
J. Fluid Mech. (2023), vol. 973, A10, doi:10.1017/jfm.2023.538

Analysis of the choking condition of
one-dimensional diabatic flows with wall friction
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The choking condition of a one-dimensional steady-state diabatic flow, with wall friction,
of a perfect gas through a constant cross-section pipe has been analysed by applying
a recent analytical solution. Such a choking condition can be achieved for an initially
subsonic flow and a supersonic one, even when the heat flux goes from the fluid to the
wall. Entropy–enthalpy diagrams have been analysed, and a universal choking condition
for compressible diabatic flows with wall friction has been determined. The analytical
solution of a supersonic flow, in which a normal shock occurs, has been obtained for a
diabatic flow with wall friction and compared with the results of a numerical model.
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1. Introduction

Choked nozzles and supersonic diffusers are used widely in numerous engineering
devices, such as aircraft, gas turbines, wind tunnels (Moase, Brear & Manzie 2007) and
rockets (Goethert 1962). Supersonic combustors can experience choking (Baccarella et al.
2021) from different factors that act at the same time, such as heat release (thermal
choking), mass addition, area blockage and irreversibility produced by shocks, turbulent
dissipations, as well as friction (Riggins et al. 2006). Choking becomes crucial when a
high-speed train travels inside a tube, due to the acceleration of the bypass flow in the
converging part enclosed between the train and the tunnel. In fact, for certain tube and
pod sizes, the Kantrowitz limit (Kantrowitz & Donaldson 1945) imposes a maximum pod
speed after which the flow in the convergent part reaches a choked condition. When the
train speed surpasses this limit, the train starts to behave like a supersonic piston, thereby
causing an increase in the pressure in front of it, which in turn leads to an augmented drag
force with respect to the non-choked working condition (Bizzozero, Sato & Sayed 2021).

Shapiro (1953) theoretically determined that a choking condition is always reached
for three different simple one-dimensional compressible flows (i.e. the flow through a
nozzle, the viscous adiabatic Fanno flow and the diabatic inviscid Rayleigh flow) when
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the Mach number becomes equal to one. Bernstein, Heiser & Hevenor (1967) presented
a new theory based on the compound-compressible nozzle flow. An arbitrary number of
parallel streams are considered inside a de Laval nozzle (propulsion engines often exhaust
different streams of gas side by side through a single nozzle) and it is assumed that the
static pressure can only vary along the nozzle axis, although the other properties can
also change from stream to stream across each nozzle section. By applying the classic
Shapiro theory to each one-dimensional stream, a more general set of results can be
obtained, since this approach can even be applied to flows with different stagnation
properties at the inlet (i.e. multistream non-mixing flows). Bernstein introduced the
compound-choking condition and found that choking is always reached in correspondence
to the minimum cross-section area, but the Mach number of the individual streams are
different from unity if the inlet stagnation conditions of the streams are different. For
example, in a flow involving two streams characterised by different stagnation conditions,
the compound-choking condition is reached if one stream is subsonic and the other is
supersonic. In general, the flow must be compound subsonic in the convergent part of the
nozzle, compound sonic at the throat and compound supersonic in the divergent part of
the nozzle.

Apart from the theoretical treatments, different experimental and numerical works have
been devoted to analysing choking flow conditions. Kubo, Miyazato & Matsuo (2010), on
the basis of the work of Miyazato, Yonamine & Masuda (2005), investigated the effect of
the boundary layer on a convergent nozzle connected to a straight exit pipe. They observed
that, when a convergent nozzle operates below the choking pressure ratio, the free-stream
Mach number, i.e. the one that is not affected by the boundary layer, becomes higher than
one at the straight duct exit, while the actual throat section that presents the main sonic
flow moves backwards. In fact, the boundary layer thickness initially grows along the pipe
but close to the duct extremity becomes thinner. Therefore, a sort of converging–diverging
nozzle that drives the Mach number over unity is obtained (Afroosheh, Vakilimoghaddam
& Paraschivoiu 2017). Lijo, Kim & Setoguchi (2010) observed in numerical simulations
that the boundary layer can be disturbed by the vorticity close to the pipe outlet, which
leads to a reduction in the boundary layer thickness.

Miyazato, Sakamoto & Matsuo (2007), who conducted experimental tests on a
supersonic Fanno flow, showed that, when the choking condition is reached, the normal
shock contemplated by the Fanno theory should be substituted by a pseudo-shock (Crocco
1958). In fact, a simple normal shock pattern rarely occurs as a result of the existence
of a viscous boundary layer, and the shock structure is spread over a series of oblique
shocks. Even though the pseudo-shock still leads to a subsonic flow downstream, the
corresponding Mach number is greater than the one obtained by a conventional normal
shock, and this may be ascribed to the existence of the boundary layer upstream from the
shock, to wall friction and to turbulence mixing loss that occurs inside the pseudo-shock
pattern (Matsuo, Miyazato & Kim 1999). As a consequence, the real Mach number at the
duct exit of a fixed pipe length is higher than the theoretical one, thereby justifying the
reduction in the effective pipe length that leads to the choking condition.

Laurence et al. (2013) numerically analysed the nature of thermal choking in scramjet
engines. They found that a simple Rayleigh-type analysis cannot provide an adequate
prediction of thermal choking, due to the one-dimensional approximation. Numerical
simulations showed that, contrary to the assumption of a uniform flow condition across
the duct, the heat release occurs in a limited portion of the overall cross-sectional area of
a supersonic flow (the ‘local’ thermal choking concept is thus introduced). Therefore, if
the stream tube containing this main combustion region is considered, a more pronounced
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Choking condition of 1-D diabatic flows with wall friction

reduction of the Mach number can be detected than the one predicted by the Rayleigh
flow, where a uniform heat release occurs over the entire pipe. Hence, an earlier onset of
thermal choking can be detected.

There is lack of information in the literature regarding the choking behaviour of complex
flows (when several flow variation factors act simultaneously), compared with simple
flows, and this may be justified by the absence of exact solutions. In the present work, the
choking condition of a diabatic flow with wall friction has been theoretically characterised
by means of the exact solution recently obtained by Ferrari (2021a). The entropy–enthalpy
curves have been interpreted and the physical conditions that lead to choking have been
determined. The procedure is presented for either an initially subsonic flow and an initially
supersonic one.

2. Governing equations

The analytical solution of the one-dimensional steady-state compressible diabatic flow,
with wall friction, of a perfect gas through a constant cross-section area pipe presented
by Ferrari (2021a) was obtained, starting from the generalised Euler equations for a
one-dimensional (1-D) steady flow (Emmons 1958)

dṁ
dx

= 0,

A
dp
dx

+ ṁ
du
dx

= −πDτw,

ṁ
dh0

dx
= πDq̇f ,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

where x represents the spatial coordinate, p and u stand for the cross-sectionally averaged
1-D pressure and velocity, respectively, D is the pipe diameter (A = πD2/4 represents the
pipe cross-section area), ṁ is the mass flow rate, h0 is the stagnation enthalpy (h0 = h +
u2/2, where h is the enthalpy), τw is the wall friction shear stress and q̇f is the convective
heat flux exchanged by the fluid with the walls (q̇f > 0, if the constant heat is supplied to
the fluid by the walls). The proposed solution is explicit (Ferrari 2021a) and is written as
the function x = x(u2/2):

x = − ṁh0
1

q̇f πD
+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C − γ + 1
γ

D
4f

ln

⎡
⎢⎢⎢⎢⎣

√
u2

2
+

√
u2

2
+ γ − 1

γ

q̇f πD2

4f ṁ√
γ − 1

γ

|q̇f |πD2

4f ṁ

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

×

√
u2

2√
u2

2
+ γ − 1

γ

q̇f πD2

4f ṁ

, (2.2)

where γ is the ratio of the constant pressure specific heat (cp) to the constant volume
specific heat (cv), f is the friction coefficient (the wall friction shear stress is expressed
using the Darcy–Weisbach formula in (2.1)) and C is a constant value that can be calculated
if the value of u at x = x1 = 0, namely u1 (the subscript 1 stands for the pipe-inlet
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Figure 1. Entropy–enthalpy curves for an initially subsonic flow with distinct q̇f values. Here, D = 7 mm,
p0

1 = 6 bar, T0
1 = 600 K, Ma1 = 0.4, f = 0.003, γ = 1.4, r = 287 J (kgK)−1.

conditions), is known. Equation (2.2) is valid if q̇f > −(2u2γ f ṁ)/(πD2(γ − 1)) = q̇thr
(therefore q̇thr is a function of u). The 1-D temperature (T) distribution with respect to x
can then be expressed in parametric form, on the basis of (2.2)

T = T0
1 + q̇f πD

ṁcp
x
(

u2

2

)
− u2

2cp
,

x = x
(

u2

2

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.3)

where T0
1 represents the stagnation temperature at the pipe inlet. The density (ρ) vs x

distribution can be determined by means of the steady-state continuity equation, taking
(2.2) into account, and, consequently, the pressure distribution with respect to x, namely
p(x), can be obtained by applying the perfect gas equation of state. Finally, the Mach
number (Ma) vs x distribution can be determined by means of the Ma =

√
(u2/(γ RT))

formula, where r represents the specific gas constant (defined as r = R/M, where R is the
gas constant and M is the gas molar mass). The entropy (s) can be calculated by applying
the s = cp ln(T/T0

1 ) − R ln( p/p0
1) equation of state, where p0

1 stands for the stagnation
pressure at the pipe inlet and s( p0

1, T0
1 ) = 0 J (kgK)−1.

Figures 1 and 2 show the entropy–enthalpy curves (h = cpT) of an initially subsonic
flow and an initially supersonic one, respectively, for the q̇f < 0 case (air is considered,
for which γ = 1.4, r = 287 J (kgK)−1). The pipe-inlet conditions (in terms of Ma1, T0

1
and p0

1) and the friction factor, f , are kept constant, and their values are reported in the
figure captions. Hence, all the curves in each diagram start from the same point, while
the different curves refer to different values of q̇f , which are quoted in the legend (the
effectiveness of the dimensionless parameter Γ , defined as Γ = q̇f πD2/(4f ṁh0

1) will be
clarified in § 6).
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Without a choked flow

q̇f = –12 × 104 W m–2 (Γ = –0.227)

q̇f = –15 × 104 W m–2 (Γ = –0.346)

q̇f = –18 × 104 W m–2 (Γ = –0.416)

Unphysical solution

Figure 2. Entropy–enthalpy curves for an initially supersonic flow with distinct q̇f values. Here, D = 3 cm,
p0

1 = 2 bar, T0
1 = 900 K, Ma1 = 2, f = 0.003, γ = 1.4, r = 287 J (kgK)−1.

The entropy for the cases reported in figures 1 and 2, when q̇f < 0, does not generally
have a monotonic trend, as can be inferred from the entropy equation

T ds = δq + δlw =
(

q̇f πD
ṁ

+ 2f
D

u2
)

dx. (2.4)

The negative heat release, δq, can prevail over δlw during the flow evolution (dx > 0),
which leads to a reduction in entropy, but the opposite happens if |δlw| > |δq|. The q̇f
value at which this change of behaviour occurs can be determined by imposing δq = −δlw,
from which one obtains 0 > q̇f = −(2f ṁu2)/(πD2) > q̇thr. This situation can only exist
in the presence of friction and of heat flux from the fluid to the wall: the term inside
the brackets is always different from zero for Fanno and Rayleigh flows, or for a flow
with wall friction coupled to a heat flux going from the wall to the fluid. When the flow
reaches the velocity in correspondence to which the brackets in (2.4) are equal to zero, the
entropy–enthalpy curve presents a point that features a vertical tangent: if the negative heat
flux initially prevails over the friction work, the point will be a local minimum of entropy
(cf. the curve with q̇f = −6 × 104 W m−2 in figure 1, when h ≈ 500 kJ kg−1). Vice versa,
if the friction work prevails at the duct inlet over the heat flux, the point will be a local
maximum of entropy (cf. the curve with q̇f = −12 × 104 W m−2 in figure 2, the point
at which h ≈ 580 kJ kg−1). The other condition that leads to ds = 0 in (2.4) is given by
dx = 0 (x reaches a local maximum): by calculating the derivative of (2.2), with respect to
u2/2, and by imposing it equal to zero, one obtains

√
u2

2

√
u2

2
+ γ − 1

γ

q̇f πD2

4f ṁ
+ γ − 1

γ

q̇f πD2

4f ṁ
ln

⎡
⎢⎢⎢⎢⎣

√
u2

2
+

√
u2

2
+ γ − 1

γ

q̇f πD2

4f ṁ√
γ − 1

γ

|q̇f |πD2

4f ṁ

⎤
⎥⎥⎥⎥⎦

− C
γ − 1
γ + 1

q̇f πD
ṁ

= 0, (2.5)
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which gives the u values for which dx/d(u2/2) = 0. When (2.5) is satisfied, it has been
proved that the flow reaches a critical state (Ma = 1). According to (2.4), further evolution
beyond such a critical state would lead to a non-physical solution (dx < 0) that can be
disregarded by considering the second law of thermodynamics (in fact dx < 0 gives an
inconsistent sign of ds in (2.4)): figures 1 and 2 show such unphysical solutions plotted as
dashed lines. Therefore, (2.5) identifies a choked flow condition.

As far as the Fanno and the Rayleigh flows are concerned, an analogous result can easily
be obtained by considering how x varies with respect to the flow velocity u. For the Fanno
flow, one obtains (Shapiro 1953)

dx
d(ln u)

= D
4f

2(1 − Ma2)

γ Ma2 , (2.6)

while, for the Rayleigh flow, one obtains (Shapiro 1953)

dx
d(ln u)

= Tcpṁ
q̇f πD

(1 − Ma2). (2.7)

From both (2.6) and (2.7), dx = 0 when Ma = 1 (it can be seen that x reaches a local
maximum) and, hence, a choked flow occurs. All of the different situations that both a
subsonic flow and a supersonic one, characterised by simultaneous wall friction and a
negative constant heat flux, can experience are analysed hereafter.

3. Cooled subsonic flow (q̇f < 0)

Two different cases can be identified, on the basis of the value of q̇f . If one has 0 >

q̇f > q̇thr ∀x, the solution is represented by (2.2), while dx/d(u2/2) ≥ 0 ∀x, and a flow
velocity value, which satisfies (2.5), always exist. Therefore, a subsonic cooled flow with
wall friction can experience the choking if q̇f > q̇∗

thr = −2u2
1γ f ṁ/[(γ − 1)πD2] ≥ q̇thr,

since u increases along the duct (referring to data in figure 1, one has q̇∗
thr ≈ −2.24 ×

106 Wm−2). A particular length Lchok makes the flow reach the Ma2 = 1 condition at the
pipe outlet (subscript 2 refers to the flow condition at the end of the pipe). If the pipe
length, L, exceeds Lchok, the steady solution is obtained by reducing Ma1, and this solution
features a decreased mass flow rate keeping Ma2 = 1. Instead, if q̇f < q̇thr, (2.2) should
be substituted by (Ferrari 2021a)

x = ṁh0
1

|q̇f |πD
+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C + γ + 1
γ

D
4f

arcsin

⎡
⎢⎢⎢⎢⎣

√
u2

2√
γ − 1

γ

|q̇f |πD2

4f ṁ

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

√
u2

2√
γ − 1

γ

|q̇f |πD2

4f ṁ

. (3.1)

In this case, the flow velocity decreases along the duct, in a similar way to the
temperature: the derivative of x, with respect to u2/2, is never null, and the flow therefore
cannot experience choking conditions (like a cooled subsonic Rayleigh flow). In this case,
the physical limit is represented by T2 = 0 K, which is another constraint related to the
second law of thermodynamics through Nernst’s theorem.

4. Cooled supersonic flow (q̇f < 0)

When 0 > q̇f > q̇thr ∀x for an initially supersonic flow, the flow velocity reduces along the
pipe according to (2.2), while, if q̇f < q̇thr < 0 ∀x, the flow behaviour, which follows (3.1),
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1.0

C
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m
)

–10 × 104–12 × 104–14 × 104–16 × 104–18 × 104–20 × 104

q̇∗
thr

Figure 3. Graphical solution for the determination of q̇∗
thr for a supersonic flow. Here, D = 3 cm, p0

1 = 2 bar,
T0

1 = 900 K, Ma1 = 2, f = 0.003, γ = 1.4, r = 287 J (kgK)−1.

is similar to that of a cooled supersonic Rayleigh flow, the speed increases with x, and the
flow will never be choked.

If q̇f > q̇thr ∀x, all the inlet conditions (in p0
1, T0

1 and Ma1 terms) are selected and f , D
and γ are fixed, (2.5) provides the flow velocity (and, thus, according to (2.2), a certain
pipe length) at which choking occurs. The inferior limit of q̇f for which choking can be
experienced, namely q̇∗

thr, is the value of q̇thr that corresponds to Ma2 = 1 and which
makes u2/2 in correspondence to the choking condition approach the value represented by
−(γ − 1)/γ (q̇∗

thrπD2)/(4f ṁ). If such a flow speed is inserted into (2.5), the latter reduces
to C = 0. If one poses x1 = 0, u = u1 and q̇f = q̇∗

thr, from (2.2) and C = 0 one finally
obtains that

C(q̇∗
thr, γ, ṁ, u1, f , D, h0

1) = 0. (4.1)

This relation can then be graphically solved to determine q̇∗
thr for each set of inlet

conditions and fixed values of f , D and γ , as reported in figure 3. The inlet conditions
and the f , D, γ values used for the determination of q̇∗

thr in figure 3, from which one
obtains q̇∗

thr ≈ −16.53 × 104 Wm−2, are the same as those used in figure 2; hence, it
can be verified that the two entropy–enthalpy curves that feature choking in figure 2 are
characterised by q̇f > −16.53 × 104 Wm−2. Therefore, for a supersonic flow, if 0 > q̇f >

q̇∗
thr ∀x, the flow can experience a choking condition for a particular pipe length, Lchok,

otherwise, if q̇f < q̇∗
thr < 0, the choking condition is never reached and the flow velocity

can decrease with x according to (3.1) until the u2
min/2 = −(γ − 1)/γ (q̇thrπD2)/(4f ṁ)

condition is achieved. If the pipe continues beyond the section where umin is reached, the
velocity keeps a constant value equal to umin, according to an incompressible flow, and the
physical limit is represented by T2 = 0 K. When q̇f > q̇∗

thr, a further increase in the pipe
length, with respect to Lchok, makes the steady-state solution admit a normal shock along
the pipe. The shock position depends on the pressure in the downstream environment of
the pipe (pv) and it can be determined by means of an iterative procedure. A first tentative
shock position is selected, the supersonic flow evolution in the piece of duct from the inlet
to the shock is deduced by means of (2.2) and the subsonic flow conditions downstream
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Figure 4. A supersonic flow experiencing a normal shock. Here, D = 3.5 cm, L = 200 cm, p0
1 = 1.5 bar,

T0
1 = 850 K, Ma1 = 1.7, f = 0.002, q̇f = −8 × 104 Wm−2, γ = 1.4, r = 287 J (kgK)−1.

from the shock can be evaluated by means of Rankine–Hugoniot relations. The theoretical
pressure corresponding to the choking condition (p∗

2) can be determined by calculating the
flow properties along this subsonic portion of the pipe: if pv > p∗

2, the pressure at the pipe
outlet, namely p2, must be equal to pv (Ma2 < 1), otherwise it must be p2 = p∗

2 (Ma2 = 1).
It is therefore possible to modify the position of the shock in order to fulfil the pressure
condition at the pipe outlet and, finally, the entire flow evolution can be determined.

The iterative procedure adopted to obtain the analytical solution of a diabatic flow with
wall friction characterised by a normal shock has been validated through a comparison
with the corresponding time asymptotic numerical distributions obtained from the solution
of the generalised Euler partial differential equations (Ferrari, Vento & Zhang 2021;
Ferrari 2021b) with wall friction and convective heat. The partial differential equations
(PDEs) were discretised using a finite volume method, adopting a Godunov technique
that applies a high-resolution upwind discretisation scheme with a MINMOD slope
limiter (Toro 2009). The spatial mesh size, namely �x, was selected to guarantee a
grid independent numerical solution. The time step, �t, was obtained by imposing
an instantaneous Courant number, σ , equal to 0.9, where σ = |u + √

γ RT|max�t/�x
(Hirsch 1988), and |u + √

γ RT|max represents the maximum modulus of the u(x, t) +√
γ RT(x, t) eigenvalue space distribution at each time instant. The boundary conditions

of the numerical problem were assigned in accordance with the characteristic theory for
hyperbolic problems. The analytical solution of the flow velocity and temperature are
plotted in figure 4 with continuous and dashed lines, respectively, while symbols represent
the corresponding 1-D numerical solution. As can be inferred, the results of the analytical
solution are in excellent agreement with the numerical ones. The shock strength for the
case reported in figure 4 is equal to p2/p1= 1.65, therefore, the magnitude is comparable to
those measured during experimental tests on ducts fed by supersonic diffusers (Neumann
& Lustwerk 1949).

5. Heated subsonic and supersonic flows (q̇f > 0)

If a diabatic flow with wall friction is heated, the solution of the flow is always obtained
from (2.2): friction and a heat exchange both increase the flow entropy and, according to
(2.4), T ds can only be null if dx = 0, because the term inside the brackets in (2.4) is always
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Choking condition of 1-D diabatic flows with wall friction

positive. Like Fanno and Rayleigh flows, when the choking condition (dx = 0) is reached,
one obtains Ma2 = 1, which corresponds to the absolute maximum of the entropy in the
enthalpy–entropy curve. A particular pipe length Lchok always makes the flow reach the
Ma2 = 1 choking condition under a certain set of boundary conditions. A subsonic flow
with L > Lchok experiences a steady-state solution with a reduced mass flow rate (Ma1
reduces for fixed Ma2 = 1), while a supersonic flow with L > Lchok presents a normal
shock along the pipe, and the correct position can be determined with the abovementioned
iterative procedure based on the value of pv .

6. Dimensionless representation of the choking condition

The analytical solution given by (2.2) can be expressed by means of the following
dimensionless form (Ferrari 2021a):

f
x

Dh
= − 1

Γ
+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C∗ − ln

⎡
⎢⎢⎣

Cr
√

1 + Γ fx/Dh +
√

Cr2(1 + Γ fx/Dh) + Γ
γ − 1

γ√
|Γ |γ − 1

γ

⎤
⎥⎥⎦

(γ+1)/γ
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× Cr
√

1 + Γ fx/Dh√
Cr2(1 + Γ fx/Dh) + Γ

γ − 1
γ

, (6.1)

where Γ = q̇f πD2/(4f ṁh0
1), Dh is the ratio of cross-sectional area to wetted perimeter

(Dh = D/4 for circular sections), Cr = Ma/

√
Ma2 + 2/(γ − 1) is the Crocco number

and C∗ = Cf /Dh. The dimensionless parameter Γ is a quantitative representation of the
relative importance of the heat transfer and of the wall friction for the flow evolution over
the whole pipe. In particular, when Γ approaches zero, the flow behaviour tends to the
Fanno flow, while, for high absolute values of Γ , the flow behaves like a Rayleigh flow.
Since the Cr (or Ma) vs fx/Dh evolution of a diabatic flow with wall friction only depends
on the value of Γ , for a fixed set of γ and Cr1, the sensitivity of the solution to all the
physical parameters can be interpreted based on how they affect the value of Γ .

Hence, choking for a cooled subsonic flow can be predicted based on the Γ value. In
fact, the condition q̇f > q̇∗

thr = −2u2
1γ f ṁ/[(γ − 1)πD2] can be stated in dimensionless

form as follows (Ma1 < 1):

Γ > Γ ∗ = − γ

(γ − 1)

Ma2
1

Ma2
1 + 2/(γ − 1)

. (6.2)

For the curves reported in figure 1, it is Γ ∗ ≈ −0.109, therefore, the two curves
featuring choking in figure 1 are the ones with Γ = −4.8 × 10−4 and Γ = −2.9 × 10−3.

With reference to a cooled supersonic flow, since the rank of the dimensional problem
is equal to 4, equation (4.1), which is a function of seven parameters, can be reduced to the
following relation between three dimensionless groups (Ma1 > 1):

C∗(Γ ∗, γ, Ma1) = 0. (6.3)

This equation can be graphically solved to obtain the Γ ∗ < 0 threshold above which (Γ >

Γ ∗) a cooled supersonic flow with wall friction can experience the choking condition, for
fixed values of γ and Ma1. For the case in figure 2 one obtains Γ ∗ ≈ −0.3816 and the two
curves with Γ = −0.227 and Γ = −0.346 lead to the choking condition.
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Figure 5. Value of Γ ∗ as a function of Ma1 for different γ values.

Finally, when a flow with wall friction is heated, i.e. Γ > 0, a pipe length for which the
choking condition is reached always exists.

Figure 5 shows the values of Γ ∗ as a function of Ma1 for different γ values (γ = 1.13
for superheated steam, γ = 1.4 for a biatomic perfect gas and γ = 1.67 for a monoatomic
perfect gas); hence, it is possible to predict, for a perfect gas characterised by a certain
Mach number at the pipe inlet and a γ value, whether the cooled flow with wall friction
under investigation can experience choking.

7. Conclusions

The choking condition of 1-D diabatic flows with wall friction has been analysed by means
of analytical solutions. Entropy–enthalpy curves were obtained for a flow characterised by
a heat flux released towards the wall for different values of this heat flux. A monotonic
trend was not always observed for entropy; heat released to the walls can prevail over
the friction work during the evolution of the flow, which leads to a local reduction in
the entropy, otherwise, the entropy increases. The value of the flow velocity at which a
local stationary point of the entropy can occur (ds = 0), due to a balance between the
friction work and heat, is determined from the entropy equation, for both an initially
subsonic flow and a supersonic one. The entropy equation shows another stationary point
when dx/d(u2/2) = 0 (this is a local maximum point for x); the Mach number is equal
to one here and a choked flow occurs. A further evolution beyond this condition would
lead to a non-physical solution, which, according to the second law of thermodynamics,
can be disregarded; in fact, dx < 0 leads to an inconsistency in the sign of ds. If a flow is
initially subsonic, the flow can experience a choking condition if 0 > q̇f > q̇∗

thr, where q̇∗
thr

is the maximum value of q̇thr(u), and a particular pipe length L = Lchok can be identified.
A further increment in the pipe length with respect to Lchok makes the steady-state solution
feature a diminished mass flow rate, which is obtained by reducing Ma1 with respect to
the L = Lchok case. On the other hand, if q̇f < q̇∗

thr < 0, the dx/d(u2/2) = 0 condition is
never reached, and the flow cannot be choked; in this case, the flow evolution is limited by
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Choking condition of 1-D diabatic flows with wall friction

the T2 = 0 K condition (the impossibility of reaching T = 0 K is stated by the second law
of thermodynamics through Nernst’s theorem).

A specific value q̇∗
thr < 0 was also identified for a cooled supersonic flow to predict

whether, for a certain set of boundary and test conditions, the flow could experience
choking or not. This value can be determined as the heat flux that solves C = 0. If
0 > q̇f > q̇∗

thr, the flow can be choked, while if q̇f < q̇∗
thr < 0, the choking condition is

never reached, and the limit for the flow evolution is represented by T2 = 0 K. When
0 > q̇f > q̇∗

thr, and the pipe length exceeds Lchok, the steady-state 1-D solution features
a shock along the duct. The correct axial position of such a shock can be determined
by means of an iterative procedure, based on the pipe downstream environment pressure
value, pv . This procedure was validated successfully by comparing analytical patterns of
the flow velocity and flow temperature with the corresponding outcomes of an accurate
1-D numerical model.

Finally, the case of a heat flux received by the fluid (q̇f > 0) was analysed. Even in this
situation, the choking condition was reached when the Mach number was equal to one,
for both an initially subsonic flow and a supersonic one, and this condition was found to
coincide with the absolute maximum of entropy. If the flow is initially subsonic and the
pipe length exceeds Lchok, the new steady-state solution can only be obtained by lowering
the Mach number at the pipe inlet compared with the value corresponding to L = Lchok
(the mass flow rate therefore diminishes compared with the L = Lchok case), while, for a
supersonic flow, a shock appears in the duct and its position can be determined by means
of the abovementioned iterative procedure, on the basis of the pv value.

The dimensionless form of the exact solution allows the definition of a universal choking
condition for diabatic compressible flows with wall friction. The dimensionless parameter
Γ is a quantitative representation of the relative importance of the heat transfer and
of the wall friction for the flow evolution over the entire pipe. For either a diabatic
subsonic or supersonic flow, the Γ ∗(Ma1, γ ) < 0 value above which (Γ > Γ ∗) the flow
can experience choking was determined.
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