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We revisit viscoelastic Kolmogorov flow to show that the elastic linear instability of an
Oldroyd-B fluid at vanishing Reynolds numbers (Re) found by Boffetta et al. (J. Fluid
Mech., vol. 523, 2005, pp. 161–170) is the same ‘centre-mode’ instability found at much
higher Re by Garg et al. (Phys. Rev. Lett., vol. 121, 2018, 024502) in a pipe and by Khalid
et al. (J. Fluid Mech., vol. 915, 2021, A43) in a channel. In contrast to these wall-bounded
flows, the centre-mode instability exists even when the solvent viscosity vanishes (e.g. it
exists in the upper-convective Maxwell limit with Re = 0). Floquet analysis reveals that the
preferred centre-mode instability almost always has a wavelength twice that of the forcing.
All elastic instabilities give rise to familiar ‘arrowheads’ (Page et al., Phys. Rev. Lett.,
vol. 125, 2020, 154501) which in sufficiently large domains and at sufficient Weissenberg
number (W ) interact chaotically in two dimensions to give elastic turbulence via a bursting
scenario. Finally, it is found that the k−4 scaling of the kinetic energy spectrum seen in this
two-dimensional elastic turbulence is already contained within the component arrowhead
structures.

Key words: viscoelasticity, transition to turbulence

1. Introduction
Polymeric fluids such as plastic melts, oils, gels and paints are widespread across modern
life. The presence of polymers introduces a myriad of phenomena that are not seen in
simpler Newtonian fluids, due to the elasticity in the system. One key example of this is a
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chaotic self-sustaining state known as ‘elastic turbulence’ (ET), which is driven by elastic
effects and consists of dynamics across a range of length scales (Groisman & Steinberg
2000). The addition of just a small amount of polymer into a solvent can cause it to
show signs of turbulence even when inertia is negligible, distinguishing it from Newtonian
turbulence.

Elastic turbulence was first identified in a curvilinear setting (Groisman & Steinberg
2000) in which hoop stresses were important in triggering the transition to turbulence
(Shaqfeh 1996). The later discovery of ET in rectilinear geometries (e.g. experimentally
by Pan et al. (2013) and Shnapp & Steinberg (2022) in channel flow and Bonn et al.
(2011) in pipe flow; and numerically by Berti et al. (2008) and Berti & Boffetta (2010) in
Kolmogorov flow, Foggi Rota et al. (2024) and Lellep, Linkmann & Morozov (2024) in
channel flow and Beneitez, Page & Kerswell (2023) in plane Couette flow) where linear
hoop stress instabilities are absent, demonstrated that other mechanisms can also trigger
ET. Two mechanisms have recently been uncovered.

The first is the ‘centre-mode’ instability which has been identified in channel flow and
pipe flow but is absent in plane Couette flow (Garg et al. 2018; Chaudhary et al. 2021;
Khalid et al. 2021a,b). Despite being entirely elastic in origin (Buza et al. 2022b), the
instability only persists to vanishing Reynolds number in ultra-dilute channel flow (Khalid
et al. 2021b). Significantly, the instability is subcritical in channel and pipe flow, causing
instabilities at Weissenberg numbers W much lower than those needed for linear instability
(Page, Dubief & Kerswell 2020; Wan, Sun & Zhang 2021; Buza et al. 2022b,a; Morozov
2022). Solutions on the upper branch resemble ‘arrowheads’ (Page et al. 2020), and these
arrowhead structures can be identified within elasto-inertial turbulence in two-dimensional
(2-D) channel flow when inertia is not neglected (Dubief et al. 2022; Beneitez et al.
2024a).

The second new mechanism is another linear instability called the ‘polymer diffusive
instability’ (PDI) which has been found very recently in plane Couette, channel and pipe
flows localised at the boundaries (Beneitez et al. 2023; Couchman et al. 2024; Lewy &
Kerswell 2024). It exists in inertialess systems, and requires the presence of polymer stress
diffusion, either explicitly included in the model or implicitly applied by the time-stepping
numerical scheme used. It has been shown to lead to a chaotic state in three-dimensional
channel flow, hinting at its relevance in the transition to wall-bounded ET (Beneitez et al.
2023, 2024b; Foggi Rota et al. 2024).

In light of these developments, it seems worthwhile to revisit viscoelastic Kolmogorov
flow (vKf) which was studied (Boffetta et al. 2005) over a decade before the centre-
mode instability was announced by Garg et al. (2018) in pipe flow (at very different
Re) and nearly two decades before PDI was found (Beneitez et al. 2023). The original
linear analysis by Boffetta et al. (2005) took the form of a multiscale analysis conducted
at low Re (� 6) over multiple forcing wavelengths but did not plot any unstable
eigenmodes. Later numerical simulation work at Re � 1 by Berti et al. (2008) and Berti &
Boffetta (2010), however, clearly shows arrowhead structures indicative of the centre-mode
instability. A recent asymptotic analysis of the centre-mode instability (Kerswell & Page
2024) confirms that it exists in inertialess vKf but does not exclude the presence of other
instabilities. In particular, the key ingredient for PDI may actually be maxima of the base
shear, which vKf has, rather than boundaries per se, which it does not (Lewy & Kerswell
2024). Our objectives are therefore to: (i) carry out a full investigation of the linear stability
problem including over multiple forcing wavelengths using Floquet analysis; (ii) clarify
whether PDI exists or indeed any other elastic or elasto-inertial instability occurs beyond
the known Newtonian instability; and (iii) then, armed with this information, explore the
transition scenarios possible.
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The structure of this paper is as follows. In § 2 the governing equations to be used
are introduced, the one-dimensional base state identified and the associated linearised
equations derived. The results of solving the linear instability eigenvalue problem are then
discussed in § 3, where the centre-mode instability can be identified and PDI is shown to be
absent. The centre mode is found to exist across a wide range of parameters in this system
including an inertialess upper-convected Maxwell (UCM) fluid. We identify perturbations
with a period that is twice the forcing periodicity to be the linearly most unstable using
Floquet analysis. In addition, we show that the flow relaminarises at sufficiently large W
for a fixed geometry. We then move on to nonlinear behaviour, identifying the centre mode
as subcritical in § 4, as well as plotting a range of stable exact coherent structures. Section 5
considers ET, suggesting that a bifurcation of the centre-mode instability is the cause of
this chaos, and shows that the onset of turbulence is marked by the presence of bursting
solutions. In addition, we see that the power spectra and energy budget of a simple periodic
arrowhead solution are similar to those of ET. A final discussion is given in § 6.

2. Formulation
We consider 2-D Kolmogorov flow of an Oldroyd-B fluid with forcing in the x̂ direction
that varies periodically with ŷ in the perpendicular direction. The non-dimensionalised
equations relating the velocity u, the polymeric stress tensor T, the conformation tensor C
and the pressure p are

Re

(
∂u
∂t

+ u · ∇u
)

= −∇ p + (1 − β)∇ · T + β∇2u +
(

1 + εβW

1 + εW

)
cos y x̂, (2.1)

∂C
∂t

+ u · ∇C − ∇uT · C − C · ∇u + T = ε∇2C, (2.2)

∇ · u = 0 (2.3)
and

T = 1
W

(C − I). (2.4)

We consider a domain of size [0, Lx ] × [0, 2πn], where Lx is the horizontal extent and
the integer n is the number of forcing wavelengths applied to the system (see figure 1).
Periodic boundary conditions are imposed in both directions, so, in particular, flows with
a wavelength n times longer than the forcing are permitted. All variables are scaled using
the laminar peak velocity U0, the total viscosity μ = μs + μp, which is the sum of the
solvent and polymer viscosities, respectively, and the length scale L0/2π , where L0 is
the forcing wavelength. The coefficient of the forcing term in (2.1) is to ensure that the
resulting base velocity has unit amplitude.

These equations use dimensionless parameters:

Re := ρU0L0

2πμ
, W := 2πU0λ

L0
, (2.5)

β := μs

μ
, ε := 2πδ

U0L0
, (2.6)
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(0, 0)
2π

2πn

y

x

Lx

Figure 1. The Kolmogorov flow set-up with forcing wavelength 2π . Perturbations have wavelength 2πn in the
ŷ direction (where n is an integer) and Lx in the x̂ direction.

where ρ is the density, λ is the relaxation time and δ is the polymer stress diffusion
coefficient. It will be useful to define the elasticity number:

E := W

Re
(2.7)

which is the measure of elasticity used to introduce the centre-mode instability (Garg et al.
2018; Khalid et al. 2021a; Chaudhary et al. 2021). The Oldroyd-B model reduces to the
UCM when the concentration β = 0.

2.1. Symmetries
The above system has three types of symmetries associated with it, like in the Newtonian
case (Chandler & Kerswell 2013). The shift-reflect symmetry maps

S[u, v, Txx , Txy, Tyy, p](x, y) → [−u, v, Txx , −Txy, Tyy, p](−x, y + π), (2.8)

where u = ux̂ + vŷ and T = Txx x̂x̂ + Txy(x̂ŷ + ŷx̂) + Tyy ŷŷ. A reflection symmetry maps

R[u, v, Txx , Txy, Tyy, p](x, y) → [u, −v, Txx , −Txy, Tyy, p](x, 2π − y). (2.9)

In addition to these two discrete symmetries, there is the continuous translational
symmetry

Ts[u, v, Txx , Txy, Tyy, p](x, y) → [u, v, Txx , Txy, Tyy, p](x + s, y) (2.10)

for s ∈ [0, Lx ). Every solution is therefore associated with a set of solutions generated
via these symmetries, and in particular the shift-reflect symmetry means that any solution
moving in the positive x̂ direction has an associated solution moving in the negative x̂
direction.

2.2. Base flow
There is a one-dimensional base flow which depends only on y which is

U = cos y x̂, P = 0, (2.11)

Txx = W

1 + εW

(
1 − cos 2y

1 + 4εW

)
, Txy = −1

1 + εW
sin y and Tyy = 0. (2.12)
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2.3. Linearising
To examine the linear stability of the base state, small perturbations proportional to
eik(x−ct) of all dependent variables are considered where k ∈R is the wavenumber, and
c ∈C is an eigenvalue to be found. This results in variables of the form

u = U(y) +
[

u′(y)

v′(y)

]
eik(x−ct), p = p′(y)eik(x−ct)

T = T(y) +
[

τ ′
xx (y) τ ′

xy(y)

τ ′
xy(y) τ ′

yy(y)

]
eik(x−ct), (2.13)

where a prime denotes a perturbative quantity that, due to the boundary conditions, must
be 2πn periodic in y. The imaginary part of the eigenvalue, ci , determines the linear
stability of the system, with σ := kci the growth rate. To reduce slightly the linearised
equations which determine the evolution of the perturbations, we take the curl of (2.1) to
eliminate the pressure, and use (2.4) to write all C in terms of T. Equations (2.1)–(2.4)
then become

ik Re
[
(U − c)

(
D2 − k2)− D2U

]
v′ = − (1 − β)

[− k2 D
(
τ ′

xx − τ ′
yy

)+ ik
(
D2 + k2)τ ′

xy

]
+ β

(
D2 − k2)2v′, (2.14)

[
ik(U − c) + 1

W
− ε

(
D2 − k2)]τ ′

xx = −v′DTxx + 2ikTxx u′ + 2Txy Du′ + 2τ ′
xy DU

+ 2ik

W
u′, (2.15)

[
ik(U − c) + 1

W
− ε

(
D2 − k2)]τ ′

xy = −v′DTxy + ikTxxv
′ + τ ′

yy DU

+ 1
W

(
Du′ + ikv′), (2.16)

[
ik(U − c) + 1

W
− ε

(
D2 − k2)]τ ′

yy = 2ikTxyv
′ + 2

W
Dv′, (2.17)

iku′ + Dv′ = 0, (2.18)

where D := d/dy. The costly procedure of solving this eigenvalue problem over the whole
domain y ∈ [0, 2πn] can be avoided by applying Floquet analysis just across one forcing
wavelength y ∈ [0, 2π] and including a modulation parameter μ to compensate. A mode
with Floquet exponent μ has perturbations of the form φ′ = φ̂(y)eiμy , where φ′ is the
perturbation of any flow variable and φ̂ is 2π periodic. The resultant perturbation has
periodicity 2π/μ when 1/μ ∈N, as all base flow quantities have the same periodicity
as the forcing. Values of 1/μ which factor into n then satisfy the periodic boundary
conditions over the large domain of y ∈ [0, 2πn].

3. Linear instability
In this section, the linear instability seen in vKf by Boffetta et al. (2005) is identified as
the centre-mode instability (Garg et al. 2018; Chaudhary et al. 2021; Khalid et al. 2021a).
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Figure 2. The eigenvalue spectrum when E = 81, Re = 2, β = 0.95, ε = 0, μ = 0 and k = 0.2, with resolution
Ny = 300 (blue circles) and Ny = 400 (red dots), where Ny is the number of Chebyshev modes considered
in the eigenvalue problem. The centre mode has unstable eigenvalues at c = ±1.01016736 + 0.05925964i ,
while a stable continuous spectrum is seen with ci < 0. Insets show the polymer stress trace (colours) and
streamfunction (contours) of an eigenmode φ, alongside symmetries of φ. While reflections R and translations
Ts leave the eigenvalue c = cr + ici unchanged, shift-reflections S produce modes with eigenvalue −cr + ici
that travel in the opposite direction.

We begin by considering vKf when the flow has the same spatial periodicity as the forcing
(i.e. n = 1), and see that: (i) the instability scales with E like the centre mode in a channel
when E � 1 and (ii) the eigenfunction resembles the centre mode. We then consider
E � 1, as well as how increasing n, the number of forcing wavelengths, affects the
instability. The centre-mode instability is not confined to dilute vKf, but is found across
all β ∈ [0, 1), even existing for a UCM fluid with β = 0. Curiously, the flow is also found
to restabilise as W → ∞ within a geometry of fixed streamwise extent. All numerics were
computed using spectral solvers from the open-source software Dedalus (Burns et al.
2020). Our code was verified by (i) reproducing eigenvalues from Kerswell & Page (2024)
where the Floquet exponent was μ = 0 and (ii) ensuring growth rates obtained using our
eigenvalue solver agree with those obtained using our timestepper code (checked when
Floquet exponent μ = 0, 1/2).

3.1. Harmonic disturbances (n = 1)
Kerswell & Page (2024) show that there is an unstable eigenfunction when n = 1 in ultra-
dilute vKf that resembles the centre-mode eigenfunction in a channel. Here we go a step
further and show that the (Re, k) neutral curves show the distinctive centre-mode loops
seen in channel flow (as shown in figure 10 of Khalid et al. (2021a)), and they follow the
same scaling relation for E � 1. However, we also show that the behaviour for large E is
substantially different in this unbounded flow from that of the centre mode in channel flow,
as the instability is not suppressed as E → ∞. Instead, the instability exists in inertialess
vKf.

To consider the system with n = 1 we take the linearised system with Floquet exponent
μ = 0. We plot an example eigenvalue spectrum in figure 2, showing how an eigenmode
and its eigenvalue c = cr + ici are affected by the symmetries discussed in § 2.1. The shift-
reflect symmetry S generates a new eigenmode with eigenvalue c = −cr + ici that travels
in the opposite direction. The symmetries of the centre mode in the n = 1 case make the
eigenmode invariant under reflection R. Lastly, translational symmetries Ts correspond to
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Figure 3. (a−d) The centre-mode neutral curves in the (Re, k) plane for β = 0.95, ε = 0, μ = 0 and (a, b)

E = 0.3, 0.6, 1.0, 1.8, 3.1, 5.5, 9.5 (light to dark) and (c, d) E = 81, 107, 142, 187, 272, 359, 475 (light to
dark). Note that (b, d) are scaled versions of (a, c), respectively, demonstrating that for small E , Recrit ∼
E−3/2, while for large E , Recrit ∼ E−1. We plot eigenfunctions with k = 0.2 and (e) E = 3.1, Re = 300,
(f ) E = 81, Re = 2 and (g) E = 81, Re = 20. These correspond to the instability in the low-E regime, the
main loop in the high-E regime and the secondary loop in the high-E regime, respectively. Colours show the
polymer stress trace field, while contours show the streamfunction. This figure demonstrates that the elastic
instability seen at high β and low E is the centre mode, and that a different scaling regime exists at high E .

a phase shift of the mode. The stability of all such symmetries is the same, as the growth
rate is unchanged under all operators.

Figures 3(a) and 3(b) show unscaled and scaled (Re, k) neutral curves for small values
of E . The neutral curves take the form of loops at small E , as is the case in channel
flow. For these loops, Recrit ∼ E−3/2 and kcrit ∼ E−1/2, where Recrit denotes the smallest
Reynolds number on the neutral curve and kcrit denotes the wavenumber at that point.
These match the scalings for the centre mode in channel flow (Khalid et al. 2021a). An
eigenfunction in this regime is plotted in figure 3(e), resembling that of the channel flow
centre mode as seen in figure 5 of Khalid et al. (2021a). The scaling relation and the
eigenfunction both suggest that this instability is the centre mode.

Figures 3(c) and 3(d) show the neutral curves for large E . The behaviour here is
substantially different from that of channel and pipe flow, where at sufficiently large E
the centre mode is suppressed (Khalid et al. 2021a; Chaudhary et al. 2021). Here in
vKf, the instability exists at all E (only up to E = 475 is shown), and we see that the
loops have Recrit ∼ E−1 and kcrit ∼ E0 as E → ∞. Equivalently one can consider the
scalings in terms of Re and W to obtain that as Re → 0 for fixed W , Wcrit ∼ Re0 and
kcrit ∼ Re0, meaning these critical parameters are independent of Re. While Recrit and
kcrit are on a loop with these scalings, a secondary loop also exists at larger Re. These
secondary loops collapse as E increases. It is worth pointing out that in this regime,
the largest streamwise wavenumber at which instability is seen is k ≈ 0.9, and hence no
linear instability is seen when simulating a box with Lx = 2π and n = 1, as is true in the
Newtonian case (Marchioro 1986). The eigenfunctions for large E are seen in figures 3(f )
and 3(g), showing the main loop and the secondary loop, respectively. The eigenfunctions
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k

Figure 4. The centre-mode neutral curves in the (Re, k) plane for β = 0.95, ε = 0, μ = 0 and
E = 9.5, 17, 41, 81 (dark to light). Secondary loops exist for the E = 41, 81 curves. This shows that the neutral
curve loops from the low-E regime (E < 9.5) can be continuously tracked into the main loops in the high-E
regime (E > 81).

on the secondary loop visually resemble that of the main loop, though activity is more
spread out across the flow and less clearly localised to y = π . Both visibly resemble the
centre-mode eigenfunction in the low-E regime in figure 3(e). To further demonstrate that
the high-E instabilities are the centre mode, figure 4 shows that the neutral curve loops
from the high-E regime continuously track into the loops from the low-E regime. This
means that the centre mode is responsible for the instability across all values of E .

The neutral curves in the (Re, E) and (Re, W ) planes are shown in figure 5. These
demonstrate that the centre-mode instability is linearly unstable at vanishing Re in vKf
over a range of concentrations β. This contrasts with the cases of inertialess pipe flow,
which is linearly stable (Chaudhary et al. 2021), and inertialess channel flow, which is
only linearly unstable for ultra-dilute fluids with β > 0.9905 (Khalid et al. 2021a,b).

The neutral curves also show a second instability, which exists at vanishing W and is
inertial in nature. This instability is seen in Newtonian Kolmogorov flow, with a purely
imaginary eigenvalue c (Meshalkin & Sinai 1961) and we identify an instability as inertial
here if it similarly has zero frequency. This instability is suppressed by elasticity, with
there being a maximum E at which it exists.

3.2. The absence of PDI
The linear stability analysis in § 3.1 was performed with ε = 0, and hence PDI is absent.
However, to run simulations, introducing a finite ε could potentially introduce PDI, as is
the case for wall-bounded flows. We check that PDI is not in this system by considering
how the neutral curves in the (W, k) plane are affected by introducing finite ε = 10−3

in figure 6. Wavenumbers up to k = 100 were considered. The centre-mode loops that
exists with vanishing ε are adjusted slightly, but no new modes of instability are identified,
meaning PDI was not found in vKf. This was true when β = 0.95, meaning the simulations
in § 4 and 5 do not contain PDI. In addition, we checked for PDI in a more concentrated
fluid (β = 0.2), where PDI was demonstrated to be particularly unstable in bounded flows
(Lewy & Kerswell 2024). The lack of PDI in Kolmogorov flow is consistent with Lewy
& Kerswell (2024) which considers β � 1 and suggests that PDI requires boundaries to
exist in such a fluid. This finding confirms that PDI is not necessarily seeded at regions
of maximal base shear when polymer stress diffusion is present, as was the case in the
wall-bounded rectilinear flows.
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Figure 5. The neutral curves across k ∈R in the (a) (Re, E) and (b) (Re, W ) planes when ε = 0, μ = 0 and
β = 0.5, 0.8, 0.9, 0.95 (light to dark). This demonstrates that the centre mode exists in the inertialess system
across a range of β. Eigenfunctions for parameters on the neutral curves are shown in (c) when (β, Re, W, k) =
(0.5, 0.5, 5.78, 0.47) (blue circle) and (d) when (β, Re, W, k) = (0.95, 0.5, 28.7, 0.60) (black square). Colours
show the polymer stress trace field, while contours show the streamfunction.
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Figure 6. The neutral curves for non-zero-frequency modes in the (Re, k) plane when μ = 0, ε = 0 (blue solid
lines) and finite ε = 10−3 (red dotted lines) when (a) β = 0.95 and E = 8, 16, 32, 256, 512 (light to dark) and
(b) β = 0.2 and E = 0.5, 1, 2, 8, 64, 256 (light to dark). Wavenumbers as high as k = 100 were considered.
These demonstrate that PDI was not identified in Kolmogorov flow, and that finite ε generally stabilises the
centre-mode instability.

3.3. Modulated disturbances (n > 1)
In this section we consider linear stability when n > 1 by considering modes with Floquet
exponents μ satisfying 1/μ ∈N. Figure 7 shows the most unstable Floquet modes in the
(Re, W ) plane for a viscosity ratio of β = 0.95. All wavenumbers k ∈R are considered, as
well as the first seven Floquet modes in figures 7(a) and 7(b), which focus on the behaviour
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Figure 7. (a) The most unstable Floquet modes in the (Re, W ) plane for β = 0.95, with ε = 0 and
instabilities over wavenumbers k ∈R are considered, with colour denoting which Floquet mode is
most unstable. Colours correspond to μ = 0 (blue), μ = 1/2 (orange), μ = 1/3 (green), μ = 1/4 (cyan),
μ = 1/5 (red), μ = 1/6 (brown), μ = 1/7 (pink). (b) The same on a log scale. Eigenfunctions are
plotted with parameters (c) (W, Re, k, μ) = (1, 10, 0.5, 0), (d) (W, Re, k, μ) = (20, 0.5, 0.5, 1/2) and
(e) (W, Re, k, μ) = (600, 20, 0.01, 1/7). ( f ) The maximum growth rate σ ∗ of each Floquet mode (same
colours as in [a]) across all k ∈R for Re = 0, β = 0.95 and ε = 0 as W varies. These plots demonstrate that
all elastic instabilities are the centre mode, which is generally most unstable when μ = 1/2, while the inertial
instability is most unstable when μ = 0.

of the system at small and large (Re, W ), respectively. The orange regions demonstrate
that it is the μ = 1/2 Floquet mode that generally makes the centre-mode instability most
unstable, corresponding to perturbations with wavelengths of 4π in the y direction or
double the forcing wavelength. These are therefore ‘subharmonic’ disturbances as they
have half the spatial frequency of the forcing. The blue region shows that the inertial
(Newtonian) instability is most unstable when μ = 0, when there is no modulation and
perturbations have the same wavelength as the forcing, i.e. ‘harmonic’ disturbances. The
neutral curve in figure 7(a) resembles figure 1 in Boffetta et al. (2005), which considered
the stability of a system equivalent to n = 64 and k ∈N/64. They identified the distinct
elastic and inertial instabilities, but our plot allows us to in addition identify the most
unstable wavelength of perturbation. It is generally the subharmonic that determines the
linear stability of the centre mode. The neutral curves of figure 7(b) are zoomed out and
use a log scaling which reveals that there is a part of the parameter space where even
lower-order harmonics are most unstable.
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Figure 8. (a) The maximum growth rate σ ∗ and most unstable wavenumber k∗ as β varies when Re = 0,
ε = 0, μ = 0 and W = 40, 80, 160 (light to dark). Asymptotics derived in Appendix A are shown by the black
dotted lines. Most unstable eigenfunctions are shown for W = 160 and (b) β = 0 and (c) β = 0.95 with colours
showing the polymer stress trace field and contours showing the streamfunction. (d) Plots of σ ∗ and k∗ in the
inertialess UCM fluid for various Floquet modes with β = 0, Re = 0, ε = 0 and μ = 0, 1/2, 1/3, . . . , 1/7 with
colours as in figure 7. The asymptotic limits as W → ∞ are shown by horizontal black dashed lines. When
μ = 0, Wσ ∗ → 0.784 and W k∗ → 1.526, while when μ > 0, Wσ ∗ → 1.139 and W k∗ → 1.764. The centre
mode is therefore generic across β, existing even in the UCM fluid, and k∗ ∼ W −1 and σ ∗ ∼ W −1.

The μ = 0 inertial instability is shown in figure 7(c). Its trace field is antisymmetric
about lines of peak base velocity, and it has zero frequency. The μ = 1/2 centre mode is
shown in figure 7(d), and is clearly a modulated version of the μ = 0 centre mode shown
in figure 5(d). Similarly, we plot the preferred mode when lower-order harmonics of the
centre mode are most unstable in figure 7(e). This suggests that all elastic instabilities are
centre modes for all Floquet modes, not just when μ = 0.

The dependence of the centre-mode growth rate on μ is shown in figure 7(f ). We
consider vanishing inertia (Re = 0), and consider the maximum growth rate across all
wavenumbers, σ ∗ := maxk∈R σ , as W varies for fixed μ (k∗ is defined as the most unstable
wavenumber). We see that the harmonic disturbances (μ = 0) are the most stable of
those plotted. The subharmonic with modulation μ = 1/2 is the most unstable, and then
subsequent modulations increase in stability.

3.4. The inertialess centre mode in the UCM fluid
So far we have mainly limited our results to the specific choice of β = 0.95. At this dilute
concentration, the elastic instabilities in vKf for both n = 1 and n > 1 have been identified
as the centre mode. We now demonstrate that the centre mode exists not only when β ∼ 1,
but for all β. It even exists when β = 0 and the model reduces to the UCM fluid.

We plot in figure 8(a) the maximum growth rate σ ∗ and the most unstable wavenumber
k∗ of the inertialess instability as β varies for the n = 1 system. This shows that there is
a smooth continuation of the centre mode at β = 0.95 to the instability seen at lower β,
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suggesting that the instability seen at low β is also the centre mode. Eigenfunctions are
plotted at both β = 0 and β = 0.95 in figures 8(b) and 8(c) and clearly resemble each other,
again suggesting that the instability at β = 0 is the centre mode. The centre mode is not
suppressed by low β in vKf.

Figure 8(d) shows the behaviour of the various Floquet modes in the inertialess UCM
fluid. As W → ∞, all harmonics tend to the same growth rate that is more unstable than
the μ = 0 mode. Of these harmonics, the μ = 1/2 mode is the most unstable, as was
the case when β = 0.95 with vanishing inertia (shown in figure 7g). The subharmonic is
therefore most unstable for both high and low β.

These plots also demonstrate that the correct asymptotic scalings for the inertialess
centre mode are k∗ ∼ W −1 and σ ∗ ∼ W −1 as W → ∞. This is shown across all β

when μ = 0 (see figure 8a) and various μ when β = 0 (see figure 8d). The equations
governing the inertialess asymptotic limit of W → ∞ are identified in Appendix A,
and these asymptotics are plotted in both figures 8(a) and 8(d), showing their validity.
The centre mode is therefore present in a very simple fluid when Re = β = ε = 0 and
W → ∞, demonstrating that while elasticity is required for the instability to exist, inertia,
viscosity and polymer diffusion are not.

3.5. Relaminarisation in the W → ∞ limit
Returning to the Oldroyd-B model, the flow becomes linearly stable as W → ∞ for any
fixed domain length. This is due to the centre mode only being unstable to a pocket of
wavenumbers that scale like k ∼ W −1, as suggested by the asymptotic analysis performed
in Appendix A. Hence, at sufficiently large W , all unstable wavelengths are longer than
the channel itself, meaning the system is not susceptible to the centre-mode instability.

It will be useful to define Lmin
x := 2π/kmax , which is the shortest domain in which

instability can be found, i.e. the system is stable when Lx < Lmin
x . When Re = 0, figure 9

demonstrates that Lmin
x ∼ W , and hence that as W → ∞, any finite Lx eventually becomes

stable. Figure 9 also shows that the order in which the Floquet modes stabilise as
Lx/W → 0 depends on the concentration β. This limit is achieved for fixed Lx as
W → ∞. In this limit, when β > 0.62 the μ = 1/2 mode stabilises before the μ = 0
mode, while the opposite is true for β < 0.62. This is consistent with figure 7(f )
in which β = 0.95, and the μ = 1/2 mode stabilises before the μ = 0 mode for negligible
inertia as W → ∞. These results remain qualitatively true when inertia is introduced, with
Lmin

x ∼ W when Re = 1, 10 (not shown). Relaminarisation therefore occurs as W → ∞
both with and without inertia.

4. Subcriticality and exact coherent structures
Subcritical behaviour can be seen in the centre mode in a channel (Buza et al. 2022a,b)
and a pipe (Wan et al. 2021). In this section we demonstrate that the same is also true
in Kolmogorov flow. We identify the structures on the upper branch for both n = 1 and
n = 2, and find other stable exact coherent structures on a number of solution branches.
The presence of an elastic travelling wave was first described by Berti & Boffetta (2010) in
a system equivalent to Lx = L y = 8π (i.e. n = 4), and we expand upon this by identifying
a number of distinct elastic waves and equilibria in a simpler system with Lx = L y = 4π

(i.e. n = 2). No chaotic behaviour was identified here, and so while our choice of
parameters produces a number of different solutions, it is simple to track the solutions
as we change W . We will later increase Lx from this value, which allows the system to
become chaotic.
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Figure 9. The minimum Lx at which laminar flow becomes unstable to perturbations with μ = 0 (blue) or
μ = 1/2 (orange), when Re = 0, ε = 0 and W = 50, 100, 200, 500, 1000 (light to dark). Black dashed lines
correspond to the asymptotic limit described in Appendix A, and they cross over at β = 0.62. The only region
which is stable as W → ∞ is shaded in red. This confirms that as W → ∞, Lmin

x ∼ W , meaning only very
long channels are linearly unstable for large W . For β < 0.62, the μ = 0 harmonic stabilises before the μ = 1/2
subharmonic as Lx/W → 0, while the opposite is true when β > 0.62.
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Figure 10. Bifurcation plots for β = 0.95, Re = 0.5, ε = 10−3 and Lx = 4π . These show the deviation of the
volume-averaged (a) trace Σ and (b) kinetic energy K from the laminar state, which has trace and kinetic
energy Σ0 and K0. We show stable solutions in both the n = 2 system and the n = 1 system. Blue corresponds
to travelling-wave solutions, red to equilibria and green to limit cycles. The polymer stress trace of the solution
at each of the six symbols are shown in figure 12. Bifurcation points (BP) due to the linear instability are shown
with black crosses at W = 33, 86 when n = 1 and black pluses at W = 15, 76 when n = 2.

We consider the bifurcation plot of the centre-mode instability in figure 10. To produce
this plot we begin with laminar flow at a value of W that is linearly unstable, and then
add white noise and allow the system to reach its stable final state. The value of W is then
adiabatically decreased until a saddle node is identified. From this saddle node, W is then
increased adiabatically, and the resultant stable branch of the bifurcation diagram is plotted
in figure 10. This procedure was followed for both n = 1 and n = 2. The solutions on the
n = 1 branch can be used to construct a solution branch when n = 2 by repeating all fields
twice in the y direction; however, the stability of this constructed branch may be different
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Figure 11. The most unstable Floquet modes in the (Re, W ) plane for β = 0.95, ε = 10−3, with instabilities
over wavenumbers k ∈N/2 considered and Floquet modes μ = 0 (blue) and μ = 1/2 (orange). The solid
colours therefore show the linear stability of a simulation with n = 2 and Lx = 4π . The orange hatched region
corresponds to areas in which the centre mode in this geometry has been shown to be subcritical. For Re << 1,
we see that the system is unstable to finite-amplitude perturbations at W ≈ 7 but to infinitesimal perturbations
at W ≈ 15.

in the n = 2 system. In fact, for W = 20, 40, 60 the solutions constructed from the n = 1
branch are unstable in the n = 2 system (not shown). We plot the mean kinetic energy
K = 〈|u|2〉V /2 and the mean trace Σ = 〈τxx + τyy〉V of the solution branches, where 〈·〉V
denotes an average over the domain. Both metrics are normalised using their values in the
laminar flow, Σ0 and K0. This bifurcation plot consists of a number of different branches,
all of which are either laminar (black), travelling waves (blue), equilibria (red) or periodic
orbits (green). For the chosen parameters of Lx = 4π with n = 1 or n = 2, no chaotic
behaviour was identified.

This plot shows that there is a saddle-node bifurcation marking the smallest W at which
the system is unstable to finite-amplitude disturbances, demonstrating subcriticality. We
illustrate in figure 11 how this impacts the stability of vKf by plotting a neutral curve for the
system that shows regions of linear instability, as well as a hatched region corresponding
to where the system is subcritical. This shows that the elastic system becomes unstable
to finite-amplitude perturbations at W ≈ 7, and becomes linearly unstable at W ≈ 15.
The bifurcation plot in figure 10 shows that at large W , the solutions eventually merge
with the laminar state, rather than sustaining any instability. This is consistent with the
relaminarisation discussed in § 3.5, which showed how the laminar state is linearly stable
for sufficiently large W .

The trace fields of these solution branches at W = 20, 40, 60 (all marked by symbols on
the bifurcation diagram) are shown on the left-hand side of figure 12. While these solution
branches all represent an attractor of the system, we note that they are not generically
the final state for any initial condition. We plot the final states reached when the system
is initialised with laminar flow and low-amplitude white noise on the right-hand side of
figure 12. This protocol produced final states that were different from the solutions found in
the bifurcation plot at W = 20, 40, 60 for n = 2 and at W = 20, 40 for n = 1. This suggests
that the basin of attraction for the identified branches in figure 10 is small. In all cases, a
resolution of at least 64 modes per 2π in either x or y direction was used. Doubling the
resolution in each direction did not qualitatively change any of the final states of figure 12.

Many of the identified exact coherent structures share the arrowhead as a common
feature, as was the case with the elastic wave found in Berti & Boffetta (2010). Generally
this arrowhead moves in the direction in which the arrow points; however, this is not always

1007 A55-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

11
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.119


Journal of Fluid Mechanics

0

π

2π

2π 4π

0

y

y

x
0 2π 4π

x

0 2π

2π

4π
0

2π

4π

0

yW = 20

yW = 40

yW = 60

W = 20

W = 40

W = 60

n = 1

2π

4π

4π
x

0 2π 4π
x

y

π

2π

0

c = –0.134 c = 0.000

c = –0.076 c = –0.442

c = –0.521

c = 0.147 RPO

c = 0.215 c = 0.572

c = 0.000 c = 0.530

c = –0.521

Solutions on branches White noise initialised

π

2π

n = 2

Figure 12. The trace Txx + Tyy of final states for β = 0.95, Re = 0.5, ε = 10−3 and n = 1, 2. The left-hand
column corresponds to solutions on the branches shown in the bifurcation plot in figure 10, while the right-
hand column shows final states reached when the system is initialised with laminar flow and low-amplitude
white noise. The wave speeds c of all but one solution is shown, identifying which states are equilibria or
travelling waves. For n = 2, W = 20 the white-noise-initialised solution is a relative periodic orbit (RPO), and
so has no wave speed.

true – the travelling waves on the solution branch seen when n = 2 for W = 20 and W = 40
move in the opposite direction to what one might expect.

5. Elastic turbulence
So far we have examined a number of solutions in the Kolmogorov system when
Lx = L y = 4π , none of which were chaotic. We now change our domain length Lx to
see how this can introduce chaos into the system. Elastic turbulence has been identified in
vKf in systems equivalent to L y = 8π (Berti et al. 2008), and on increasing W the final
state can transition from a travelling wave to a periodic state and then onto something
chaotic (Berti & Boffetta 2010). Berti et al. (2008) comment on the presence of ‘wavy
patterns’ in the turbulence that are made up of ‘filamental structures’. Our results indicate
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Figure 13. (a) State diagram of the final states identified when β = 0.95, Re = 0.5, ε = 10−3 and L y = 4π .
For each parameter setting, we simulated the fluid initialised with random finite-amplitude disturbances
(see main text for the protocol). States seen are laminar (blue circle), travelling waves (green square), periodic
orbit (yellow cross), quasi-periodic orbit (black triangle) and chaos (purple star). Dashed black line shows
the smallest Lx at which linear instability exists. On the low-shear boundary, it is the μ = 1/2 Floquet mode
that is marginally linearly unstable, while on the high-shear boundary it is the μ = 0 mode. Dashed red line
shows the boundary of where the flow is known to be subcritical when Lx = 4π as per figure 10. (b) All
distinct non-laminar final states identified, marked with a symbol denoting the type of state as in (a). This plot
demonstrates that instabilities have only been identified close to regions of parameter space in which the centre
mode is linearly unstable, and many of these states contain an arrowhead. This suggests all non-laminar states
originate from the centre-mode linear instability.

that the centre-mode instability is responsible for this turbulence with these structures
corresponding to unstable arrowheads.

5.1. The centre mode is responsible for transition to turbulence
Motivated by the presence of the centre-mode arrowhead in many of the coherent
structures in § 4, we now demonstrate that the centre-mode instability is the cause of
turbulence in this system. In fact, in the absence of any other elastic instabilities, all the
dynamics ultimately comes from the centre-mode instability.

We first produce a state diagram in figure 13(a), which shows what types of final
states are reached when simulations are initialised with finite-amplitude disturbances as
the Weissenberg number W and channel length Lx are varied. Each state was found by
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taking the laminar base flow and adding a random perturbation to the first 50 % of the
Fourier modes in fields u, Txx and Txy , with an amplitude of 10 % of the mean laminar
base field. All remaining initial fields were constructed from these. We simulated each
pair of parameters (W , Lx ) five times, and identify the final states as either laminar (blue
circle), a travelling wave (green square), a periodic orbit (yellow cross), a quasi-periodic
orbit (black triangle) or chaotic (purple star) using the procedure discussed in Appendix B.
In regions of linear stability, this protocol produced exclusively laminar solutions, so to
demonstrate subcriticality we simulated an additional 10 runs as well. In these, random
perturbations were added to the first 5 % of Fourier modes with an amplitude of 20 % of
the laminar base field for five runs, and an amplitude of 10 % of the laminar base field was
set in the other five. This focus on longer-wavelength perturbations was sufficient to excite
subcritical solutions; however, not all subcritical solutions were found, as a subcritical
travelling-wave solution that is known to exist at W = 13, Lx = 4π (see figure 10) was
not found here. For some parameters these runs identified multiple types of final states,
which are indicated as overlaid symbols in figure 13. These simulations used a resolution
of (Nx , Ny) = (128, 192) Fourier modes with a time step of dt = 8 × 10−3 and were
confirmed using (Nx , Ny) = (256, 256).

Non-laminar solutions were only seen in regions of parameter space close to where the
centre mode is linearly unstable, suggesting that these states originate from the centre-
mode bifurcation. We plot all distinct final states in figure 13(b). While some states look
similar (e.g. those at W = 80, Lx = 8π), kinetic energy time series differ (not shown).

For the parameters considered, the shortest channel in which chaotic behaviour was
found was Lx = 6π , at W corresponding to the low-shear region of where the centre mode
is linearly unstable. To check that the chaos was self-sustaining and not transient, we ran
all chaotic simulations for 105 time units of 2πU0/L0, and saw no collapse in the time
series of K .

To examine the transition scenario, the turbulent state at W = 20 and Lx = 6π was
taken as a starting point and then W lowered adiabatically. Figure 14 shows how the flow
transitions from one where the time series of K is chaotic to one that is periodic via regions
of quasi-periodicity as W is decreased, before eventually becoming a constant when the
state is a travelling wave. At W = 18, the onset of turbulence is marked by the presence
of bursting events that temporarily increase K seemingly at random, before returning to
periodic behaviour. When W is decreased further, periodic behaviour (e.g. at W = 17)
and quasi-periodicity (e.g. at W = 15) are found, until a travelling-wave state is realised
at W = 7. The periodic and travelling-wave solutions closely resemble the centre-mode
arrowhead.

We plot the frequency spectra of the quasi-periodic behaviour at W = 15 and W = 10 in
figure 15, where

SK (ω) =
∣∣∣∣ 1
T

∫ T

0
K (t)e−iωt dt

∣∣∣∣
2

(5.1)

is the Fourier transform of the kinetic energy K over a long time T = 50 000. While W =
15 clearly shows discrete incommensurate frequencies, W = 10 shows a low-level broad
band of frequencies. We still describe the latter as quasi-periodic, however, as it contains
a small number of dominant frequencies that are incommensurate. Figure 14 used ε =
10−3, and was run with a resolution of (Nx , Ny) = (196, 128). The results were robust to
a doubling of the resolution in both directions. In addition, we checked that ε = 10−4 ran
at (Nx , Ny) = (384, 384) produced qualitatively similar results, despite the arrowheads
being thinner (see Appendix C). The bursting scenario is still identifiable.
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Figure 14. Kinetic energy time series of solutions (left), with the trace field at t = 5000 (right) as W is lowered
from W = 20. The trace field colours use the same scale as figure 18 for comparison purposes. Parameters are
β = 0.95, Re = 0.5, ε = 10−3, n = 2 and Lx = 6π . Symbols, as in figure 13(a), show chaos (purple star), quasi-
periodic orbits (black triangle), periodic orbit (yellow cross) and a travelling wave (green square). This shows
that the turbulent state at W = 20 is connected to states that strongly resemble the centre-mode arrowhead.
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Figure 15. Power spectra for the states from figure 14 with W = 15 and W = 10. This shows that the state at
W = 15 is truly a quasi-periodic orbit with discrete incommensurate frequencies, while the state at W = 10 has
a broad band of frequencies.

Finally, it is worth remarking that the transition scenario identified here is not the only
one possible in vKf. In the regime discussed with n = 2 and Lx = 6π , a bifurcation
triggers irregular bursting events that become more frequent with increasing W . Elastic
turbulence is then seen above a critical W where the disordered state exists at all times. An
alternative transition to turbulence has been recently identified when n = 1 and Lx = 8π ,
in which a sequence of period-doubling bifurcations cascade into turbulence (Nichols,
Guy & Thomases 2024).

5.2. Elastic turbulence properties
An analysis of ET in vKf is now presented in light of the fact that it occurs due to the
centre-mode arrowhead losing stability as W increases. We consider the power spectrum,
as well as how energy is produced and dissipated in ET in a domain of Lx = 8π where
turbulence exists across a wider range of W (as per figure 13). These are compared with
those of the centre-mode arrowhead structure. Three final states are considered: a periodic
state at W = 15, a weakly chaotic state at W = 20 and a strongly chaotic at W = 30
(see figure 16). The polymer stress trace field is plotted at various times in figure 16(a),
and the kinetic energy time series K normalised by the laminar kinetic energy K0 in
figure 16(b). The periodic state at W = 15 consists of two arrowheads drifting in the
same direction (though still moving relative to each other). The low-dimensional chaos
at W = 20 again has two arrowheads drifting in the same direction, never making contact
with each other. However, the increase in W allows the ‘tail’ of the arrowhead to lengthen
to the extent it now interacts with its ‘head’. We verify that the dynamics is truly chaotic,
rather than quasi-periodic using the classification process discussed in Appendix B. The
chaotic state at W = 30 is more complicated, but we note that two processes can be
identified, and we show these in the lower two rows of figure 16(a). The third row shows
how multiple arrowheads can join together to form a zonal shear that spans the entire
streamwise direction. This is a bursting event in which the kinetic energy peaks. The zonal
shear then collapses, splitting into multiple arrowheads. The fourth row shows how the
collision, coalescence and subsequent splitting of arrowheads contribute to the turbulent
flow.

In figure 16(c) the compensated power spectrum of ET in vKf is plotted for various W
which is consistent with EK ∼ k−4. This is the scaling found by Foggi Rota et al. (2024),
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Figure 16. (a, b) Simulations when W = 15 (periodic, blue), W = 20 (low-dimensional chaos, orange) and
W = 30 (turbulent, green), with rows of (a) showing the trace field evolving over time, with times marked on the
time series of K in (b). (c) The compensated power spectra for W = 15 (blue), 20 (orange), 30 (green), 40 (red),
50 (purple), suggesting a regime where EK ∼ k−4, with regular spectra shown in the inset. (d) Contributions
to the kinetic energy due to the base shear (P), elastic forces (Eelast ) and viscous forces (Evisc) as W varies.
Each quantity is averaged over a long time (T = 20 000), with error bars showing plus and minus one standard
deviation. Other parameters are β = 0.95, Re = 0.5, ε = 10−3, n = 2 and Lx = 8π in all plots.

Lellep et al. (2024) and Singh et al. (2024), and is close to that of Berti & Boffetta
(2010) who found EK ∼ k−3.8. Interestingly the periodic state at W = 15, the weakly
chaotic state at W = 20 and the strongly chaotic states at W = 30 all show similar scaling
laws, suggesting that the centre-mode arrowhead contains the same small-scale structures
present in ET. The region in which this scaling is valid appears to be dependent on W , with
the extent of this region falling with W . Each of the simulations was run at a resolution
of (Nx , Ny) = (256, 256), except for W = 50 where (Nx , Ny) = (512, 512) was used. This
high-resolution run gave a power spectrum that was visually similar to that run at the lower
resolution (not shown).

We now consider the total energy balance and see how the inputted energy due to the
base shear compares with the viscous and elastic dissipation. The perturbative kinetic
energy budget is derived by expanding the momentum (2.1) about the base state and
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dotting this with the velocity perturbation u′. This produces

Re

(
∂u′

i

∂t
+ u′

j∂ jUi + U j∂ j u
′
i + u′

j∂ j u
′
i

)
u′

i =
(
−∂i p′ + (1 − β)∂ jτ

′
j i + β∇2u′

i

)
u′

i ,

(5.2)

where quantities with a prime denote real perturbations from the laminar state, and
Einstein summation is used over repeated indices. Incompressibility and the product rule
allow us to rewrite this as

1
2

∂(u′
i u

′
i )

∂t
+ u′

i u
′
j∂ jUi + 1

2
∂ j (U j u

′
i u

′
i ) + 1

2
∂ j (u

′
j u

′
i u

′
i ) = − 1

Re
∂i (p′u′

i )

+ (1 − β)

Re
∂ j (τ

′
j i u

′
i ) − (1 − β)

Re
τ ′

j i∂ j u
′
i + β

Re
∂ j (u

′
i∂ j u

′
i ) − β

Re
∂ j u

′
i∂ j u

′
i . (5.3)

Taking a volume average of (5.3) produces an energy budget of

d
dt

(KE) =P + Eelast + Evisc, (5.4)

where

KE = 1
2
〈u′ · u′〉V , P = −〈∇U : u′u′〉V , (5.5)

Eelast = −1 − β

Re

〈
τ ′ : ∇u′〉

V , Evisc = − β

Re

〈∇u′ : ∇u′〉
V , (5.6)

with 〈 · 〉V denoting a volume average. This energy budget demonstrates that the kinetic
energy can be energised or dissipated via the base shear through P , elastic forces through
Eelast or viscous forces through Evisc. We plot in figure 16(d) the long-time averages of
each energising and dissipative term as W varies, noting that integrating (5.4) over a long
time T gives 〈P〉T + 〈Eelast 〉T + 〈Evisc〉T = 0. We see that the only energising process is
elasticity, that the base shear contributes little to the kinetic energy and that viscous forces
dissipate energy. This is consistent with Buza et al. (2022b), which considers the energy
budget in channel flow of the centre-mode eigenfunctions at higher Re. We see that the
energy budget is qualitatively similar for flows which are chaotic (W = 30) and for those
which are periodic (W = 15), but that as W increases, elasticity provides more energy to
the flow which is dissipated via viscosity.

6. Discussion
In this paper we have found that the only instability operative in 2-D Kolmogorov
flow of an Oldroyd-B fluid at vanishing Reynolds number is the centre-mode instability
(e.g. PDI does not occur here). As a result, we can confirm that the instability found by
Boffetta et al. (2005) at very low Re in Kolmogorov flow is the same instability found at
much larger Re and W in pipe flow over a decade later (Garg et al. 2018). The fact that
this instability only exists for Re � 63 in the pipe flow of an Oldroyd-B fluid (Chaudhary
et al. 2021) suggested that it was an elasto-inertial instability. It was later shown to be
purely elastic in origin, however, by tracking the instability down to Re = 0 in channel flow
(using the extreme parameter values β > 0.9905 and W > 974; Khalid et al. (2021b)), and
by considering the energy budget (Buza et al. 2022b). We have now formally connected
the centre-mode instability of the channel and pipe to inertialess Kolmogorov flow, tying
together the different flow geometries. The absence of boundaries in Kolmogorov flow
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is undoubtedly responsible for the substantial downward shift in parameter values, as
well as allowing the centre-mode instability to exist at all concentrations β ∈ [0, 1) and
with different wavelengths to the forcing. Floquet analysis reveals that the subharmonic
instability (where the instability has a wavelength twice that of the forcing) is usually the
most unstable.

Numerical computations confirm that the centre-mode instability is subcritical with
respect to W , as it is in channel flow (Page et al. 2020; Buza et al. 2022a) and pipe
flow (Wan et al. 2021). The complexity of the nonlinear solutions found increases with
the domain length Lx , the number of forcing wavelengths n and W but all are built upon
arrowhead structures as found earlier by Berti et al. (2008) and Berti & Boffetta (2010).
Chaotic behaviour occurs only when the domain is long enough (Lx large enough) with the
transition scenario depending on how many forcing wavelengths fit into the domain (i.e. n).
Using a domain which allows two forcing wavelengths (n = 2), we identified an irregular
bursting scenario after the centre-mode arrowhead structure becomes unstable while a
concurrent study finds a period-doubling cascade just including one forcing wavelength
(n = 1) (Nichols et al. 2024). In n > 1, the final chaotic or ET state consists of centre-
mode arrowheads colliding, coalescing and then splitting up, with a zonal shear forming
during bursting events. Power spectra of this chaos show a part of the kinetic energy having
a k−4 spectrum which is already possessed by the centre-mode arrowhead structure.

The sequential ‘supercritical’ transition scenarios seen here and in Nichols et al. (2024)
for 2-D Kolmogorov flow contrast with current observations in channel flow. There, in
two dimensions, the arrowheads are stable and so do not sequentially break down to ET
(Lellep, Linkmann & Morozov 2023) or indeed elasto-inertial turbulence at higher Re
(Beneitez et al. 2024a). In three dimensions, however, there are instabilities which seem
to lead to a weak chaotic state (Lellep et al. 2023, 2024). Presumably the weak chaos seen
in three-dimensional channel flow would also be similar to the chaos in three-dimensional
Kolmogorov flow which can be explored with far greater ease given the triply periodic
boundary conditions. In turn, investigating why 2-D ET can occur in Kolmogorov flow
and not obviously in channel flow presents another interesting challenge. In other words,
the establishment of a firm instability connection between boundaried and unboundaried
viscoelastic straight shear flows can help boost the understanding in either. We hope to
report on such progress in the near future.

Declaration of interests. The authors report no conflict of interest.

Appendix A. The W → ∞ asymptotics for the centre mode in inertialess (Re = 0)
Kolmogorov flow
We saw in § 3 that Kolmogorov flow is linearly unstable to the centre mode even
when inertia is negligible, and so, motivated by this, we consider the asymptotics when
W → ∞, Re = 0 and ε = 0 at fixed β. This limit is different to the ‘ultra-dilute’
distinguished limit in which W → ∞ and β → 1 such that W (1 − β) is finite which is
required for the centre-mode instability to survive in inertialess channel flow (Khalid et al.
2021b; Kerswell & Page 2024).

To motivate our scalings we re-examine the collapse of the neutral curves in the (Re, k)

plane when W � 1 and Re � 1. This is seen in the E � 1 main loop of neutral curves of
figure 3(d), in regions where E Re � 1. Defining kmax to be the largest wavenumber that
is unstable for a set W and Re in this region, we have kmax ∼ W −1. Motivated by these
long-wavelength instabilities, we seek rescalings of
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Figure 17. Time series of K (left) and frequency spectra SK (right) at W = 80 (periodic orbit), W = 60 (quasi-
periodic orbit), W = 20 (chaos). Other parameters are Re = 0.5, β = 0.95, ε = 10−3, n = 2 and Lx = 6π . These
plots correspond to three final states shown in figure 13(b) and demonstrate how the frequency spectra can be
used to identify a state as a periodic orbit, quasi-periodic orbit or chaotic.

(k, c, u′, v′, τ ′
xx , τ ′

xy, τ ′
yy, D) =

(
k̂

W
, ĉ, û,

v̂

W
, W τ̂xx , τ̂xy,

τ̂yy

W
, D̂

)
. (A1)

These factors are determined via considering a dominant balance between the Dτ ′
xx ,

D2τ ′
xy and D4v′ terms in (2.14), all terms except the last in (2.15) and (2.16) and all the

terms in (2.17) and (2.18). In addition, we define

(U, Txx , Txy) = (Û , W T̂xx , T̂xy) (A2)

so that all base quantities are independent of W . In the limit of W → ∞, the reduced set
of leading-order linearised equations then become

β D̂4v̂ = (1 − β)
[
−k̂2 D̂τ̂xx + i k̂ D̂2τ̂xy

]
, (A3)

[
i k̂(Û − ĉ) + 1

]
τ̂xx = −v̂ D̂T̂xx + 2i k̂ T̂xx û + 2T̂xy D̂û + 2τ̂xy D̂Û , (A4)

[
i k̂(Û − ĉ) + 1

]
τ̂xy = −v̂ D̂T̂xy + i k̂ T̂xx v̂ + τ̂yy D̂Û + D̂û, (A5)

[
i k̂(Û − ĉ) + 1

]
τ̂yy = 2i k̂ T̂xy v̂ + 2D̂v̂, (A6)

i k̂û + D̂v̂ = 0. (A7)
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Figure 18. Kinetic energy time series of solutions (left), with the trace field at t = 5000 (right) as W is lowered
from W = 30. The trace field colours use the same scale as figure 14 for comparison purposes. Parameters
are β = 0.95, Re = 0.5, ε = 10−4, n = 2 and Lx = 6π . Symbols, as in figure 13(a), show chaos (purple star),
quasi-periodic orbit (black triangle), periodic orbit (yellow cross) and a travelling wave (green square). This
shows that the bursting scenario connecting ET to the centre-mode arrowhead that is seen when ε = 10−3 also
exists when ε = 10−4.
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Figure 19. The compensated power spectra (regular spectra shown in the inset) when W = 7 (blue), 20
(orange), 22 (green), 30 (red) and β = 0.95, Re = 0.5, ε = 10−4, n = 2 and Lx = 6π . This is averaged over
a long time (T = 20 000) and shows that EK ∼ k−4.

These equations are verified in figures 8 and 9, where the asymptotics are valid as
W → ∞ across a range of β and μ. In particular, they are valid even in the UCM limit
when β = 0 (see figure 8d).

Appendix B. Classification of final states
To classify a final state as laminar, a travelling wave, a periodic orbit, a quasi-periodic
orbit or chaotic, we consider the average kinetic energy time series, normalised with
respect to the laminar base flow. Our classification protocol is as follows. If (K − K0)/K0
vanishes, then the state is laminar, while if it tends to a non-zero constant, then the state
is a travelling wave. Note that this criterion does not discount equilibria, but in all cases
we checked whether the identified solution was stationary on simulating to rule this out.
For all fluctuating (K − K0)/K0 we looked at the frequency spectra by considering the
Fourier transform, SK (ω) defined in (5.1), of the time series. Both periodic orbits and
quasi-periodic orbits have a discrete number of frequencies with non-zero SK (ω), with
the latter having incommensurate frequencies. We characterise a state as chaotic if the
frequency spectrum does not consist of discrete frequencies. See figure 17 for an example
of periodic, quasi-periodic and chaotic solutions.

Appendix C. Bursting scenario and power spectra with ε = 10−4

Section 5.1 discusses a bursting scenario leading to ET as W is varied when the polymer
stress diffusion coefficient is ε = 10−3. Here, we check that the same results can be
qualitatively seen when ε = 10−4. An increased resolution of (Nx , Ny) = (384, 384) is
used, as decreased diffusion can promote smaller-scale structures, and we verify that
final states are sustained when this resolution is increased to (Nx , Ny) = (512, 512). The
behaviour seen when ε = 10−3 (see figure 14) is also seen with the reduced ε = 10−4 in
figure 18, at slightly altered W . As a fully chaotic state at W = 30 is tracked adiabatically
down in W , bursting is seen (W = 20.7), and then the state alternates between periodic
orbits (e.g. W = 20) and quasi-periodic orbits (e.g. W = 14) before reaching a travelling
wave (W = 7). In all cases the arrowheads are thinner than when ε = 10−3.

In addition to this we compute the compensated power spectra in figure 19 of the states
when W = 7, 20, 22, 30, to identify how the power spectra are affected by the reduced
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ε = 10−4. These states show a travelling wave (W = 7), a periodic orbit (W = 20) and
chaos (W = 22, 30). As seen at larger ε = 10−3 in figure 16(c), we still find the kinetic
energy density generally scales like EK ∼ k−4. While this is clear for W = 7, 22 and
30, the spectrum of the periodic orbit at W = 20 does not obviously follow this scale.
We observed when ε = 10−3 that the extent of the region in which EK ∼ k−4 decreased
with W . This appears to be similar here, with the W = 7 compensated spectra being flatter
over a larger range of k then when W = 22, 30. The ranges when W = 22 and 30 appear
reasonably similar, however.
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