e A)(D(h)( + ))(a) < (D(k)U))(a) in 2

D(B,2))D(h)(t) < D(k)( + )

« D(h)<D(k).

COROLLARY 2.3. Cat(D) = £(Cocat(P)).

We note that D contains the 1-element lattice 1 whose dual space is the empty
set. Clearly |D(1, B)\ < 1 for every B e D. We adopt the convention that the
empty set is a lattice. Thus 1 is automatically in Cat(D).

We can now analyse in greater depth the results on Cat(D) obtained in Balbes
(1980) and Priestley (1982a). We first characterise Cocat(P), working in P
throughout. The proof of the following lemma is straightforward.
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LEMMA 2.4. Let X e P be a lattice. Then X is a topological lattice if every clopen
increasing set in X is a union of clopen sets of the form t k where k G X and
similarly for decreasing sets.

PROPOSITION 2.5. Suppose that X G Cocat(P). Then X is a topological lattice.

PROOF. By hypothesis, P(Y, X) is a lattice for the pointwise order, for every
Y G P. Taking Y to be a 1-point space we see that X itself is a lattice. We now
aim to show that X satisfies the topological conditions of Lemma 2.4.

We fix a point a e X and make the following choice for Y. We let Y be the

disjoint union of X with an infinite antichain S and topologize Y by taking as a

base for the open sets

( f / c X\a<£ U, Uclopen in X),

{TQ S\T is finite},

and { U U T | a e U, Uclopen in X, Tcofinite in S }.

It is easily seen that 7 e P . Informally, Y is X with an unordered 'spike' S glued
to it at a in a topologically appropriate fashion. Define <J>, ^ e P(Y, X) by
<t>(y) = a for all y e F, and

By hypothesis <J> and i£ have an infimum </> A i/< in P(7, X). Since the order on
P( y, X) is defined pointwise,

(* A M J O < *0>) A 1,(y) for all j e Y.

In particular (<J> A i/'X.y) < a for all y e 7. Suppose, by way of contradiction,
that there exists t e S such that (<J> A i/-XO < o. Define TJ G P(F, X) by

Then ^ A ^ < i ) < ^ , f which is impossible. Hence (<j> A \pXs) = a f°r every s in
5. From the definition of the topology on Y, and from the continuity of <f> A \p,
we obtain (<> A \p)(a) ~ <*•

Now take any clopen increasing set W in X and let a be a minimal point of W
(which always exists). Construct Y, <£ and 4> as above and let f = (<#> A ip) [x.

Note that f (a) = a. The set £-1( W) is increasing and contains a, so f "^W) D f a .
For every x G f "1(^)> x A a^ f(x) G JF, whence x A a G W. Minimality of a
implies that x e f a. Hence t a = f ~\W), and this is clopen increasing. Thus

W = U{ t a 1 a is minimal in W }

is a union of sets of the required form.
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The same argument, based on the fact that P(Y, X) is a join-semilattice, shows
that every clopen decreasing set in A' is a union of clopen decreasing sets I k.

THEOREM 2.6. Let A <E D. Then the following are equivalent:
(i) A e Cat(D);

(ii) D(A) e Cocat(P);
(iii) D(A) is a topological lattice;
(iv) for all 7 e P , P(Y, D(A)) is a lattice, the lattice operations being given

pointwise.

PROOF. The equivalence of (i) and (ii) is Corollary 2.3. Proposition 2.5 gives
(ii) => (iii). It is trivial that (iv) => (ii) and it is easy to verify that (iii) =» (iv).

(iv) =» (ii). Assume that (iv) holds. Note that D{A) is certainly a lattice, since
we can take Y to be a 1-element space. Since products in P are cartesian products,
the coordinate projections mx and IT2 f

rom D(A) x D(A) to D(A) belong to
P(D(A) X D(A), D(A)). In this lattice, V and A are defined pointwise. Hence

"i v m2- (•*> y) •-*x v y anc* wi A w2: (•*» y) "~*x A y-> f° r ^ •*> y G
 D(-A). Thus

is a topological lattice, since tix A w2 and ITX A vr2 are continuous.

The equivalence of (i) and (iii) was established by Priestley (1982a), using the
algebraic characterisation of Cat(D) obtained by R. Balbes (1980). The key
portion of the proof of the theorem is contained in Proposition 2.5. To show
X G P belongs to Cocat(P) it is sufficient to know that P(Y, X) is a lattice (i) for
Y such that \Y\ = 1, and (ii) for the family of spaces Yobtained by gluing a spike
to X at each point. The proof of Proposition 2.5 is not a direct dualisation of
Balbes' arguments for Cat(D), but Balbes did introduce the lattices when duals
are the 'spike spaces'.

In the proofs of Theorem 2.6 and the results leading up to it, meets and joins
were handled quite separately. By restricting attention to meets we can char-
acterise the meet-semilattice-catalytic objects in D.

THEOREM 2.7. A eD is meet-semilattice-catalytic in D if and only if D(A0) is
an algebraic lattice equipped with the Lawson topology {where Ao denotes the lattice
obtained by adjoining a new zero element to A).

PROOF. The space D(A0) is obtained by adjoining a topologically isolated
maximum point to D(A). Thus D(AQ) is a down-complete meet-semilattice with
unit, and hence a complete lattice. (For references on the order-theoretic proper-
ties of P-objects, see Priestley (1982c).) The result now follows directly from the
Fundamental Theorem for Compact Totally Disconnected Semilattices (see
VI.3.13 in Gierz et al. (1980)).
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Algebraic properties of lattices whose duals are algebraic lattices are discussed
in Priestley (1982b).

3. Catalyticity in equational subcategories of D

Suppose we wish to find the catalytic objects in some equational subcategory C
of D and suppose that it is possible to characterise the (not necessarily full)
subcategory Q = D(C) of P. Restriction of Lemma 2.2 to C and Q gives an
order-isomorphism between C(A, B) and Q(D(B), D(A)) for any A, B e C.
Consequently Cat(C) = £(Cocat(Q)). It is possible to find Cocat(Q) in particular
cases by modifying the arguments used to prove Theorem 2.6.

However a more economical strategy is frequently available. Assume that
X G Cocat(Q), so that Q(Y, X) is a lattice for each Y e Q. A judicious choice (or
several choices) for Y will provide information about X and thereby restrict the
class of candidates for objects in Cocat(Q). This procedure may restrict the
cocatalytic spaces so far that the surviving candidates may be directly checked for
cocatalyticity. Alternatively we may be able to invoke the following lemma.

LEMMA 3.1. Suppose that Q is a subcategory of P and that Q is a full subcategory
of Q such that

(i) O 2 Cocat(Q); and
(ii) there exists a function F associating to

each non-empty Z e P an object F(Z) £ Q
such that for all X e Q

V(Z,\X\) = Q(F(Z),X),

where = denotes isomorphism of pointwise-
ordered sets, and where \ — |: Q —> P is the
forgetful functor.

Then X e Cocat(Q) implies that \X\ e Cocat(P).

PROOF. The hypotheses imply that, whenever X e Cocat(Q), P(Z,|A'|) is a
lattice for all Z e P and hence that \X\ e Cocat(P).

In the opposite direction we have the following lemma.

LEMMA 3.2. Suppose that Q is a subcategory of P and that X e Q, regarded as
an object in P, is cocatalytic in P.

(a) //, for every F G Q and <j>, i// e Q(Y, X), the pointwise
infimum and supremum of <(> and i// are Q-morphisms,
then X e Cocat(Q).
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(b) Assume that Q is closed under finite products and
that X e Q is a lattice. Assume further that
XXQX is a subspace ofX2 = XxpX, that the
restrictions of the projection maps <nx, TT2: X2 —> X
are the canonical projections from X X Q X to X,
and that V, A: X X Q X -» X are Q-morphisms. Then
X e Cocat(Q).

[Part (a) can be applied easily in most cases. Part (b) provides a sufficient
condition for (a) to hold; customarily X X Q X = X2 and the assumptions in (b)
reduce to the requirement that V and A should be Q-morphisms.]

PROOF, (a) is trivial. To prove (b) it is sufficient to show that, under the
assumptions in (b), for any F e Q , the pointwise supremum of <j>, yp e D(Y, X) is
a Q-morphism. (A similar argument then works for infimum.)

There exists TJ e Q(Y, X X Q X) such that the following diagram commutes:

•x2

Y
The map y >-•(</> V \p)(y) = 4>(y) V tK.y) is the composite of TJ and the restric-
tion of V t o I X Q I , both of which are Q-morphisms. Hence </> V ty e Q(7, X),
as required.

The preceding lemmas suggest that we may be able to establish that for certain
choices of Q, Cocat(Q) consists of those Q-objects which are topological lattices
in which V and A are Q-morphisms. Every topological lattice in P is the dual of
a lattice which is both a double Stone algebra and a double Heyting algebra.
Hence there are many subcategories C of D such that Cat(D) c |C| (where
| — |: C —» D is the forgetful functor), and in which we might reasonably expect to
find non-trivial catalytic objects.

We now turn to examples. Since all our catalyticity characterisations follow the
lines indicated above, it would be repetitious to give a full proof in each case.
Accordingly we collect the key ingredients for the proofs in a table, located at the
end of this section. We treat our first example—the variety of Stone algebras—in
detail. The remaining proofs are obtained, mutatis mutandis, using the informa-
tion in the table. Where new features emerge we draw attention to them.

We shall suppress forgetful functors except where it seems expedient to do
otherwise.
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VARIETIES O F DISTRIBUTIVE /^-ALGEBRAS. The non-trivial subvarieties of the

variety B^ of distributive /^-algebras form a chain

B o ( = Boolean algebras) c Bx( = Stone algebras) c B 2 c • • • c B u .

T h e dual category P u = D(BU) consists of those Priestley spaces X for which V

clopen increasing in X implies that | V is clopen in X; the morphisms are those

cont inuous order-preserving maps <j> which map the maximal points above x onto

the maximal points above <j>(x). For 1 < n < a, D(Bn) is the full subcategory of

D(B U ) consisting of those spaces in which each point is dominated by at most n

maximal points (see Davey and Duffus (1982) and Priestley (1982c); remember

that the order has been reversed).

T H E O R E M 3.3. For 1 < n < u, C a t ( B J = Cat(D), while Cat(B0) = {1,2}.

P R O O F . Consider n = 1. Suppose 0 ¥= X G Coca\.(D(Bx)). Let Y be a 1-

element space, { u}, regarded as an element of D(BX). Then

PU(Y,X) = {<l>x: u^> x\x e m a x * } ,

where max * denotes the set of maximal points of X. The maps <j>x and <f> are
comparable if and only if x = y. Since PU(Y, X) is a lattice, |max X\ = 1. Thus *
has a unique maximal point, 1 say.

We now apply Lemma 3.1. We take Q = D(BX) and

Q = ( y e Q | | m a x y | < l } .

For Z G P, we define F(Z) to be the space obtained from Z by adjoining an
isolated maximum point l z . For each <j> e P(Z, |*|) we define F((j>): F(Z) -» *
by requiring that F(<t>) Tz = <J> and F(</>)(lz)

 = 1- Clearly the map 4> -» F(<j>)
sets up an order-isomorphism between P(Z, |*|) and Q(F(Z), X). It follows
from Lemma 3.1 that Cocat(Z)(B1)) c { * e D(BX) \ X e Cocat(P)}.

Now suppose that 0 # * G Cocat(P). Since * has a unique maximal, it
follows that * e D(BX). On any space Y e D(BX) let M denote the continuous
map taking each point to the unique maximal point above it. For Y G D(BX) and
<(>, \p e Pu(y, * ) , we have <J> ° M = M ° <j> and ^ ° M = M ° \p. It follows that
<p A \p and <f> V ip (defined pointwise) commute with M and so are Pw-
morphisms. Hence PU(Y, X) is a lattice under the pointwise operations, so that
* G Cocat(Q).

For 1 < n < u, the result is proved in the same way; see the table. That the
one- and two-element algebras are the only catalytic Boolean algebras was proved
in Balbes (1980). For completeness we note here that it is trivial that * e
Cocat(D(B0)) implies | * | < 1; consider maps from a 1-point space into X.
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VARIETIES OF DISTRIBUTIVE DOUBLE />-ALGEBRAS. The variety B£ has an
uncountable lattice of subvarieties. We consider here only the subvarieties B™
(1 < m, n < «); ^ eB™ if and only if A e Bn and its order-theoretic dual
Ad e Bm. The dual category D(B£) consists of those spaces X in P for which, for
every clopen increasing subset V, the sets I V and i(X\ V) are clopen. Mor-
phisms are those P-morphisms which map the maximals above x onto the
maximals above <£(•*), and similarly for the minimals. The information in the
table makes it straightforward to prove the following theorem.

THEOREM 3.4. For 1 < m, n < w, Cat(Bn
m) = Cat(D).

VARIETIES OF HEYTING ALGEBRAS. We denote by H the variety of Heyting
algebras. The dual category Z = D(H) consists of those spaces I e P such that
i U is open for any open set U c X. Let X, Y e Z. A map <j> e P(X, Y) is a
Z-morphisms if and only if <#>(T x) = f <t>(x) for all x e X

We do not have a complete characterisation of Cat(H). Easier to handle are the
bounded relative Stone algebras which form a subvariety Lw of H equationally
defined by A e L , if and only if

(Va,b<EA) ( a - » 6 ) V(ft-»a) = l.
Dually, A e Lw if and only if, for every x e D(A), 1 x is a chain. The
non-trivial subvarieties of Lw form a chain

L 2 c L 3 c • • • c Lw.

For 2 < /i < u, Ln = ISP(«) and £>(Ln) consists of those spaces in D(LU) for
which |T JC| < « — 1 for every x e X.

LEMMA 3.5. (i) If X & Cocat(D(LJ), then X is a chain.
(ii) / / X e Cocat(Z)(Ln)) (2 < n < w), /Aen X w a chain {with at most n - 1

PROOF. First note that, in both cases, either X = 0 or X has a unique maximal
element, 1 say. (To prove this, consider Z-morphisms from a one-element space
into X.) Let X e Cocat(Z)(LJ). Take x, y e X and form 7 = T * X t J with
the lexicographic order:

(«!, vx) < (M2, U2) <=»«!< M2 or («! = u2 and «! < u2).

Since X e Lu, both T x and t J are complete chains, and hence Y is also a
complete chain. Now endow Y with the interval topology. This is compact due to
the fact that Y is complete. Since both f x and T y are algebraic, they both
satisfy

u < v => (3s, t) u < s -< / < i>.
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It follows easily from this that Y is totally order-disconnected. Hence F e P , and
since Y is a chain, Y G D(LU) follows.

We define <f>, ^ & Z(Y, X) by

v)) = u and *««,»» = {j jf " ^ J

By construction, <j>((x, y)) = x and \^((x, y)) = y. By hypothesis, <J> and ^ have
an infimum in Z(Y, X) which at each point is dominated by both <j> and \p. It
follows that x and y have a common lower bound, say z. Since 1 z is a. chain, x
and y are comparable. Hence A" is a chain.

Let A' e Cocat(£)(Ln)) (2 < n < <o), and by way of contradiction suppose that
X is not a chain. Since X has a maximum element, and since chains in X have
fewer than n elements, we can write X {qua ordered set) as X1 © {k - 1) where
1 < k < n, and where X1 has at least two maximal points. Let k be the
A>element chain with the discrete topology. Then Z(&, X) has minimal elements
fx:k^ X defined by fx{j) =j-l (1 <j< k - 1), and /,(0) = x, where x
ranges over max Xv For x * y in max A ,̂ fx and /,, have no lower bound, and
we have the required contradiction.

LEMMA 3.6. Let X be a chain in D(Ln) (2 < n < <o). 77ien A' e Cocat(Z)(Ln)).

PROOF. Let Y e D(Ln), and take <f>, 4> G Z(r , Z) . Since A' G Cocat(P), <#> A ifr
and <J> V \p, defined pointwise, are P-morphisms.

To show that <f> A \j/ is a Z-morphism, it is enough to show that, for every
x G Y, T(<>(.x)Ai/<(;c))c(</>Ai//)(T*)- (The reverse inclusion holds because
<f> A \p is order-preserving.) Assume without loss of generality that <j>(x) < i/'C-̂ )
and let U G 1(<f>(x) A \f/(x)) = T<J>(*)- Since >̂ is a Z-morphism, there exists
y G t x such that <j>(y) = u. If "/'C^) > u, then (</> A i/»X^) = v, as we require. If

< v, then there exists z e f j such that ^ (z ) = u. In this case, </>(z) >
= v, and so (<f> A ^ ) ( z ) = ^C2) = y . a s required.

Now let v G f(</)(x) V »p(x)). Then, without loss of generality, v > \p(x) >
<t>(x). There exist y, z ^ x such that u = ip(y) = 4>(z). Since Y e O(LU), j and
z are comparable. Suppose _y < z. Then ^>(^) < <j>(z) = t/'Cj'), and so o =
(</> V i//)(>»). Similarly, if y > z, then if(z) < \p(y) = </>(z), and so v =
(4> V ^)(z) . It follows that <J> V <// is a Z-morphism.

From the last two lemmas we deduce immediately

THEOREM 3.7. (i) Cat(L J = { A G La \ A is a chain} = Lu n Cat(D).
(ii) For 2 < n < «, Cat(Ln) = {1,2 , . . . , n} = Ln n Cat(D).
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For H the situation is more complicated. Joins in dual hom-sets may be
defined, but not pointwise, as the following example shows. We take Y to be the
4-element Boolean algebra 22 with elements 0, a, b and 1, and we take X to be
the 3-element chain with elements 0 < c < 1. Define </>, \p: Y -» X by

4>(0) = 4<(0) = 0, ^ ( a ) = ^ ( 6 ) = c , *(fc) = ^(fl) = ^ ( l ) = l .

These are Z-morphisms whose pointwise supremum maps 0 to 0 and the remain-
ing elements of 22 to 1. The supremum of <#> and \p in Z(7, X) is, however, the
map taking 0 to c and the remaining elements to 1.

THEOREM 3.8. Every finite chain is catalytic in H.

PROOF. We must show that any finite chain in Z is cocatalytic. The first part of
the proof of Lemma 3.6 does not require that X e D(LU), but only that l e Z .
Therefore any finite chain in Z is meet-semilattice-cocatalytic.

Let X be the discretely topologised chain with elements c0 < cx < • • • < cn_1

(n > 1) and suppose that every finite chain of cardinality less than n is join-semi-
lattice-cocatalytic. Fix Y e Z and <f>, 4> e Z(7, X). Define sets Yo, Ylt... and
maps yo> Yi' • • • a s follows:

i f x e y0,

) if x G y \ y ,

(the join of </>|'yyyo and ip ^Y\Y0 exists in Z(Y\ y0, t ct) by the inductive
hypothesis); for0 < k < n - 2, Y*+1 = 7 t \ 1 YtH^+i),

if x G y. ,,,

We claim that y := yn-i is the required supremum of (> and $ in Z(F, A'). (In
fact yn_1 = yn_3, but we do not need to know this.) Trivially, we have y > <f>, \p.
Suppose f G Z ( y , I ) dominates <j> and \p. Consideration of f \Y\Y0 shows that
f > y0 on Y \ Yo, whence f > y0. Now assume that $> yk and suppose by way of
contradiction that there exists x e y ^ ! such that f(x) < y^ + i (x) = ck+l. Then
c* = Y*(-x:) < t(x) < ck+1, so that yk(x) = f(x). Since f is a Z-morphism, there
exists y > x such that cA+1 = yk(y). This implies that x G I YtH^+i ) . which is
impossible if x G I t + i- By induction we obtain f > y. It remains to prove that
y G Z(7, X). In y, if (/ is clopen, then iU is clopen, so that (again by induction)
y is continuous. Since each of the sets 1 yk~

1(ck+l) is decreasing, y is order-pre-
serving. We shall now prove by induction that, for each k, yk tY\Yk

 e

Z ( y \ Yk, X). Since Yn_l = 0 , it will follow that y = yn_x G Z(y, X). Clearly
Yo ty\y0 is a Z-morphism. Suppose y t tyXy4 is a Z-morphism. Let x G Y\ Yk + 1.
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Then y^ + 1 (x ) = yk(x). Let v > Y * + 1 ( X ) . If x e Y\ Yk, there exists y e 7 \ Yk,
y > x, with y^( j ) = u. Then v e y*+i( T x), as we require. Now suppose that x e
FA \ Yk + l, so that X G i yk

 1(ck+l). In this case there exists y > x with yk(y) =
ck + 1. Necessarily y £ Yk (by definition of y*.), and so, because y*. \y\Yk is a

Z-morphism, any w > ck+1 is such that w = y^(z) for some z ^ y ^ x. But
Y/c + i ( x ) = ck- Either v > c^+j, in which case v e y/c+iit x) as we require, or
v = ck, in which case v e y,t+i(T*) trivially. Hence yk+l lV\yt+1 is a Z-mor-
phism on 7 \ Yk + l.

If one merely requires an example of a space J f e Z which is cocatalytic and
such that joins in Z(Y, X) are not always defined pointwise, a simplified version
of the argument above shows that X can be taken to be a 3-element chain.

VARIETIES OF OCKHAM ALGEBRAS. Let C be a subcategory of D. In the
examples we have discussed so far, it has turned out that |Cat(C)| = Cat(D) n |C|,
where | — |: C -» D is the forgetful functor. Varieties of Ockham algebras provide
examples showing that |Cat(C)| may be strictly larger, or strictly smaller, than
Cat(D) n |C|.

A (distributive) Ockham algebra is a bounded distributive lattice (A; A, V, 0,1)
with a unary operation - satisfying

~ ( a A b ) = ~ a V ~ b , ~ ( a V b ) = ~ a A ~ b , - 0 = 1 , - 1 = 0 .
The class of all such algebras forms a variety O, which has been extensively
studied by M. S. Goldberg (1981), following initial investigations by A. Urquhart
(1979). Under the D-P duality, O is dual to the category S of Ockham spaces:
S := {(X; g ) | I e P and g :X -» X is continuous and order-reversing); g{x)(a)
= 1 <=» x(~ a) = 0 (for a & A, x e D(A)). Any l e P can be made into an
Ockham space by selecting a point u e j f and defining g(x) = u for all x e X;
such a space corresponds to an Ockham algebra A in which the negation - is
given by

1 if a e / ,
,0 if a £ I,

for some prime ideal I of A. We shall call such algebras prime.
The variety O is DSP(LJ, where D(LJ = fiN (the Stone-Cech compactifica-

tion of the natural numbers with the discrete topology), and where g is the
continuous extension to /?M of the successor map on (M. Important subvarieties of
O are the varieties Pm,M(»i > n > 0), where Pm „ is generated by the algebra Lm „
whose dual is the Ockham space mn:= (Zm; y) in which y : Z m -> Zm satisfies
y(k) = k + 1 (0 < k < m — 1) and y(m — 1) = n. It is shown in Urquhart
(1979) that the dual category Sm „ = D(Pmn) is given by
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We note that P2 0 is the variety of de Morgan algebras. Our first theorem follows
the pattern of earlier results.

THEOREM 3.9. (i) Cat(O) = { L e O | L e Cat(D) and L is a prime algebra);
(ii) For m > n > 0, Cat(Pm „) = { L e P m J L e Cat(D) and L is a prime

algebra};
(iii) Form > 0, Cat(Pm0) = {1,2}.

PROOF. Suppose {X; g) e Cocat(S). We consider the set S(/?N, X) of continu-
ous functions fx: @N -* X(x e X), where fx(k) = gk(x) for all k e N. We have

fx>fy~(*k>V) **(*) > gk(y) « x > y and

g(x) = g(y)
(since g is order-reversing). For any x, y e X , fx and fy have a supremum,
which is necessarily fz for some z e X. But then g(x) = g(z) = g(y), so g is
constant. Similarly, consideration of S(mn, X), for (X; g) e Cocat(Sm „), shows
that g is constant in this case too. When n = 0, the condition gm = 1 forces
| A'l < 1. The remainder of the proof is routine; see the table.

We now consider subvarieties of O which are generated by a single finite
subdirectly irreducible algebra whose underlying lattice is not necessarily Boolean.
It was proved by Urquhart (1979) that a finite algebra P is subdirectly irreducible
if and only if it is a subalgebra of some Lm n. The dual (X; g) of P is a space of
the form mn equipped with an order relation with respect to which g is
order-reversing. The possible spaces of cardinality 1 or 2 are depicted below, the
arrows indicating the action of g.

(f J ) (I)TJ
The associated varieties are Boolean algebras, de Morgan algebras (P20), P2.L

Stone algebras, dual Stone algebras, and Kleene algebras. All except the last are
covered by our earlier discussions. The variety of Kleene algebras plays a
significant role in later sections. It is generated by the 3-element chain {0, c, 1},
with 0 < c = ~ c < l . We denote this chain's dual Ockham space by T.

For the remainder of this section we take P to be a finite subdirectly
irreducible algebra in O and K:= HSP{P) to be the variety it generates. We
denote the dual space of P by (X; g), and we let X = D(K). A semantic
description of X is given in Goldberg (1981), Theorem 2.11. In order to
characterise Cocat(3£) we need to refine this description.
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We adopt the notation of Goldberg (1981). We denote the collection of
g-closed subsets of S-morphic images of X by GM(X); because O has the
Congruence Extension Property, GM(X) = MG(X). An element e of y e
GM(X) is called an end of Y if Y = {gk(e)\k > 0}, and Y is said to be a /oop
if, for some k > 0, gk = 1 on Y. A non-loop has a unique end, and every element
of a loop is an end. For Y e GM(X) and e an end of Y, define

W * ) : = „ & (gk(x)<g'(x)\gk(e)<gl(e)inY),

where & denotes conjunction. Let & be the set of all (Y, e) such that
(i)YGGM(X),

(ii) e is an end of Y, with the proviso that, if Y is a loop, then
(a) if Y is an antichain, it occurs exactly once in & with an arbitrary but fixed

point for e, and (b) if Y is not an antichain, it occurs twice in &, once with a
minimal element as e, and once with a maximal element as e; moreover we
assume that no two of the objects in 0* are isomorphic as pointed S-objects.

Note that the characterisation of the possible orders on a loop L (Urquhart
(1979), Lemma 3, or Goldberg (1981), Lemma 2.16) implies that the height of L
is at most one. It follows that if / is an end of Z e GM(X), then there exists
(Y, e) e & and an S-isomorphism <j>:Z^>Y with <>(/) = e. Consequently, up to
isomorphism of pointed S-objects, @ allows for all (Y, e) with Y e GM(X) and
e an end of X.

We order & by defining (Y, e) < ( Z , / ) if and only if there is an S-morphism
<j>:Z->Y with </>(/) = e. The following lemma is immediate.

LEMMA 3.10. (Y,e)^ (Z,f) in &> if and only if, for all I e S , and for all
x e X,

X >= <>(Ye)(X) =» X •= ° ( Z / ) ( * ) -

LEMMA 3.11. (^, <) /IOS a/ most two maximals, (X,e) and (X^gie)), where
X1 = g(X), and e is a fixed end for X.

PROOF. Since g2 is an S-morphism, we have, for any g-subset Y of X and any
end / of Y, that (Y,f) < (X,e) or (Y,f) < (Xug(e)). Now let Z e GM(X)
and let j be an end of Z. Suppose Z is a loop. Then Z e Af(L), where L is the
loop of A' (that is, the subset of X forming a loop). We can choose / e L with
( Z , j ) < ( L , / ) . Now assume that Z is not a loop. In this case there exists
7 e G(X) (with Y not a loop) such that ( Z , » < (Y, / ) , where / is the unique
end of K By transitivity we have (Z, j)4:(X, e) or (Z, j) < (A'j, g(e)), as
required.
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By considering Cases (0)-(4) preceding Corollary 2.15 in Goldberg (1981), it
is easy to establish the following lemma.

LEMMA 3.12. (A^, g(e)) is maximal in (0>, < ) except when
(a) \X\ < landX* T,
(b) X is an antichain,
(c) X is isomorphic or dually isomorphic to either

We can now describe X in a convenient way. We let W e 3E and define, for

= {xe W\Wt=o{Y,e)(x)}.

Goldberg's description of 3E (Goldberg (1981), Theorem 2.11) implies that

W=\j{W(Y,e)\(Y,e)<=&).

We order &w:= {W(Ye) \{Y,e) G &} by set inclusion. The map a: (Y,e)-*
W{Y e) is clearly order-preserving and onto. Since 9 has at most two maximals, it
follows that & w has at most two maximals.

THEOREM 3.13. Let W e S. Then the following conditions are equivalent:
(i) W e X;
(ii) (TN(VxXa( MVa( M e ) ));

(iii) W is the {not necessarily disjoint) union of
spaces

Wo:= { x e W\(3<j>&S(X,W))^>(e) = x}

and

Wx:= ( x e W\(3<j><BS(X1,W))<t>(g(e)) = x}.

Further g(W0) c Wv

PROOF. The equivalence of (i) and (ii) follows from Lemmas 3.10 and 3.11 and
from Theorem 2.11 of Goldberg (1981). Condition (iii) is an alternative way of
stating condition (ii). The final assertion follows from the fact that if <?> e S( X, W)
satisfies <l>(e) = x, then \j/ = \p [x is an S-morphism satisfying 4>(g(e)) = g(x).
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Before discussing cocatalytic objects in X we give an example to illustrate
Theorem 3.15. We take (X; g) as shown below.

The set 9 consists of the following spaces. The accompanying inequalities are
those satisfied by the distinguished end; these inequalities determine the associ-
ated a(y>) .

6; g2,g4>g\gs

I = g 4 ; l , g 2 » g , g 3

(6)

• e
I = g 4 ; l , g 2 < g , g 3 I = g 2 » g I = g 2 « g

(7) (8)

= g2 2 *- „ = »3i, g2 < g = r

(10) D

g3 = r > g

(12)
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We therefore have & as shown

381

12

In this case any E e H is the union of

Wo = {x e *F|g6(x) = g2(x) > g(x) and g2(x), g4(x) > g3(x), g5(x

and

Wx={xe W\g5(x) = g(x)> x md g(x),g3(x)> g2(x),g*(x)}.

LEMMA 3.14. Let 0 * W e Cocat(X) awe? /aA;e Ŵo a«rf Wx as in Theorem 3.13.
Then the g-map on W is constant on each of Wo and Wx {and hence constant on W
whenever Wo and Wx have a non-empty intersection).

PROOF. We have

S(X,W) = {fx:g
k(e) ~ gk(x)\x e Wo).

As in the proof of Theorem 3.9, fx > fy if and only if x > y and g(x) = g(y).
Since S(X, W) is a lattice, g is constant on Wo. Similarly, consideration of

S(Xl,W)={fx:g
k(g(e))~gk(x)\xeW1}

shows that g is constant on W .̂

THEOREM 3.15. Suppose that P is a finite simple Ockham algebra, and let
K = HSP(P).

(i) IfP is a Boolean lattice, then Cat(K) = {1,2};
(ii) IfP is not a Boolean lattice, then Cat(K) = (1,2, K }, where K denotes the

3-element Kleene algebra.

PROOF. AS usual, let X = D(P), and let X = D(K). Whenever f e l and
| W | < 1, then trivially W e Cocat(X), so that 1 and 2 are always catalytic in K. If
P is not a Boolean lattice, then X has height one, and T belongs to GM{X).
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Consequently r e l i n this case. Consider S(Y, T), where Y e £ . We fix an end
e of X which we may assume to be a minimal point. We have that Y is the union
of Yo = Y{Xe) and Yx = Y{Xitg{e)). Let t be the minimal point in T. Let </> e
S(Y,T). For each y <= Y, *${y) = t or <t>(y) = g(t), and <t>(y) satisfies all
inequalities satisfied by y. It follows that <t> maps Fo to f and Yx to g(0-
Therefore S(Y, T) = 0 unless Yon Yl= 0,in which case |S(7, T) | = 1. Hence
S(Y, T) is a lattice. Thus 7 G Cocat(3E). Equivalently £ G Cat(K), as required.

The assumption that P is simple is equivalent to the assumption that X is a
loop. When X is an antichain, it is clear that Wo = Wv Hence Lemma 3.14
implies that g is constant on W. Since, for some k > 0, g* = 1 on W, we have
|W| < 1. This completes the proof of (i).

Finally suppose that X is not an antichain and that W e Cocat(3£) is such that
\W\ > 1. We must show that W = T. If g were constant on W, the assumption
that A" is a loop would force \W\ < 1, contrary to hypothesis. Hence (by Lemma
3.14) g takes two distinct values, one, u say, on Wo, the other, v = g(w) on H^.
Again because gk = 1 on W, each of Wo and Wx contains one point. The
possibilities for W are

and

Clearly T' is not cocatalytic in any class containing it, since if <J> e S( Y, T') then <j>
and g o tf> have no supremum.

Note that we have proved that if K is the variety generated by a finite simple
Ockham algebra which is not a Boolean lattice, then K £ K, and for all A e K
we have \K(K, A)\ «£ 1. Consequently each A e K has at most one ~ -fixed
point.

We finally consider what happens when P is not assumed to be simple.
Suppose that W is cocatalytic in the dual category X. We know that the g-map is
constant on Wo and Wv As a result the defining inequalities for Wo and Wx given
in Theorem 3.13 simplify. We may also have Wl c Wo = W; this happens in
particular whenever X satisfies one of (a)-(c) in Lemma 3.12.

Consider first the case when g is constant. (This is forced to occur whenever
WY c Wo = W.) The possible forms for Wo and Wx are just

W, { x < = W \ x ^ u } , { x < a W \ x > u } a n d { u }

(where g takes the constant value w e Wx).
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Now suppose we have a 2-valued function g taking values u and v on Wo and
Wx, respectively. Since g(W0)Q Wx, g(u) = v. Necessarily g2(u) = u or v.
Suppose, by way of contradiction, that g2(u) = v. Then g(u) is fixed by g and
belongs both to Wo and Wx, which would imply that g is constant on W. Thus
g{v) = u, whence g2(u) = u and g2(v) = v. The defining inequalities for Wo

reduce to inequalities relating to a subset of {x, g(x) - u, g2(x) = v), where x is
a variable point of Wo, and similarly for Wx.

Let W e Cocat(X). It is easy to see in any specific case that Lemma 3.1 may be
applied to show that Wo and Wx are topological lattices.

We thus have as candidate cocatalytic spaces in 36 those W for which the
g-map is 1-valued or 2-valued, and Wo and Wx are topological lattices described
by appropriate inequalities, as indicated above. Any such space W is indeed
cocatalytic. To see this, take Y e 3E and let </>, \p e S(Y, W). Each of <J> and \p
maps Yo into WQ and Yx into Wx. Since Wo and Wx are topological lattices, the
pointwise supremum and infimum of <f> and \p exist and are P-morphisms. They
are S-morphisms because g is constant on Wo and Wv

Rather than give a complicated general description of Cocat(J), we conclude
with some selected examples.

EXAMPLES. (1) Take X to be

Then any W e 3£ is the union of

Wo = {x 6 W|x > g2(^) > g(x) = g'(x)}
and

W1={xeW\x = g2(x)^g(x)}.
Spaces W with constant g-map taking value u have Wo = {*e W\x ^ u} 2

Wx = {M}. If g has values M on Jf0 and «;(^ M) on W ,̂ then Wo= {x G W\X>
v > w = g(x)} and W2 = {«;}. The non-empty cocatlytic spaces are of the form
shown below; u and v may, but need not, coincide, and the whole space is a
topological lattice.
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(2) Take X to be

(D
Here W e 3E is the union of

and

A constant g-map with any image is admissible, while the only restriction on a
g-map taking distinct values u on Wo and v on Wx is that v < u. Lemma 3.1 can
be used to show that W and Wx must be topological lattices if W is to be
cocatalytic.

Let W be a member of P which is a disjoint union of clopen topological lattices
Wo and Wx such that no element of Wo dominates an element of Wx, and at least
one element of Wo, say w, is dominated by an element, say v, of Wx. Let g map
Wo to u and Wl to u. Then I f e l , and the remarks preceding these examples
imply that it is cocatalytic. The only cocatalytic spaces not of this type are
topological lattices with constant g-map. The simplest example of a space which
is cocatalytic in X but is not a topological lattice is given below:

u

We can now substantiate the claim made at the beginning of this section. The
example above shows that there exist varieties of distributive-lattice-ordered
algebras containing catalytic objects which are not catalytic in D. On the other
hand, there exist lattices A e Cat(D) which have an operation of negation which
makes them into Kleene algebras but which are not catelytic as Kleene algebras.
To see this, take A to be the linear sum of B e Cat(D) and its order-theoretic
dual Bd and let ~ be the obvious dual lattice-isomorphism of A. Then A is a
Kleene algebra and A e Cat(D), but for |fi| > 2, A is not a catalytic Kleene
algebra, by Theorem 3.15(ii). Further light is shed on the behaviour of Kleene
algebras by Theorems 5.2-5.4 and the discussion of colattices in Section 6.

The table below summarises the process of characterising catalytic objects in
the most familiar varieties. The notation is that of Lemmas 3.1 and 3.2. We write
k for the /c-element chain with the discrete topology.
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4. Ordered hom-sets and duality

The method employed in Section 3 for locating catalytic objects relied on the
order-isomorphism between ordered hom-sets which enables us to transform our
original problem to a dual one in a dual category. The duality we used was the
restriction to a given subcategory C of D of the D-P duality (for which Lemma
2.2 provided the necessary order-isomorphism). For some varieties of
distributive-lattice-ordered algebras more intrinsic dualities are available. In their
paper Davey and Werner (1983a) gave a general scheme for creating dualities for
certain classes of algebras. Their approach yields, among others, dualities for
Stone and double Stone algebras, de Morgan, Kleene and Ockham algebras. In
each of these cases, the duality is based on a schizophrenic object P which carries
an order relation as an object of the algebraic category and a different order
relation as a member of the dual category, and the objects in both categories are
ordered. (For example, for Stone algebras, P is the 3-element chain with orders:

i 1

3 n a
and • 0

0 i:
(see Davey (1978)(1982), Davey and Werner (1983a)).) In such a situation, it is

natural to seek conditions under which the bijection between hom-sets provided
by the adjunction establishing the duality is an order-isomorphism, and to
investigate the order structure of the hom-sets more generally.

This section is devoid of examples, but it can be read in parallel with Section 5
which illustrates the theory developed here.

Following Davey and Werner (1983a), we shall assume that K = ISP(P) is the
prevariety generated by some algebra P = (P; F), where F is a set of finitary
operations on P, and P has a compact Hausdorff topology T with respect to
which all the operations in F are continuous. We also assume that P = (P;
T, G, R) is a topological structure (on the same underlying set P), where

(a) each g e G is a K-homomorphism g: P" -* P
for some n > 0;

(b) each r e R is a subalgebra of P" for some
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When P is finite we suppress T, which is necessarily discrete. We define
X = EP(P) to be the class of all structures which embed as closed topological
substructures of a power of P. The morphisms of the category X are, of course,
all cont inuous structure-preserving maps.

The set P sits in K as P and in X as P. In most cases of interest to us, P is
finite. However, P may be infinite: for example, when K is the variety of Ockham
algebras, P = 2N. We could also have allowed partial operations on P; we have
not done so because these are not needed in any of our examples.

The compatibility relations (a) and (b) guarantee that the natural contravariant
hom-functors

Z):K-X, where D(A):= K(A,P)*PA

and
£:X->K, where E(X):= 1(X,P)^PX

are well-defined (and adjoint on the right); see Davey and Werner (1983a). We
shall assume that, in the terminology of Davey and Werner (1983a), D and E
give a full duality between K and X; more specifically, we assume that the natural
evaluation maps eA and tx are isomorphisms for each A e K and each l e i .
Here eA :A -* ED(A) = Z(K(A, P), P) is given by eA{a\g):= g(a) for all
g G K(A,P) and all a e A, and ex: X -> DE(X) = K(Z(X,P),P) is given by
ex(x)(<i>):= <t>(x) for all <j> e X(X, P) and all x e X. This is exactly the situation
which prevails for the D-P duality.

We now suppose that the algebras in K carry a natural order (as happens, for
example, when they are lattices with some extra operations). We denote the order
relation in each A e K by < . Order relations, which we again denote by < , are
induced on hom-sets as follows:

(01) for any A, B e K, K( A, B) is ordered pointwise from B;
(02) for every X e X, Z(X, P), as a subset of Px,

inherits the pointwise extension of the order < on P.
At this stage we are not assuming any intrinsic order on the objects of X; all the
order structure comes from K. Obviously we should like all K-homomorphisms to
be < -preserving. The following proposition gives criteria for this; (O2) is
involved but not (01).

PROPOSITION 4.1. The following are equivalent:
(i) every K-homomorphism is < -preserving;

(ii) for each A e K, the evaluation map
eA:A -> ED(A) is a < -isomorphism;

(iii) for each X e K , every homomorphism g e K(A, P)
is < -preserving and, whenever a, b e A with
a < b, there exists g e K(A, P) with g(a) < g{b).
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PROOF, (i) ==> (ii) is trivial.
(ii) => (iii). Let a, b e A satisfy a < b. By (ii), eA(a) < eA(b) in £(K(A, P), P).

This means that, for g e K(A,P), eA(a)(g) < ^(fc)(g) (from (O2)); that is,
g(a) < g(b). Hence every g e K(y4, P) is order-preserving.

Now suppose a,b e ,4 are such that a £ b. Then ^ ( a ) ^ ^(fr) by (ii). Hence
there exists g e K(A,P)vnth g(a) = ^(aXg) < eA(b\g) = g(b).

(iii) => (ii) is proved by reversing the argument above.
(ii) =* (i). Let h.A -> B be a K-homomorphism and consider the diagram

below

By (ii), to show that /i preserves < , it is enough to show that ED(h) does, and
this is routine to check.

Dually, we may suppose that the objects in X carry an order relation =•: and
induce order relations, again denoted by =?: , on hom-sets as follows:

(Ol)* for every X, Y e K, £(X, Y) is ordered pointwise from Y;
(O2)* for every A e K, K(A,P), as a subset of PA, inherits the pointwise

extension of the order =*: on P.
A dual version of Proposition 4.1 gives criteria for 3E-morphisms to be =*: -
preserving. Obviously every X-morphism preserves =s if =«: on P = (P; T, G, R)
belongs to R. We henceforth assume that the objects of both K and X are
ordered. The hom-sets K(A, P)(A e K ) now carry two order relations: < (given
by (Ol) and independent of the duality) and =s: (given by (02)*, through the
duality). In general these orders do not coincide. (See Proposition 4.14 for the
condition under which they do coincide.) Similarly, each £(X, P) ( I G J )
carries order relations =*: (given by (Ol)*) and < (given by (O2)). For general
hom-sets K(A, B) and £(X, Y), only a single order relation (respectively, <
from (Ol) and =£ from (Ol)*) is available.

THEOREM 4.2. Let A, B e K. Then (K(A,B); <) and (3i(D(B), D(A)); ==:)
are order-isomorphic via the natural bijection, provided that

(i) K-homomorphisms into P are < -preserving;
(ii) A is such that

(HI) for g , / i e K(A, P), g < h implies that g =s h;
(iii) B is such that

(H2) for a, b e B, a < b implies that g(a) £ g(b)
(inP) for some g e K(B, P).
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PROOF. The natural bijection between K(^, B) and Z(D(B), D(A)) is just the
functor D restricted to the set K(A, B). Assume (i), (ii) and (iii) hold. By
definition, if h < k in K(A, B), then, for all a e A, we have h(a) < k(a) in B.
Since K-homomorphisms into P preserve < , it follows that, for all g e K(B, P),
we have (g ° /i)(a) < ( g » &)(a)- Hence g° h ^ g° k in K(̂ 4, /*). By (ii), g»li*:
g ° A: for all g e K(fi, P); that is, D(h) ^ D(k). We have thus shown that D:
(K(A, B); <) -> (£(/)(£), Z)(Z)); <) is order-preserving.

Assume now that D(/i) =s £>(&) in X(D(B), D(A)), so that, for all g e Z)(5)
= K(B,P), g°h *i g°k in £>(^) = K(A,P). Then g(/i(a)) ^ g(A:(a)) for all
a e A and for all g e K(£,/>). It follows from (iii) that h(a) s£ k(a) for all
a e y4; that is, h ^ k inK(A, B), as required.

We have given sufficient conditions for the isomorphism of the hom-sets
K(A,B) and 3E(D(5), D(A)). We should like to know the extent to which these
conditions are necessary. To discuss this fully we need to consider the effect of
imposing further compatibility conditions.

The compatibility conditions (a) and (b) on the algebra P and the structure P
already guarantee that the natural map

given by p(g) = g(xx), where xx is the free generator of FK(1), is an isomor-
phism in X. If <: belongs to R, then p is trivially a =*: -isomorphism. More
generally we have

PROPOSITION 4.3. The map p: D(FK(l)) -> P is a =s -isomorphism if and only if
(F) a *£ b in P implies that p(a) ^ p(b) for all unary term functions p on the
algebra P. In particular, p is a ^ -isomorphism if =s is algebraic over P (that is, if
=s is a subalgebra ofP2).

PROOF. Assume p is a ^ -isomorphism and suppose that a *: b in P. Let ka

and kh be the homomorphisms in K(FK(1), P) determined by ka(xx) = a and
k^xj = b. Then

P(ka) = ka{xx) = a*b = kb(Xl) = p(kb),

and hence ka ^ kb. For any unary term p(xx), we have ^(/K-Xa)) ^ kb(p(xY)),
and so p(a) *i p(b), as required.

Conversely assume that (F) holds. If g =$ h in K(FK(1), P), then by definition
we have p(g) = g(xx) =s: A(xj) = p(h). Assume p(g) =s p(h); that is, g(xx) ^
hixj. Let p(xx) be a unary term. By (F), /Kg(*i)) ^ P(HxJ), and so
=< hipix^). Thus g ^ /i inK(FK(l),P).

It is trivial that (F) holds if =«c is a subalgebra of P2.
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We can now give sufficient conditions for (HI) and (H2) to hold for a specific
algebra A.

PROPOSITION 4.4. (i) / / the natural bijection from (K(A, P); <) to
(£(D(P), D(A)); =$:) is an order-isomorphism, then (HI) holds for A.

(ii) Assume that (F) holds. If the natural bijection from (K(FK(1), B); <) to
), D(FK(1))); =*:) is an order isomorphism, then (H2) holds for B.

PROOF, (i) Let g, h e K(A, P) satisfy / < h. By hypothesis, D(g) =£ D(h) in
£(D(P), D(A)). Hence, for every endomorphism e of P, we have e ° g ^. e ° h in
D(A) = K(yl,P); in particular, g = id° g *: id° h = h, where id denotes the
identity map on P.

(ii) Suppose a, b e B are such that g(a) ^ g(b) for all g e K(5, P). Let ka,
kb e K(FK(1), 5) be determined by A:o(x1) = a and M ^ ) = *• Then

(g ° *oX*i) ^ ( « • **X*i) in P for all g G K(5, P). Hence g-> A:a ^ g .k b in
K(/"K(1), P) for all g e K(B, P), by Proposition 4.3. This implies that D(ka) =s;
D{kb) and hence, by hypotheses, that ka <• kb. Thus a = ^^(x!) < k^xj = b.

Combining Theorem 4.2 and Proposition 4.4 we have

THEOREM 4.5. Suppose that K-homomorphisms into P are < -preserving and that
(F) holds. Let A, B G K. Then the following are equivalent.

(I) The natural bijection between (K(̂ 4, B); <) and
(X(Z)(5), D(A)); <) « an order isomorphism.

(II) The natural bijections between (K(A, P); <)
(y4)); =s), and between (K(FK(1),B); <)

), D(FK(1))); =6), are order-isomorphisms.
(Ill) (HI) holds for A and (H2) holds for B.

Almost all the preceding results have, mutatis mutandis, dual versions. The only
difficulty arises in connection with Proposition 4.3, for which we need to consider
•F3£(l) in place of FK(l). It is the case that P is isomorphic to E(FI(l)).
However, to dualise the sufficiency part of Proposition 4.3, we require moreover
that the elements of F3£(l) should be given by terms. We can prove the following
result covering the finite case.

LEMMA 4.6. Let P = (P ; G, R), where P is finite. Then the free l-generated
object in X is the free l-generated object F1 in Xo = ISP((F; G)); the topology on
Fx is discrete, and an n-ary relation r in R is given on Fx by
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PROOF. We first show that Fx, with the relations defined above, is an object in
X. Let [i: F1 -» Z : = Pp be the natural £ 0-embedding, mapping t e FY to the
corresponding term function on P. Now

(VaeP){tl(a),...,t,,{a))erp

Hence Fx e E P ( f ) = X.
The proof is completed by showing that if (Va e P)(t1(a),...,tn(a)) e />,

then

where t1,...,tn are unary term functions on P.
Let X ^ Ps and let x & X. Then

The dual of Theorem 4.2 is of particular interest and is stated explicitly for ease
of reference. It is proved by dualizing the proof of Theorem 4.2 and making use
of the dual of Proposition 4.1.

THEOREM 4.7. Let A, Be K. Then (K(A,B); < ) and (1{D(B), D{A)); =0
are order-isomorphic via the natural bijection, provided that

(i) H-morphisms into P are ^ -preserving;
(ii) Y = D(B) is such that

(HI)* for <t>,\pe 3c(Y, P),<j>=£\l, implies <t>^\p,
(iii) X = D(A) is such that

(H2)* for x, y e X, x ^ y implies <j>(x) < <t>(y)
(inP) for some <j> e £{X, P).

We now have two pairs of conditions: (HI) and (H2) (stated in Theorem 4.2)
and (HI)* and (H2)* (stated in Theorem 4.7). These conditions are related as the
following proposition shows. The proof is straightforward and is omitted.

PROPOSITION 4.8. Suppose that K-homomorphisms preserve < and that di-mor-
phisms preserve ^ . Then

(i) (HI) holds forA<=K if and only if (H2)*
holds for D(A);
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(ii) (H2) holds for B G K if and only if
(HI)* holds for D(B).

So long as all morphisms are order-preserving, to show that K(A, B) is
order-isomorphic to I(D(B), D(A)), it is thus sufficient to show that (HI) holds
for A and that (HI)* holds for D{B). Generally we shall be interested in whether
these conditions hold for all A, S G K . The following lemmas make checking
extremely easy in practive. We prove only Lemma 4.9. Lemma 4.10 is proved in
much the same way (with the aid of Lemma 4.6).

LEMMA 4.9. The following conditions are equivalent:
(i) (HI) holds for all A e K;

(ii) (H2) holds for A = FK(1);
(iii) given a, b e P, a £ b in P implies that

p(a) £ p(b) for some unary term function p on P.

PROOF. It is trivial that (i) implies (ii). Now suppose that (ii) holds and assume
that a £b in P. Let ka, kb e K(FK(1), P) be determined by ka(xl) = a,
k^Xi) = b, where xx is the free generator of FK(1). Then ka £ kb, so that by
(ii), ka < kb. Hence there exists c e FK(1) such that ka(c) ^ kh(c). For some
unary term p we have c = p(xx), and so p(a) = ka(p{xY)) < k^pixj) = p(b).
Thus (iii) holds.

Finally, we show that (iii) implies (i). Let / ( £ K and suppose that g jfc h in

K(A,P). For some c & A, g(c) 56 h(c). Using (iii) we can find a unary term p

such that p(g(c)) < p{h{c)). But then g(p(c)) 4 h(p(c)), and so g 4 h.

LEMMA 4.10. If P is finite, the following conditions are equivalent. In general, (i)
and (ii) are equivalent and implied by (iii):

(i) (HI)* holds for all X e X;
(ii) (HI)* holds for X = F£(l);

(iii) given x, y 6 P, x ^ y implies that t(x) < t(y)
for some unary term function t on P.

In summary, we have

THEOREM 4.11. Suppose that
(0) K-homomorphisms are < -preserving and

H-morphisms are < -preserving.

https://doi.org/10.1017/S1446788700027567 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027567


[ 30 ] Lattices of homomorphisms 393

If P is finite, the following conditions are equivalent. In general, (I), (II), and (II)*
are equivalent and implied by (III).

(I) For all A, B e K, (K(y4, B); «£) is order-isomorphic
to (£(D(B), D(A)); =£) via the natural bijection.

(II) (HI) For each K K , < c =s on K(A,P).
(HI)* For each X e £, ^ c < o« £(Z, P).

(II)* (H2) For eoc/i ̂  e K, a ^ b in A implies that
there exists g e K(A, P) with g(a) £ g(b)
in P.
(H2)* For each X (= £, x £ y in X implies that
there exists <#> e £( X, f ) w/7/i </>(*) < <>( y) in P.

(II)(a) Given a, b e P, a £ b in P implies that there exists
a unary term function p on P such that p{a) £ p{b).

(b) Given x, y e P, x < y in P implies that there exists a
unary term function t on P such that t(x) £ t(y).

REMARK 4.12. As noted earlier, (0) holds whenever K is a variety of lattice-
ordered algebras, and =sc on P = (P; r,G, R) belongs to R. Given that (0) does
hold, (II)(a) is automatically satisfied whenever < c =s; on P, while (II)(b) holds
whenever =*: c < on P.

We give one further general criterion for the satisfaction of (HI), (H2), (HI)*,
and (H2)*. The motivation for this approach is the theory of piggyback dualities
developed in Davey (1982) and generalized in Davey and Werner (1983b), (1985).

If the algebra P has a reduct in D, then K = OSP(P) becomes a class of
bounded-distributive-lattice-ordered algebras. Similarly, if (P; r, *z) is an object
of P (which holds automatically if P is finite), and if 3E-morphisms preserve =s: ,
then an easy application of the dual of Proposition 4.1 shows that (X; r, ==:) is an
object of P for all (X; T,G, R) in X. This shows that the maps $ and $* in the
following proposition are well defined.

PROPOSITION 4.13. (i) Assume that P has a reduct in D and that the order < on
each A in K is the induced lattice order. If there is a map a: P -* 2 which is a
D-homomorphism and preserves =6 , and if the induced map

is onto, then (H2) holds for B.
(ii) Assume that (P; T, *i) is in P and that £-morphisms preserve ^ . If there is

a map a: P —> 2 which is a P-morphism and preserves < , and if the induced map

0* = a° - : X(X,P) -»P(Jf,2)

is onto, then (H2)* holds for X.
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PROOF, (i) Let a, b e B with a ^ b. Then there exists x e D(B,2) with
x(a) £ x(b). Since 0 is onto, we can find g e K(5, P) such that O(g) = x. This
means that

Since a preserves =*: , we conclude that g(a) =& g(b).
(ii) By interchanging the roles of < and ^ in the proof of (i) we obtain the

proof of (ii).
The maps a and $ play a fundamental role in Davey (1982) and in Davey and

Werner (1983b), (1985). The ontoness of 0 and $* is proved explicitly for Stone
algebras in Davey (1978) and for double Stone algebras in Davey (1982). The
general theory in Davey and Werner (1983b), (1985) yields indirect proofs of the
ontoness of 0 for these varieties, as well as for Ln (2 < « < « ) , and for Ockham
algebras, and the sub varieties Pm „.

Given A e K, we have two order relations < and ^ on K(A,P), induced
respectively by the pointwise extensions of < on P and of ^ on P. It is natural
to ask when these coincide, either universally for A G K or for a particular
algebra A. The containment ^ c =s: on K(A, P) is just (HI) for A, and we have
=s c < on K(A, P) whenever ^ c < on P. In the next section we shall see that
these conditions hold quite commonly, but not always. In general we have

LEMMA 4.14. The orders < and =s; on K(A,P) coincide for every A G K if and
only if

(i) a £ b in P implies that p(a) £ p(b) in P for some unary term function p on
P,

(ii) a £ b in P implies that q(a) ̂  q(b) in P for some unary term function q on
P.

PROOF. The first part comes from Lemma 4.9. The second is obtained by noting
that a valid result is still obtained if < and =£ are interchanged in Lemma 4.9.

LEMMA 4.15. Suppose that on P,(x =S y&x < y) can be expressed as a conjunct
T(X, y) of atomic formulas in two free variables, the operations in G, and the
relations in R. Then <2=s: on X = K(A, P) if and only if

X \= (Vx, y e X)a(x, y), where a(x, y):= (x « y => r(x, y)).

PROOF. Suppose that < 3 ^ on X. Take x, y e X with x *: y. Then x < y
and x < y, so

(Va G A)(x(a) « y(a) and x(a) < y(a)),
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that is, (Va e A)P N r(x(a), y(a)). The hypothesis on T implies that this lifts to
X c PA, so that X t= T(X, _y). Hence A' 1= (Vx, jy e X)a(x, y), as required.

Conversely, suppose that X 1= (Vx, >> e A^)a(x, j ) . Let X J G ! with x ^ y.
Then * t= T(X, y), so that

(Vae^) P\=T(x(a),y(a)),

=» (Vfl e ^) P \= x(a) <. y(a) and x(a) ^ y(a)

whence x < y, as required.
A corresponding result holds with < and =«: interchanged, but we shall not

need it.

5. Examples involving Davey-Werner dualities

This section illustrates the preceding theory. The Davey-Werner dualities for
the varieties we consider are established in Davey and Werner (1983a), with the
exception of those for Ockham algebras and the subvarieties Pm „, which appear
in Davey and Werner (1983b), (1985). We shall be interested in particular in
whether, for the variety K and its dual 3£, the conditions (0) and any of (II), (II)*
and (III) (from Theorem 4.11) are satisfied. If they are, then Cat(K) =
£(Cocat(X)).

In all our examples, (0) holds, since =*: is amongst the relations R on P. To
verify (III), all we need to know is the structure of P = (P; F ) e K and of
P = (P; T, G, R) e X. To check (II)* we might invoke Proposition 4.13, where it
is applicable. However, even when $ and 0* are known explicitly, more work is
involved than in testing (III).

BOUNDED DISTRIBUTIVE LATTICES. In this case P is the 2-element chain, qua
bounded distributive lattice, and P is the 2-element chain, qua ordered set.
Remark 4.12 shows that (II) is trivially satisfied. The Davey-Werner duality
coincides with the D-P duality, for which we already known that (I) holds (by
Lemma 2.2).

STONE ALGEBRAS AND DOUBLE STONE ALGEBRAS [Davey and Werner (1983a),
pages 180-183]. The variety of Stone algebras is 0SP(3) where 3:= ({0,c,l};
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A, V, *, 0,1), where 0 < c < 1, 1* = c* = 0, and 0* = 1. The object 3 may be
taken to be 3 := ({0, c, 1}; a, =£), where =£ is given by

• 0 i:
and a( = **) is the endomorphism defined by a(0) = 0, a(l) = a(c) = 1.

We check (HI). If a < b and a* < b* in 3, then necessarily a =s; b in 3. Thus
(III)(a) holds. Since ^ c < , (III)(b) is trivial.

Similar arguments can be given when K is the variety of double Stone algebras;
again (III) holds.

OCKHAM ALGEBRAS [Davey and Werner (1983b), (1985)]. The variety O of
Ockham algebras is 0SP(2N) with 2N = (2N; A, V, ~ , 0,1), where the negation,
~ , is given by

(~ a)(n) = 1 » a ( / j + 1) = 0 (n e N)

(regarding a e 2N as a function a: N -> {0,1}), and the lattice operations are
defined pointwise from 2. The dual object is

where T is the usual product topology; the Ockham map g is defined by

and ^ is the alternating order given by a =?; b if and only if a(n) ^ b(n) for n
even, and a(n) > b(n) for n odd. Suppose that a < b and — a < ~ b. This
happens precisely if a(0) < b(0) and a(n) = fe(«) for all n 3* 1, and under these
conditions we have a ^ b. In the same way, a =*: 6 and g(a) =s; g(fe) imply that
a(0) < Z)(0) and a(n) = fc(«) for all « > 1, whence a < Z>. Hence (III) holds.

THE SUBVARIETIES Pm „ OF O [Davey and Werner (1985)]. The variety Pm „ is
generated by (2™) = (2m; V, A, ~ , 0,1), where 2™ has lattice operations defined
pointwise from 2, and ~ (depending on n) is given, for a e 2m, by

(VA: < m ) ( ~ a ) ( i t ) = 1 if and only if a(yk + l{0)) = 0,

where

\lk = m-\.
(Here P20 is the variety of de Morgan algebras; see Davey and Werner (1983a),
page 178.) The structure 2™:= (2m; g, =0, where g: 2m -» 2m is defined by

g(a)(k) = l if and only if a(y(k)) = 1 (a e 2m,0 < A; < w)
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and =*: is an order relation whose definition is different in the cases (m — n) even
and (m — n) odd.

When (m - n) is even, a < b if and only if a(k) < b(k) for k even, and
a(k) > b(k) for k odd. When (w - n) is odd, we have a =sc ft if and only if, for
k < n, a(k) < b(k) if k is even, and a(fc) > 6(fc) if A; is odd, and a{k) = b{k)
for n ^ k < m. (These orders are such that the obvious mapping of 2m into 2* is
order-preserving.)

Suppose that a < b and ~ a < ~ b in 2™. Then, for all k, we have a(y*(0)) <
b(yk(0)), while a(yk+l(0)) > b(yk+\0)). Hence a(k) = b(k) for 1 < k < m - 1,
and a(0) < ft(0). Irrespective of whether in — n is even or odd, we have a =£ b.
Thus (III)(a) holds.

We now suppose that a < b and g(a) =£ g(b) in 2™. Whether w - n is even or
odd, these conditions yield a(0) < 6(0) and a(k) = b(k) for l < A : < m - l .
Hence a < 6. Thus (III)(b) holds.

Summing up our results, we have proved

THEOREM 5.1. Suppose that K is any one of the varieties
(i) Bounded distributive lattices,

(ii) Stone algebras or dual Stone algebras,
(hi) Double Stone algebras,
(iv) Ockham algebras,
(v) PmJm >n>0).

Then for all A, B G K, K( A, B) is order-isomorphic to %(D(B), D(A)), where 1 is
the category dual to K = ISP(P) for the Davey-Werner duality, and
D(A):=K(A,P).

Each of the varieties listed in Theorem 5.1 has a piggyback duality. In fact
there exists in each case a map a: P -» 2 which is order-preserving both for <
and for =«: such that $:= a° - : K(A,P) -* D(A,2) is a bijection. For Stone
algebras and double Stone algebras the maps a, O and 0 := <b~l are given in
Davey (1982), and it is shown that $ and 0 are order-preserving if K(A,P)
carries the order < . It is easily seen that 0 is also order-preserving if K(A, P)
has order ^ (and $ certainly is, since a: P -* 2 is order-preserving). It follows
that we have order-isomorphisms.

(K(A,P); <) £ (DU,2); <) £ (K(A,P); *).

Consequently, for every A, the two orders on K(A, P) are the same. This can also
be seen from Lemma 4.14.

Now consider K = O, the variety of Ockham algebras. Here the map a: 2N -» 2
is defined to be the projection onto the first coordinate; it is order-preserving for
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both orders. Define 6 by

x(~"a) = \ (neven),
x(~"a) = 0 (wodd).

It is routine to verify that 0 is a 2-sided inverse for $ = a ° - , and that
(0(^4,2/°); *:) is order-isomorphic to D{A,2). Further, D(A,2) is order-isomor-
phic to (O(A,2N); <) if and only if the g-map is contant on the order-compo-
nents of (O(/4,2N); =*;). This can be obtained from Lemma 4.14 (taking T(X, y)
to be x =i y & g(x) — g(y)), or by ascertaining when 0 is ^ -preserving.

KLEENE ALGEBRAS. It is not true that the conditions of Theorem 4.11 are met
for every variety K of distributive-lattice-ordered algebras which has a tractable
Davey-Werner duality. We consider the variety K of Kleene algebras, whose
duality was described in Davey and Werner (1983a), pages 175-178. The generat-
ing algebra for K is

K:= ( { O , c , l } ; V , A , - ,0 ,1)

1 0
K

where ({0,c, 1}; V, A,0,1) is the chain with 0 < c < 1, and - is given by
~ 0 = 1, - 1 = 0, and ~ c = c. We choose

K=(K= {O.c.l}; * , # „ . - ) •

Here =£ is the order

Ko is the unary relation (0,1} on K (the minimal elements of (K; =s:)), and - is
the binary relation K2 \ {(0,1), (1,0)},. which may be characterised as all pairs of
comparable elements in (AT; =?:).

It is proved in Davey and Werner (1983a), page 175, that the dual category I
consists of structures.(X; T, ^ , Xo, - ) where (X; T, =<) is a member of P, Xo is
a distinguished closed subspace (possibly empty), and - is a closed binary
relation satisfying

(i) (Vx e X) x - x,
(ii) (Vx, y e X) x - y and x e Xo imply x =£ y,

and
(iii) (Vx, y, z e X) x — y and y =£ z imply x — z.
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PROPOSITION 5.2. Let K be the variety of Kleene algebras, let 3E be the dual
category defined above, and let K and K be as above. Then

(i) (III)(a) holds {and so (HI) holds for every A G K and (H2)* holds for every
ATG X).

(ii) (a) (H2) fails for A = K; (HI)* fails for X = F3L(1);

(b) (HI)* fails for X = K; (H2) fails for A = FK(1);

(c) (III)(b) fails.
(hi) K(FK(1), K) is not order-isomorphic to £(D(K), D(FK(l))) (that is, to

(iv) Let A G K. Then < and =s coincide on Yi(A, K) if and only if A/% is
Boolean, where 0 is the lattice-congruence on A given by a = £>(©)<=> a V (d
A ~ d) = bV (d A - d) for some d <= A.

[Given our earlier results, there is obvious redundancy here. However, it is
instructive to see how all the various conditions work or fail in a particular case.]

PROOF, (i) and (ii) are straightforward. To prove (iii) it suffices to check that
(K(FK(1), K)\ <) is a 3-element antichain and (3E(FX(1), K); ==:) is order-
isomorphic to K.

(iv) Let x, y e K(4, K). Then x < j i f and only if x(a) < y(a) for all a e A.
But then ~ x(a) = x(- a) < y(~ a) = ~ y(a) for all a e A. Since ~ is
order-reversing on K, < is the discrete order on K(A, K).

Cornish and Fowler (1979) (Theorem 2.2) prove that the Priestley dual of A/Q
is the subspace X = {x e. D(y4,2)|x < g(x)} of D(A,2). Hence it remains to
prove that =s on K(A, K) is discrete if and only if < on ^ is discrete. For any
z G X and any a e A, we have

z(a) = 1 <=» g(z)(~ a) = 0 =* z(~ a) = 0 .

Fix z G X and define Iz = {a G A\Z(~ a) = 1} = ~ (z (1)). Since z is a
homomorphism and ~ is a dual lattice isomorphism, Iz is a prime ideal of A.
Moreover Iz n ~ /z = 0 . Hence we may define z G K(J4 , ^ ) by

if a G / z ,

^1 i f a G ~ / z .

Suppose the order on X is not discrete. Then there exist x, y e X with x < y.
Then Ix c /^,, since ~ a G Iy\Ix. It follows that J' =s; x (with, of course, x ¥= j ) .
Thus, =s on K(>1, ^ ) is non-discrete.
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Conversely, suppose there exist <f>, \p e K(A, K) with </> ^ $, <j> ^ \p. Then
there exists a e A such that </>(a) = 1 and 4>(a) = c. Define a:K-> 2 by
a(0) = a(c) = 0 and a(l) = 1. Then x = a«(j> and y = a°\p belong to D(^,2),
and x < y. Finally,

(Va eA)g(x)(a) = 0 « x ( - a ) = l « (/>(-a) = 1

<=> ~<J>(a) = l

*> <f>(a) = 0 » x(a) = 0.

Hence x, and similarly y, belongs to X.

Note that not only does the natural bijection D in general fail to map K(A, B)
order-isomorphically onto X(D(fi), D(A)), but that, as (iii) shows, there is likely
to be no order-isomorphism between these sets.

It is a consequence of Proposition 5.2 and Theorem 4.11 that we cannot assume
that Z)(Cat(K)) = Cocat(X). It follows from Theorem 3.15 that Z)(Cat(K)) con-
sists of two objects in 3E, both containing a single point and one with an empty
distinguished subspace, the other not. We shall now find Cocat(X).

THEOREM 5.3. Let 1 be the Davey-Wemer dual category for the variety of Kleene
algebras. Then (X; T, =S: , Xo, - ) <= Cocat(X) if and only if (X; T, =0 is a
topological lattice, and therefore satisfies

(i) |Jfol < 1. and
(ii) x - y for all x, y & X.

PROOF. Our method is reminiscent of that used in Section 3. We assume that,
for every Y e 3E, 36(7, X) is a lattice (for the pointwise order induced by =*: on
X). Putting Y = D(K) (so |7 | = 1, Yo = 0 ) we see that X is a lattice. Since Xo is
a subset of the minimal elements of X, we have \X0\ < 1. For every x, y e X, we
have x A y =£ x, y and so x - y (see Davey and Werner (1983a), page 177).

We now let Y be the full subcategory of 3£ whose objects satisfy condition (ii)
above. Construct for each Z e P a n object F(Z) e Y by defining F(Z) = Z, by
letting T and =*: be the topology and order given on Z, and by defining x - y for
all x, y (= F(Z) and (F(Z))0= 0. Then P(Z, |A"|) is order-isomorphic to
£(F(Z), X), where | - |: Y -> P is the forgetful functor. Lemma 3.1 implies that
(X; T, =«:) is a topological lattice. Thus the stated conditions are necessary.

Conversely suppose that X e 3E is a topological lattice. Since X satisfies (i) and
(ii), it is clear that for all Y £ 3E, X(Y, X) is a sublattice of the lattice P(7, X).

A more interesting characterisation of Cocat(X) is obtained by reinterpreting
Theorem 5.3 in terms of objects in K. Theorem 5.4 can be established directly or
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can be deduced from results of Davey and Priestley (1984) (see the introduction
to that paper).

THEOREM 5.4. Let 3£ be the category dual to K, the variety of Kleene algebras.
Then Cocat(X) consists of those objects D(A) for which A e K has one of the
following forms:

(A) A is the linear sum of B and Bd, where B
is catalytic in Do (the variety of lower
bounded distributive lattices);

(B) A is the reduced linear sum of B and Bd,
where B is catalytic in D.

In each case d denotes the order dual, and the negation is defined in the obvious way
(by 'reflection').

[A bounded distributive lattice is of type (A) if and only if its Priestley dual is
the reduced linear sum of a topological lattice and its order dual, with the obvious
topology. It was proved by Balbes (1980) that L e Cat(D0) if and only if
L ffi lCat(D). A lattice in D is of type (B) if and only if its Priestley dual is the
linear sum of a topological lattice and its order dual. The catalytic Kleene
algebras are those of type (A) for which \B\ < 1 and those of type (B) for which
1*1 < 2.]

6. Colattices in varieties of algebras

An object L in a category C is called a lattice in C if the contravariant
hom-functor

C ( - , L ) : C - > Set
factors through the category Lat of all lattices; that is, for all A e C there is a
lattice structure on the hom-set C(A, L) such that for all 4> e C(A, B), the
induced map from C(B, L) to C(v4, L) is a lattice homomorphism. Similarly L is
a colattice in C if the covariant hom-functor

C ( L , - ) : C - » Set
factors through Lat.

Lattices and colattices in a category with finite products and coproducts have a
more concrete description. We briefly outline the ideas here and refer to Davey
and Werner (1983a), pages 222-226 or Freyd (1966) for more details. If L e C
and j , m are morphisms from L X L to L (representing join and meet), then we
say that (L; j , m) satisfies the absorption law x A (x V y) = x, for example, if
the diagram below commutes:

LX L \
Wj n j I ^ — w j

LX L -»*L
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(Here Wj is the first projection and, if </>, \p: X -> L are morphisms, then
<j> n \p: X -* L X L is the obvious "product" morphism.) If (L; j , m) satisfies all
the lattice axioms expressed in this way, we say that (L; j , m) is a concrete lattice
in C. By reversing all arrows and replacing products by coproducts (so that L is
now equipped with co-operations j , m:L -* L*L), we obtain the somewhat-
less-familiar concept of a concrete colattice in C.

The following fundamental observation is standard.

LEMMA 6.1. (i) / / C has finite products, then L is a lattice in C // and only if
there are morphisms j , m:LxL^»L such that (L; j , m) is a concrete lattice in
C.

(ii) / / C has finite coproducts, then L is a colattice in C // and only if there are
morphisms j , m:L -> L* L such that (L; j,m) is a concrete colattice in C.

Clearly if we have a full duality between C and X, then L is a colattice in C
precisely when its dual is a lattice in X. If X is a category of structured sets, and
if products in X are cartesian, then the duality is a very useful tool for describing
the colattices in C, since the lattices in the category X will be lattices in the usual
set-theoretic sense. But if products in X are not cartesian, then a lattice in X may
be a totally unfamiliar creature. Hence the dualities of the type introduced in
Section 5 are particularly useful, since the compatibility conditions on P and P
guarantee that products in the dual category X = EP(P) are cartesian. For
example, Kleene algebras have a dual category of this type (which therefore has
well-behaved products); but if we restrict the D-P duality to the subcategory of
Kleene algebras, then products in the dual category so obtained are no longer
cartesian.

A lattice-catalytic algebra L in a variety K of lattice-ordered algebras need not
be a colattice in K: although the map from K(L, A) to K(L, B) induced by a
homomorphism <f> e K(A, B) will be order-preserving, it need not be a lattice
homomorphism. Consequently the following result is rather surprising.

THEOREM 6.2. Suppose that K is
(i) the variety D of bounded distributive lattices,

(ii) the variety Bn of distributive p-algebras (0 < « < « ) ,
(iii) the variety B™ of distributive double p-algebras ( l < m,n < w),
(iv) the variety O of Ockham algebras,
(v) the subvariety Pm n of Ockham algebras (m > n > 0). Then every catalytic

algebra in K is a colattice in K.
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PROOF. Let 3£ = Z)(K) be the restricted D - P dual of K. By the results of
Section 3, if X G 36 is cocatlytic in I, then X is lattice ordered. If K is D, Bo, B1;

B{, O or Pm „, then products in X are cartesian,while if K is any Bn or B™, then
the product X X X in X is cartesian at least when X is cocatalytic in 36.
Consequently, in each case, if X is cocatalytic in 3E, the lattice order on X will
make it into a lattice in X precisely when the induced join and meet operations
are S-morphisms from I X I to I With this observation the result follows
easily from the characterisations of the cocatalytics given in Section 3.

It is important to realise that, when we claim that A e K is a colattice in K, we
are only saying that there exists a colattice structure on A; this structure need not
be unique. For example, if A e D has dual (X; T, « ) in P and there is some
lattice structure (A'; V, A) such that V and A are continuous and =s -preserving,
then (X, V, A) is a lattice in P and so induces a colattice structure on A. In
particular, if X is cocatalytic in P with resulting lattice order (X; V, A), then
both (A'; V, A) and (X; A, V) make X into a lattice in P and so induce distinct
colattice structures on A whenever \A\ > 2. Examples of lattices in P and of
members of P which can never be lattices in P are easily found: in Examples 1
and 2 below the lattice on the right makes the ordered set on the left into a lattice
in P, while Examples 3 and 4 cannot be made into lattices in P. (A fuller
discussion of the structure of lattices in P will appear elsewhere.)

1.

2.

3.

•• N
As was remarked earner, whenever products in the dual category 3£ are

cartesian, every lattice X in 3E is a lattice in the usual set-theoretic sense. If the
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original order on X is a lattice order with respect to which X becomes a lattice in
3£, we shall say that X is an order compatible lattice in £.

THEOREM 6.3. Let K be D, Bo, Bl5 B\, O or Pn
m (for m > n > 0). Then A is

catalytic in K // and only if the dual of A is an order-compatible lattice in the
Davey- Werner dual category H or equivalently, in the restricted D-P dual D(K).

PROOF. Firstly note that the statement of the result makes sense since products
in the Davey-Werner dual categories are cartesian, and for the varieties listed the
Davey-Werner dual category and the restricted D-P dual category are isomorphic.
By the previous result it remains to see that the cocatalytic objects in X are the
only order-compatible lattices in X. Hence we must show that if the order on X is
a lattice order, and if join and meet are 3£-morphisms from X2 to X, then X is
cocatalytic in X.

From the results of Section 3, this is trivial in the cases where K is D, Bo, Bj, or
B\. If K is O or Pm „, then, since V o n l e J preserves the g-map, we have

Hence g is constant on X, and consequently X is cocatalytic in X.
For Kleene algebras the concept of an order-compatible lattice in the dual

category makes sense only in the Davey-Werner dual.

THEOREM 6.4. Let K be the variety of Kleene algebras and let £ be its
Davey-Werner dual category. Then the following are equivalent for A e K:

(i) A is a colattice in K whose dual is an order-compatible lattice in X;
(ii) the dual of A is a topological lattice;

(iii) the dual of A is cocatalytic in •£;
(iv) A is a linear sum or reduced linear sum of the form described in Theorem 5.4.

PROOF. The equivalence of (ii), (iii), and (iv) is the content of Theorems 5.3 and
5.4, and (i) => (ii) is trivial. If X e £ is a topological lattice, then |A"0| < 1 and
x — y for all x, y e X (see Theorem 5.3). It follows at once that join and meet
are 3£-morphisms from I X I to I , and hence that X is an order-compatible
lattice in X.

There are several circumstances under which colattices and, more generally,
coalgebras occur naturally. The free algebra on one generator in K carries a
natural K-coalgebra structure (see Davey and Werner (1983a), pages 225-226 or
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Freyd (1966)). So if K is a variety of lattice-ordered algebras, FK(1) will carry a
natural colattice structure. The compatibility conditions on P and P in Section 5
say precisely that P is a K-algebra structure on the object P in X = EP(P). If
K = BSP(P) is a class of lattice-ordered algebras, then the lattice structure on P
inherited from P is the dual of the natural colattice structure on FK(l) referred
to above. (Note that g -» g(xx) is an X-morphism from Z>(FK(1)) = K(FK(1), P)
to P: see Davey and Werner (1983a) for details.) The covariant version of Freyd's
Representability Theorem (see Freyd (1966)) tells us that if K and L are varieties
and G: K -» L is a functor which has a left adjoint, then there exists an
L-coalgebra L in K such that G is naturally isomorphic to the hom-functor
K(L, - ) : L -* K. If L is a variety of lattices or lattice-ordered algebras, then L
will be a colattice in K.
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