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The assumption of latent monotonicity in item response theorymodels for dichotomous data cannot be
evaluated directly, but observable consequences such as manifest monotonicity facilitate the assessment of
latentmonotonicity in real data. Standardmethods for evaluatingmanifestmonotonicity typically produce a
test statistic that is geared toward falsification, which can only provide indirect support in favor of manifest
monotonicity. We propose the use of Bayes factors to quantify the degree of support available in the
data in favor of manifest monotonicity or against manifest monotonicity. Through the use of informative
hypotheses, this procedure can also be used to determine the support for manifest monotonicity over
substantively or statistically relevant alternatives to manifest monotonicity, rendering the procedure highly
flexible. The performance of the procedure is evaluated using a simulation study, and the application of
the procedure is illustrated using empirical data.

Key words: Bayes factor, essential monotonicity, item response theory, latent monotonicity, manifest
monotonicity.

1. Introduction

In item response theory (IRT) for dichotomously scored items, the assumption of latent
monotonicity is shared by most parametric and nonparametric models. This assumption states
that the probability of observing a positive response to an item is monotonically nondecreasing as
a function of the latent variable, and plays an important role in obtaining the monotone likelihood-
ratio property of the total score (Grayson, 1988; Hemker, Sijtsma,Molenaar, & Junker, 1997). The
monotone likelihood-ratio property implies that the total score stochastically orders respondents
on the latent variable, and this ordinal level of measurement is crucial to most applications of
IRT. Latent monotonicity also captures the idea that the items in a test measure the latent vari-
able (Junker & Sijtsma, 2000). For these reasons, investigating whether the assumption of latent
monotonicity holds is important and relevant for many applications of IRT.

Because the latent variable is unobservable, latent monotonicity can only be evaluated indi-
rectly, by considering observable consequences of the assumption. Given the assumption of local
independence, latent monotonicity implies monotonicity over a variety of manifest scores, such
as a single item score (Mokken, 1971), the unweighted restscore (Rosenbaum, 1984; Junker &
Sijtsma, 2000), and any other sum score that does not include the item under consideration. By
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testing whether monotonicity holds at the manifest level—manifest monotonicity for short—,
given the assumption of local independence one can investigate whether latent monotonicity is
violated. Tijmstra, Hessen, Van der Heijden, and Sijtsma (2013) showed how the property of
manifest monotonicity can be evaluated for a variety of manifest scores using order-constrained
statistical inference, resulting in a likelihood-ratio test that determines whether there is sufficient
evidence to reject monotonicity for the manifest score. A violation of manifest monotonicity
implies a violation of latent monotonicity, hence a significant test statistic results in the rejec-
tion of latent monotonicity. Alternative methods for investigating latent monotonicity exist which
use a manifest score (see, e.g., Rosenbaum, 1984) or the set of observed item-score patterns
(Scheiblechner, 2003). Other nonparametric approaches have been developed, which estimate
the item response function (IRF), making use of binning (Molenaar & Sijtsma, 2000), kernel
smoothing (Ramsay, 1991), or spline-fitting (Abrahamowicz & Ramsay, 1992). These methods
use local statistical tests, and also confidence bands are used to assess manifest monotonicity.

The aforementioned approaches have in common that they use a null hypothesis that specifies
a boundary case of manifest monotonicity, also known as the ‘least favorable null hypothesis’
(Silvapulle & Sen, 2005) that still corresponds to manifest monotonicity. This null hypothesis is
tested against the alternative hypothesis that manifest monotonicity does not hold. The specific
form of this null hypothesis differs for each of these approaches, but they all use the boundary
case where there is no association between the item scores and hence where the item-response
probabilities are unrelated to the manifest score. The rationale behind using this hypothesis is
that it considers the boundary of the part of the parameter space that corresponds to manifest
monotonicity; if manifest monotonicity cannot be rejected for those parameter values, the data are
consistent with at least one point in the parameter space that corresponds tomanifestmonotonicity.
However, since in test construction items are usually designed to measure one common attribute,
this null hypothesis is highly implausible in most practical settings.

Although these approaches are theoretically sound, by using the least favorable null hypoth-
esis they may have suboptimal power to detect violations of manifest monotonicity. That is, in
controlling the Type I error rate and ensuring that it does not exceed the specified significance
level and that latent monotonicity is not rejected if there is at least one point in the parameter
subspace with which the data are consistent, these approaches may be erring on the conservative
side and inflate the Type II error rate; that is, they may fail to accumulate enough evidence to
correctly reject latent monotonicity. Failing to detect violations of latent monotonicity could lead
to using an IRT model whose estimates cannot be trusted. Arguably, this could be worse than
incorrectly concluding that latent monotonicity does not hold and not applying an IRT model.
Thus, it is important that a test for latent monotonicity has sufficient power to detect violations.

Furthermore, the approaches discussed so far use the null hypothesis testing framework and
aim at falsification. That is, the tests attempt to provide a ‘critical test’ for the model assumption to
see whether the assumption is able to ‘survive’ this test. However, failing to reject an assumption
does not imply that it actually holds, since a Type II error could have been made. Since model
assumptions have to hold for the model to be valid, simply noting that the assumption has failed
to be rejected does not suffice as justification for applying the model. A power analysis may help
to some extent to indirectly assess the amount of support that the model assumption receives
when it fails to be rejected. However, one could argue that a more direct way of assessing support
in favor of the model assumption is needed if a decision needs to be made whether using the
model would be justifiable. The discussed frequentist approaches do not provide this kind of
confirmatory support.

It is with these goals of increasing the power and directly assessing the support in favor of
monotonicity in mind that we will pursue a Bayesian approach to evaluating latent monotonicity.
Many different Bayesian model comparison approaches are available (e.g., see Gelman, Carlin,
Stern, & Rubin, 2004), but of special interest here is the approach that focuses on the Bayes
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factor (see Hoijtink, 2012; Kass & Raftery, 1995). Using this approach, different hypotheses
may be compared without assigning special status to one of the hypotheses by labeling it as a
‘null hypothesis.’ Rather than attempting to reject this null hypothesis, one investigates which
hypothesis receives the most support from the data. Also, rather than resulting in a dichotomous
outcome to reject or retain the assumption of latent or manifest monotonicity, an approach that
uses the Bayes factor quantifies the degree of support each hypothesis receives from the data.
This approach provides researchers with more information about the plausibility of the different
hypotheses and enables them tomake an informed decision about the credibility of the assumption
of latent monotonicity. Furthermore, a Bayes factor approach allows for more than just contrasting
the hypothesis of manifest monotonicity with the general hypothesis that manifest monotonicity
does not hold (Tijmstra et al., 2013). Rather, a wide variety of hypotheses that are relevant in
the context of monotonicity can be compared, allowing for finer nuances than just accepting or
rejecting monotonicity.

This article proposes a Bayesian approach to evaluating manifest monotonicity for dichoto-
mous item scores, in linewith theBayesian informative hypothesis testing framework discussed by
Hoijtink (2012). First, several hypotheses that are relevant for latent monotonicity are discussed.
Second, following Hoijtink (2012), we discuss how Bayes factors can be used to evaluate infor-
mative hypotheses, and we propose a procedure for estimating the relevant Bayes factors using
Gibbs sampling. Third, we discuss a simulation study in which the performance of the procedure
is evaluated under varying conditions and compared to a null hypothesis testing procedure that
evaluates the same hypotheses (Tijmstra et al., 2013). Fourth, we discuss an empirical example
of the application of the proposed procedure. The article concludes with a discussion.

2. Relevant Competing Hypotheses

For a test containing k dichotomous items, let Xi denote the score on item i , with realization
xi = 0, 1 for a negative and positive score, respectively. Let θ denote the latent variable. Latent
monotonicity specifies that the IRF, denoted by P(Xi = 1|θ), is nondecreasing in θ (Hambleton
& Swaminathan, 1985). The manifest score, denoted by Y and with realization y, is defined
(Tijmstra et al., 2013) as

Y =
k∑

i=1

ci Xi , (1)

where c1, . . . , ck are binary item inclusion coefficients that are chosen by the researcher. For
example, by choosing c j = 0 and ci = 1 for all i �= j , one obtains the unweighted restscore for
item j . Including item j in the manifest score may confound the results (Junker & Sijtsma, 2000).
Instead of using the total score, one may consider using the unweighted restscore. Although other
manifest scores could be considered, the restscore is a more reliable ordinal estimator of the latent
variable than a manifest score that is based on fewer items, provided the items that are included in
the restscore are of good quality. The proposed procedure can be applied regardless of the specific
choice of the manifest score.

Let h denote the highest possible value of manifest score Y , to be be obtained by means of
h = ∑k

i=1 ci . Furthermore, let πy = P(X = 1|Y = y) for the item that is investigated, where
subscript j is dropped for notational convenience. The hypothesis that manifest monotonicity
over Y holds for a specific item corresponds to

HMM : π0 ≤ · · · ≤ πy ≤ · · · ≤ πh .
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HMM corresponds to the null hypothesis in the order-constrained statistical inference framework
discussed by Tijmstra et al. (2013), and can be contrastedwith its negation, which is the hypothesis
that there are manifest nonmonotonicities:

HNM : πy > πy+1, for at least one value of y.

Because these hypotheses are mutually exclusive and exhaustive, evaluating manifest
monotonicity effectively boils down to choosing between HMM and HNM. However, HNM is
quite general, and hence not very informative. That is, if one accepts HNM, then little can be said
about the ordering of the conditional item probabilities π0, . . . , πh , other than that their order-
ing is not completely monotone. Following the terminology of Hoijtink (2012), HNM has a high
complexity, or similarly, HNM is relatively unspecific or uninformative.

In practical applications, it may be important to know to which extent manifest monotonicity
holds, that is, the extent to which the ordering of the conditional item probabilities are similar to
the ordering specified by manifest monotonicity. Items for which the two orderings are almost
the same could be considered to be essentially monotone, and might still be of practical use.
For example, one could define essential monotonicity as a less restrictive version of manifest
monotonicity, allowing for local violations of manifest monotonicity (πy > πy+1 for some y) as
long as these violations occur only between adjacent values of Y . If one would consider including
such essentially monotone items in a test, one should carefully consider whether this does not
threaten the stochastic ordering of persons. The extent to which the stochastic ordering of persons
based on the total score is robust against inclusions of not fully monotone items has not been
studied extensively (but see Van der Ark, 2005), but in case the scale is robust against these kind
of violations essentially monotone items could provide a useful addition to a test. Hence, finding
out whether items are strictly monotone, essentially monotone, or nonmonotone can be of interest
to for example test constructors.

The hypothesis that a form of ‘essential monotonicity’ holds for a specific item may be
formulated as

HEM : π0 ≤ min{π2, π3},
π1 ≤ min{π3, π4},

...

πh−3 ≤ min{πh−1, πh},
πh−2 ≤ πh .

In this formulation, essential monotonicity is violated as soon as for some y, πy > πy+d for some
d ∈ {2, . . . , h − y}. More liberal versions of essential monotonicity can be obtained by letting
d ∈ {e, . . . , h − y}, where e > 2. The larger the value that is chosen for e, the less restrictive
and the less informative HEM becomes, up to the point where HEM hardly captures monotonicity
anymore. In addition to its potential substantive relevance, investigating essential monotonicity
helps to increase the power to detect small violations of manifest monotonicity. This potential
increase in power is due to HEM placing more restrictions on the conditional item probabilities
than HNM; hence, HEM is more specific.

Another interesting alternative to HMM is the postulation of a ceiling or a floor effect, for-
mulated in HC and HF as, respectively:

HC : π0 ≤ . . . ≤ πc; {πc+1, . . . , πh}, and
HF : {π0, . . . , π f −1};π f ≤ . . . ≤ πh,
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where c denotes the ‘ceiling-value’ and f the ‘floor-value’ of the manifest score. Both HC and
HF leave the ordering of some of the conditional item probabilities open, thus allowing for non-
monotonicities above (HC) or below (HF) a particular value of Y . This weaker form ofmonotonic-
ity may be of interest for selection or testing purposes, for example, when the main goal of a test
is to distinguish respondents on either the low or on the high end of the distribution but not nec-
essarily across the entire scale. In addition, the hypotheses may be useful in the context of exam
items, where the possibility of providing the desired answer may decrease for examinees at the
high end of the scale, or in the context of multiple choice items where some distractors may fail
for low-ability examinees.

Like HEM, HC and HF are more restrictive than HNM, which could result in increased power
to detect specific violations of monotonicity. Focussing on these specific kinds of deviations
from monotonicity could result in a higher power to detect these violations, and could also
have substantive relevance in some applications of IRT. The section dealing with the empirical
example illustrates the value of considering such informative alternative hypotheses in addition
to considering HNM. In order to be able to evaluate the hypotheses, we first discuss the use of
Bayes factors.

3. Bayes Factors

The relative support for either of two competing hypotheses can be quantified using the Bayes
factor (Jeffreys, 1961; Kass & Raftery, 1995). The Bayes factor balances the fit of the different
hypotheses against their complexity. To determine the fit and the complexity of a hypothesis HZ
imposing order constraints on π0, . . . , πh , a prior distribution of π = (π1, . . . , πh) needs to be
specified, and the posterior distribution of π after observing the data also needs to be determined.

In order to ensure that every ordering of π0, . . . , πh is equally likely a priori (Hoijtink, 2012),
one can specify the prior distribution to be

h(π) =
h∏

y=0

Beta(πy; 1, 1) = 1. (2)

This prior distribution does not favor any specific ordering of π0, . . . , πh , and for each πy assigns
equal probability to all values between 0 and 1; hence, it can be considered to be uninformative
(Lynch, 2007). Since under the prior distribution in Equation 2 every ordering is a priori considered
to be equally likely, the complexity of every inequality-constrained hypothesis can in principle
be determined analytically (Hoijtink, 2012).

Assuming the scores on the item to be binomially distributed for each value of the manifest
score, the likelihood of the data corresponds to

f (X|π) =
h∏

y=0

π
sy
y (1 − πy)

ny−sy , (3)

where X denotes the vector containing the scores on the item in question, ny denotes the number
of respondents with manifest score y, and sy denotes the number of respondents with manifest
score y for whom X j = 1. The posterior distribution of the conditional item probabilities is
proportional to the product of the likelihood and the prior distribution, and corresponds to

g(π |X) =
h∏

y=0

Beta(πy; sy + 1, ny − sy + 1). (4)
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Following the framework proposed by Hoijtink (2012), the complexity cZ of a hypothesis
HZ can be defined as the proportion of the prior distribution of π that is in accordance with this
hypothesis. Thus, for a hypothesis HZ,

cZ =
∫
h(π)Iπ∈HZdπ∫

h(π)dπ
=

∫
h(π)Iπ∈HZdπ , (5)

whereHZ denotes the infinite set that contains all vectors π for which HZ is fulfilled, and where
Iπ∈HZ is an indicator function that equals 1 if π ∈ HZ, and 0 otherwise. Thus, the complexity
of a hypothesis such as HMM corresponds to the probability of obtaining a set of values for π

that match the constraints specified by HMM if we were to randomly draw values from the prior
distribution of π .

In a similar vein, the posterior fit fZ of hypothesis HZ to the data can be defined as the
proportion of the posterior distribution of π that is in accordance with that hypothesis (Hoijtink,
2012), and corresponds to

fZ =
∫
g(π |X)Iπ∈HZdπ∫

g(π |X)dπ
=

∫
g(π |X)Iπ∈HZdπ . (6)

By comparing the fit of a hypothesis with its complexity, one can determine the extent to
which the data provide evidence in favor of or against the hypothesis. The ratio f

c quantifies how
much more likely the hypothesis has become after observing the data, and hence, it reflects the
amount of support that the hypothesis receives from the data (Kass & Raftery, 1995). The Bayes
factor comparing two competing hypotheses that specify order constraints for π can be calculated
by taking the ratio of f

c of the two hypotheses (Hoijtink, 2012). Thus, the Bayes factor does not
simply contrast the fit of two hypotheses to the data, but rewards hypotheses that are more specific
by taking their complexity into account.

3.1. Bayes Factors and Monotonicity

With regard to manifest monotonicity, the simplest comparison that can be made is between
HMM and the unconstrained alternative HU : {π0, . . . , πh}. The corresponding Bayes factor (BF)
can be computed by means of

BFMM,U =
fMM
cMM
fU
cU

= fMM

cMM
.

Here, because HU does not restrict π and hence fU = cU = 1, fU
cU

drops out of the equation. If
BFMM,U > 1, the data provide support for HMM, whereas BFMM,U < 1 indicates that the data
do not support the hypothesis of manifest monotonicity.

Since HU incorporates HMM, contrasting HMM with HU is not very informative. In order to
evaluate HMM, this hypothesis should be contrasted with a competing hypothesis. For example,
one may contrast HMM with its complement HNM, which posits that the conditional probabilities
do not increase monotonically:

BFMM,NM = fMMcNM
fNMcMM

= fMM (1 − cMM)

(1 − fMM) cMM
.
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Thus, BFMM,NM quantifies the amount of support that HMM receives from the data when con-
trasted with its complement. The comparison of HMM and HNM provides useful information
about the general support for the hypothesis that the conditional item probabilities are ordered in
accordance with manifest monotonicity.

By only considering a subset of the orderings that HNM allows, manifest monotonicity can
be contrasted with more specific alternatives. If realistic alternative hypotheses are selected,
the power to detect violations of manifest monotonicity may increase, since these alternatives
may receive more support from the data than the uninformative HNM. For example, one may
consider contrasting HMM with HEM, thereby excluding all orderings that deviate strongly from
monotonicity. Considering HEM can be particularly useful when much is known about a test and
possible deviations frommonotonicity are expected to bemodest. In order to construct hypotheses
that are mutually exclusive, one can define HEM′ as HEM with the constraint that HMM does not
hold. For this comparison, one obtains

BFMM,EM′ = fMMcEM′

fEM′cMM
= fMM (cEM − cMM)

( fEM − fMM) cMM
.

Similarly, one can contrast HMM with HC′ or HF′ , where HC′ or HF′ are obtained from HC and
HF by adding the constraint that HMM does not hold. The Bayes factors BFMM,C′ and BFMM,F′
indicate whether there is reason to suspect that monotonicity is violated at the high end or the low
end of the manifest scale, respectively.

3.2. Estimating the Bayes Factors

The estimation of the Bayes factor requires one to obtain the fit and the complexity of the two
hypotheses of interest. Under the uninformative prior distribution of π in Equation 2 (and under
any exchangeable prior), each ordering of the conditional item probabilities is equally likely, and
the complexity of any hypothesis HZ about the ordering of these conditional item probabilities
can be obtained by means of

cZ,h = OZ,h

(h + 1)! ,

where OZ,h denotes the number of possible orderings of the conditional item probabilities that
are allowed by HZ, given that the highest possible value on the manifest score equals h.

Thus, it follows that OMM,h = 1, OC,h = (h+1)!
(h+1−c)! and OF,h = (h+1)!

( f+1)! . The number of
orderings that essential monotonicity allows is a number from the Fibonacci sequence. That
is, OEM,h = Fibh+3, where Fib = {0, 1, 1, 2, 3, 5, 8, 13, . . .}. Because the constraints in HEM
specify that conditional probabilities two score units apart cannot decrease, increasing h by 1
increases the number of acceptable orderings by OEM,h−1. That is, when h increases by 1 (i.e.,
an item is added to the test), the highest possible manifest score becomes h + 1, and there are
two types of orderings possible that are allowed by HEM: Orderings where πh ≤ πh+1, of which
there are OEM,h in total, and orderings where πh−1 ≤ πh+1 < πh , of which there are OEM,h−1.
Thus, for any h > 0, OEM,h+1 = OEM,h + OEM,h−1, resulting in the Fibonacci sequence. The
complexities of HEM′ , HC′ , and HF′ can be obtained by subtracting 1 from OEM,h , OC,h and OF,h ,
respectively.

Analytically determining the fit of the hypotheses is not straightforward. Instead of exact
integration inEquation 6, aGibbs sampling procedure can be used to approximate the proportion of
the posterior that falls within the specified part of the parameter space. This procedure enables one
to repeatedly sample values of π from its posterior distribution, thus allowing one to approximate
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the posterior distribution to any degree of precision and hence, making it possible to approximate
the value of fZ for any HZ. However, since fZ may be extremely small for large values of h,
estimating fZ simply by counting the proportion of draws from the posterior distribution of π that
are in accordance with the constraints specified in HZ does not necessarily result in an accurate
estimate of fZ, unless one evaluates an excessively large number of draws.

A computationally less demanding approach is to sequentially evaluate the individual con-
straints specified in HZ. This can be done by decomposing the Bayes factor of a hypothesis HZ
with w constraints against HU into w Bayes factors (Mulder et al., 2009) as

BFZ ,U = BF1,U × BF2,1 × . . . × BFv,v−1 × . . . × BFw,w−1

= f1|U
c1|U

× f2|1
c2|1

× . . . × fv|v−1

cv|v−1
× . . . × fw|w−1

cw|w−1

= f1|U × f2|1 × . . . × fv|v−1 × . . . × fw|w−1

cZ
. (7)

Here, BF1,U is the Bayes factor comparing the hypothesis that the first order constraint holds
(H1) with the unconstrained hypothesis (HU), and BFv,v−1 is the Bayes factor comparing the
hypothesis that the first v order constraints hold (Hv) with the hypothesis that the first v − 1
constraints hold (Hv−1). Furthermore, fv|v−1 is the fit of Hv conditional on the assumption that
Hv−1 holds. For each hypothesis Hv , this conditional fit measure fv|v−1 can be estimated using
a Gibbs sampling procedure (see e.g. Geman & Geman, 1984) that draws values from the joint
posterior distribution of π under the v − 1 constraints of Hv−1, that is,

g
(
π |X;π ∈ Hv−1

) ∝
h∏

y=0

Beta
(
πy; sy + 1, ny − sy + 1

) Iπ∈Hv−1 . (8)

To sample from this multivariate distribution, in each iteration of the Gibbs sampler we sub-
sequently sample from the individual full conditional posterior distributions of each πy , given
the current values of all other parameters. Equation 8 implies that the full conditional posterior
distribution of each πy is either a truncated beta distribution if πy is constrained by Hv−1, or
a regular beta distribution otherwise. After allowing for a burn-in period (e.g., after discarding
the first 5000 draws), these draws result in an approximation of the joint posterior distribution
g(π |X;π ∈ Hv−1) that can be used to estimate fv|v−1 (e.g., using 10,000 draws). By sequen-
tially applying this Gibbs sampler to estimate f1|u, . . . , fw|w−1, one can approximate fZ . This
procedure enables the approximation of the fit of any hypothesis imposing order constraints on
π .

3.3. Using the Bayes Factor

The Bayes factor can be obtained for any pair of order-constrained hypotheses about the
conditional item probabilities. The procedure we discussed has been implemented as a function
in R (R Core Team, 2014) that can be used to evaluate manifest monotonicity, by contrasting
HMM with HNM as well as HEM′ . The test function is available on request from the first author.

Kass and Raftery (1995) provide general guidelines for the interpretation of Bayes factors
(also, see Jeffreys, 1961): If 1

3 < BF < 3, there is little support for either hypothesis; if 3 ≤
BF < 20 or 1

20 < BF ≤ 1
3 there is some support in favor of the first hypothesis or the second

hypothesis, respectively; if BF ≥ 20 or BF ≤ 1
20 , there is strong support in favor of the first

hypothesis or the second hypothesis, respectively.
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Figure 1.
The item response functions of the three items that were analyzed.

One might consider accepting latent monotonicity only if there is strong support for HMM
over HNM (BFMM,NM ≥ 20), and keep the item that was evaluated in the test. If the aim is
falsification, one could decide to reject latent monotonicity when strong support is found against
manifest monotonicity relative to its complement HNM (BFMM,NM ≤ 1

20 ). However, this could
result in keeping malfunctioning items in a test simply because the evidence was inconclusive.
Alternatively, we propose to only retain items for which BFMM,NM ≥ 20.

One may consider to let the consequences of the comparison of HEM′ and HMM depend on
the particular circumstances of the application at hand. For some low-stakes settings, it may be
sufficient that an item shows an overall positive trend (i.e., it is essentially monotone), but for
high-stakes tests, one could demand that even small violations of latent monotonicity as captured
by HEM′ are unacceptable and only retain items for which there is at least some positive evidence
(i.e., BFMM,EM′ ≥ 3) that HMM rather than HEM′ holds.

4. Simulation Study

4.1. Method

To facilitate the comparison of the proposed procedure to that of existing methods for evalu-
ating latent monotonicity, conditions similar to those discussed by Tijmstra et al. (2013) were used
in a simulation study. In this way, the decisions that would be made using the proposed method
could be compared to those that would be made using the order-constrained null hypothesis test
discussed by Tijmstra et al. (2013). The procedure was used to assess manifest monotonicity for
three items, corresponding to three different relevant scenarios: A ‘normal’ item with a monotone
IRF that discriminates well, a weakly discriminating item with a monotone but nearly flat IRF,
and an item with a locally nonmonotone IRF (Figure 1). For convenience, we label these three
items ‘monotone item’, ‘weak item’, and ‘nonmonotone item’, respectively. The monotone item
represents a typical desirable item that provides a useful contribution to the test, the weak item
represents an item that contributes little to the reliable ordering of persons but does not violate
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Figure 2.
The item response functions of the five monotone items, based on the two-parameter logistic model. The discrimination
and difficulty parameters are denoted by α and β, respectively.

latent monotonicity, and the nonmonotone item represents a problematic item that should not be
included in the test.

The IRFs of the monotone item and the weak itemwere two-parameter logistic with difficulty
parameters equal to 0 and discrimination parameters equal to 1 and .1, respectively. For the
nonmonotone item, a locally nonmonotone IRF was obtained using a polynomial extension of the
two-parameter logistic model previously used by Tijmstra et al. (2013),

P(Xi = 1|θ) =
exp

(
α1i

(
θ − β1i

) + α2i
(
θ − β2i

)2 + α3i
(
θ − β3i

)3)

1 + exp
(
α1i

(
θ − β1i

) + α2i
(
θ − β2i

)2 + α3i
(
θ − β3i

)3) ,

where β1i , β2i , and β3i influence the difficulty of the item and α1i , α2i , and α3i influence the slope
of the IRF. Following Tijmstra et al. (2013), we chose α1i , α2i and α3i equal to 1, 1.2, and 0.25,
respectively, and β1i , β2i and β3i equal to 2.5, 1.6, and 1.5, respectively.

Test length was varied by considering manifest scores obtained based on 5, 10, and 20
dichotomous monotone items. The items included in the manifest score were specified using
the two-parameter logistic model; the IRFs are displayed in Figure 2. Five different IRFs
were specified, with difficulty parameters {−1,−0.5, 0, 0.5, 1} and discrimination parameters
{0.5, 1.25, 1, 1.25, 1.50}, matching the design of Tijmstra et al. (2013). For manifest scores based
on 10 and 20 items, two and four duplicates of the 5-item set were used, respectively. Sample
sizes (n) of 100, 200, 500, and 1000 were used to study the effect sample size had on the values of
the Bayes factors and the resulting decisions about manifest monotonicity based on the proposed
guidelines.

For each design condition, 1000 replications were generated. For each replication, n values of
the latent variable were drawn from a standard normal distribution, and subsequently item scores
were generated, yielding data matrices for the item of interest (monotone, weak, or nonmonotone)
and the 5, 10, or 20 items that were used to compute the manifest score. Next, the Bayesian
procedure was applied to the generated data, using 5000 iterations for the burn-in period of the
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Table 1.
Proportion of rejections of latent monotonicity for the nonmonotone item using the Bayes factor procedure (1000 repli-
cations) and the order-constrained NHST procedure, for varying sample size (rows) and test length (columns).

Bayes factor NHST

BFMM,NM ≤ 1
20 BFMM,NM ≥ 20 p < .05

n 5 10 20 5 10 20 5 10 20

100 .702 .833 .911 .000 .001 .000 .334 .404 .457
200 .902 .958 .981 .000 .001 .000 .553 .645 .652
500 * * * * * * .931 .800 .842

* Means that computational limitations prohibited computation of entries.

Gibbs sampler and the subsequent 10,000 iterations to approximate the posterior distribution
g(π |X;π ∈ Hv−1) for each order constraint v, as detailed in Equation 7. This way, the Bayes
factors of HMM versus HNM and of HMM versus HEM′ were obtained for each replication.

4.2. Results

For the nonmonotone item, Table 1 reports the proportion of replications in which strong
support is found against manifest monotonicity relative to its complement (BFMM,NM ≤ 1

20 ),
thus leading to a rejection of latent monotonicity. The results show that also for small samples the
proposed procedure had a high power to correctly reject latent monotonicity; except for k = 5
and n = 100, the observed power levels exceeded .80 for all other conditions. The evidence
against latent monotonicity increased quickly as sample size increased. For n ≥ 500, some of the
1000 replications encountered difficulties with the estimation of the Bayes factor (empty cells in
Table 1), as the constraints were so unlikely that the estimation of some of the full conditional
posteriors in Equation 8 became unfeasible. Consequently, the Bayes factor could not be estimated
for every replication in these conditions. This problem can only occur if there is overwhelming
evidence against HMM, and only happens when the estimate of the Bayes factor approximately
equals 0, as is the case when n ≥ 500. Table 1 also shows that in at most 0.1 % of the replications
strong support was found for manifest monotonicity. Thus, if one uses a strict guideline and only
retains items forwhich BF ≥ 20, items like the nonmonotone itemwill almost always be removed
successfully.

Table 1 compares the power of the Bayesian procedure with Tijmstra et al.’s (2013) procedure
based on the null hypothesis statistical testing (NHST) framework. The table presents the results
obtained by Tijmstra et al. (2013) and compares them with the Bayesian result obtained under the
same conditions. The Bayesian procedure outperformed the null hypothesis test, where for the
latter acceptable power levels were found only for large sample sizes (n = 500). Unlike the NHST
procedure, the Bayes factor procedure shows a marked gain in power as test length increased.

Table 2 shows the results for the monotone item and the weak itemwhen contrasting manifest
monotonicity with its complement. For the monotone item, the proportion of replications where
BFMM,NM ≥ 20, indicating strong support for manifest monotonicity, exceeded .80 for most
conditions, except for n = 100 and k = 5. The proportion of replications providing strong
support against manifest monotonicity (BFMM,NM ≤ 1

20 ) was always close to 0. As test length and
sample size increased, the proportion of replications providing support for manifest monotonicity
approached 1. Thus, in almost all but the most unfavorable conditions the procedure consistently
indicated that manifest monotonicity held for the monotone item, and the monotone item had a
high probability of correctly passing the first test of the procedure.
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Table 2.
Proportion of replications strongly agreeing or disagreeing with HMM when contrasted with HNM for the monotone item
and the weak item (1000 replications), for varying sample size (rows) and test length (columns).

Monotone item Weak item

n 5 10 20 5 10 20

Strong support for HMM over HNM
100 .583 .841 .936 .039 .122 .176
200 .858 .965 .995 .057 .206 .324
500 .981 .998 1.000 .107 .315 .500
1000 .996 1.000 .999 .137 .406 .640

Strong support for HNM over HMM
100 .003 .005 .004 .115 .194 .246
200 .000 .000 .002 .112 .140 .198
500 .000 .000 .000 .066 .114 .127
1000 .000 .000 .001 .041 .064 .079

Table 2 also shows the results for the weak item. Compared to the monotone item, the
proportion of replications providing strong support for manifest monotonicity was considerably
smaller for the weak item in all conditions, especially for smaller sample sizes (n = 100, 200)
and shorter tests (k = 5, 10). As n or k increased, the procedure more often found strong support
for manifest monotonicity relative to its complement. For longer tests (k = 20) and for smaller
sample sizes (n < 500), the proportion of replications showing strong support against manifest
monotonicity was relatively large, up to .246 for k = 20 and n = 100. Even though one may
expect occasional rejections of manifest monotonicity for weak items such as this one, the results
may be considered surprising. Further study showed that the results are due to low-score and
high-score groups having few observations in these conditions. When data are sparse, the uniform
prior is relatively influential and pushes the estimates of the conditional probabilities toward .5.
As a result, some replications result in BF ≤ 1

20 . For the monotone item, the evidence in favor
of monotonicity was much stronger, resulting almost always in BF ≥ 20 despite sparse data in
some score groups.

The second part of the procedure contrasted HMM with HEM′ . Since it is more difficult to
distinguish between HMM and HEM′ , we focused on the results suggesting at least some support
in favor of one of the hypotheses (BF ≥ 3 or BF ≤ 1

3 ) rather than requiring strong support.
Table 3 shows that for the monotone item, the proportion of replications providing support for
manifest monotonicity relative to essential monotonicity varied greatly depending on test length
and sample size. The proportion of cases where HMM was correctly supported increased strongly
as the sample size increased.

As test length increases, it is more difficult to distinguish the two hypotheses for themonotone
item; see the relatively low proportion of cases with support for HMM when k = 20 (Table 3). The
explanation is that as test length increases, the differences in the mean ability of neighboring score
groups grow smaller. Moreover, increasing test length given fixed n results in fewer observations
per score group and less accurate estimates per group, especially for the extreme score groups. As
a result of data sparsity, the estimates of the conditional probabilities in the extreme score groups
may be strongly biased toward .5 because of the influence of the uniform prior. This means that
for the extreme score groups the estimated conditional probabilities often show a decrease across
the first and the last couple of score groups, even though the population conditional probabilities
are strictly monotone. These different influences together impair finding evidence for a strictly
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Table 3.
Proportion of cases agreeing or disagreeing with HMM when contrasted with HEM′ for the items with a monotone and a
flat IRF (1000 replications), for varying sample size (rows) and test length (columns).

Monotone item Weak item

n 5 10 20 5 10 20

Support for HMM over HEM′
100 .223 .000 .015 .011 .007 .081
200 .495 .104 .032 .011 .009 .135
500 .819 .489 .234 .015 .013 .260
1000 .953 .815 .519 .024 .019 .353

Support for HEM′ over HMM
100 .039 .029 .006 .053 .036 .044
200 .026 .042 .003 .041 .033 .047
500 .003 .022 .013 .037 .021 .044
1000 .003 .008 .020 .024 .035 .036

monotone ordering relative to an essentially monotone ordering when k is large and n is small.
As n increases, data sparsity becomes rare, and support for HMM relative to HEM′ is found more
frequently.

For the weak item, Table 3 shows that for short tests (k ≤ 10), the proportion of replications
providing support for manifest monotonicity relative to essential monotonicity was small, even for
n = 1000. This finding is in contrast with the results for the monotone item, where for k ≤ 10 and
n = 1000 more than 80 % of replications showed support for monotonicity. However, for k = 20
the differences between the results for the weak item and themonotone itemwere less extreme and
less clear. For longer tests (k = 20), the proportion of replications providing support for manifest
monotonicity for the weak item increased slowly as n increased, up to .353 for n = 1000.

5. Empirical Example

The procedure was applied to evaluate manifest monotonicity for each item from a set of
eleven four-option multiple-choice items measuring reading comprehension in sixth grade, pri-
mary school students. Data were obtained as part of a larger pilot study, and dichotomously scored
responses to these items were available from 773 Dutch students. Because there was no a priori
reason to exclude any item from the test, the unweighted restscore was used as the manifest score
across which monotonicity was evaluated. For each of the items, the Bayes factors contrasting
HMM with HNM and HMM with HEM′ were estimated. Each Bayes factor was obtained through
the decomposition in Equation 7, where each decomposed Bayes factor was estimated based on
10,000 draws from the corresponding joint posterior distribution (obtained after a burn-in period
of 5000 iterations).

The results of the analysis are displayed in Table 4. It may be noted that since the composition
of the restscore differs for each item, the number of observations per restscore group also differs
from item to item. The number of observations per restscore group was relatively small for the
lower-score groups, and a restscore equal to 0 was only observed for item 8. Thus, most of the
information that was relevant for the assessment of monotonicity was obtained from the middle-
score to higher-score groups.

For the comparison of manifest monotonicity with its complement, the values of BFMM,NM
ranged from 0.001 to 90,189. Items 1 and 8 had a Bayes factor lower than 1

20 while all the other
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Table 4.
Conditional proportions py and Bayes factors for the eleven reading comprehension items.

Item p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 BFMM,NM BFMM,EM′

1 n.a. .50 .25 .67 .50 .23 .27 .20 .29 .26 .45 .001 .451
2 n.a. .00 .33 .88 .85 .79 .88 .94 .95 .98 .90 2715 3.48
3 n.a. .00 .33 .67 .64 .69 .84 .86 .92 .91 .90 14,701 5.27
4 n.a. .67 .00 .57 .80 .91 .98 .98 .99 1.00 1.00 1543 1.67
5 n.a. .00 .00 .25 .57 .61 .78 .84 .88 .92 1.00 90,189 8.57
6 n.a. .50 .40 .90 .92 .81 .92 .95 .97 .98 1.00 3264 2.30
7 n.a. .50 .25 .75 .82 .83 .93 .92 .95 .96 1.00 11,403 2.71
8 1.00 1.00 .00 .25 .00 .06 .15 .14 .18 .17 .35 .006 1.70
9 n.a. .50 .00 .40 .57 .58 .74 .78 .87 .84 .90 6093 2.06
10 n.a. .00 .00 .00 .21 .16 .23 .19 .22 .20 .41 46.7 1.78
11 n.a. .50 .25 .80 .89 .85 .96 .98 .99 1.00 1.00 4322 2.44

items had a Bayes factor higher than 20. Items showing a larger and more stable increase of
the proportion of correct responses across the restscore resulted in higher estimates of the Bayes
factor. For 8 out of 11 items, the Bayes factor exceeded 1000.

Items 1 and 8 both display nonmonotone orderings. Because the items have multiple choice
format, a possible explanation for nonmonotonicity is that particular distractors fail to function
for low-ability candidates, resulting in a local decrease of the conditional probabilities. To test
the possibility of a floor effect (HF′ ), we considered the hypothesis that manifest monotonicity
only holds for the highest half of the score groups (π5 through π10), allowing for possible non-
monotonicities in the lower score groups (π0 through π4). Contrasting HF′ with HMM for each of
the 11 items resulted in Bayes factors that showed strong support for HF′ (BFMM,F′ < 0.0001)
for the two problematic items, while the Bayes factors for the other nine items showed support
for manifest monotonicity. For items 1 and 8, the Bayes factor contrasting HF with its comple-
ment showed support for HF, which suggests that the two items may suffer from malfunctioning
distractors for low ability candidates.

Because nonmonotone items may confound the restscore, it is advisable to sequentially
remove items until no item shows a violation, rather than removing all items with BFMM,NM ≤ 1

20
at once. First, item 1 was eliminated from the test and the procedure was applied again to the
remaining items. For item 8, the estimated Bayes factor equalled 0.016, and for the other items
BFMM,NM ≥ 20. After item 8 was also removed from the test, for eight out of the remaining nine
items, BFMM,NM ≥ 20, indicating strong support for manifest monotonicity over its complement.
However, for item 10, the estimated Bayes factor was equal to 7.11, indicating only modest
support for manifest monotonicity. Because item 10 showed strong support for monotonicity in
the previous two analyses, we decided to keep this item in the test.

While the values of BFMM,NM suggest general support for latentmonotonicity for the remain-
ing items, one would like to exclude the possibility that there are small local violations of latent
monotonicity for these items. For this purpose, the Bayes factor contrastingmanifestmonotonicity
with essential monotonicity was used. Table 4 shows the estimates of BFMM,EM′ for the original
set of 11 items. Only three items show support for manifest monotonicity compared to essential
monotonicity (BFMM,EM′ ≥ 3). After the nonmonotone items 1 and 8 were removed the results
improved, with seven out of the remaining nine items showing support for manifest monotonicity.
The Bayes factors of item 2 and item 10 did not show support for manifest monotonicity compared
to essential monotonicity. Thus, the quality of these items and the extent to which they contribute

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:17:21, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


894 PSYCHOMETRIKA

to the reliability and validity of the test should be critically examined. However, the simulation
results suggested that this absence of support may also have resulted from lack of power, because
support for HMM relative to HEM′ was not always found for well-functioning items under con-
ditions similar to the current condition (n = 500, 1000; k = 10). Overall, these results support
latent monotonicity for these nine items.

6. Discussion

This article proposed a methodology for evaluating the amount of support the data provide in
favor of manifest monotonicity, which is quantified using the Bayes factor. The procedure remains
neutral with respect to whether the aim is verification or falsification. By determining the support
for manifest monotonicity compared to its complement, the procedure provides a general measure
of the amount of support for this property. Since the complement of manifest monotonicity is
unspecific, the procedure can be supplemented by subsequently comparingmanifest monotonicity
with an informative alternative hypothesis. Informative alternatives can either serve as alternatives
that are of substantive interest (such as the floor effect in the empirical example), or as a way of
more extensively investigating the amount of support in favor of manifest monotonicity (such as
essential monotonicity in the empirical example). Because the Bayes factor can be determined
for any set of order constraints on the conditional item probabilities, the approach is flexible with
respect to the range of hypotheses that can be compared.

The simulation results showed that contrasting manifest monotonicity with its complement
effectively identified the nonmonotone item. Including a second step in the procedure where
manifest monotonicity was contrasted with essential monotonicity helped to identify weakly
discriminating items, but mainly for short tests. Longer tests seemed to require larger sample
sizes before HMM and HEM′ can be distinguished sufficiently. This could be an indication that for
long tests, it is useful to employ a more liberal version of essential monotonicity—allowing for
nonmonotonicities between score groups more than one step removed—in order to successfully
differentiate between a completely monotone ordering and approximately monotone orderings of
the conditional item probabilities. In addition, these results illustrate that longer tests require larger
sample sizes before one can expect to find support for manifest monotonicity relative to essential
monotonicity, due to data sparsity in score groups. Thus, for long tests and small sample sizes,
removing items that do not show support for manifest monotonicity over essential monotonicity
may result in an overly large proportion of well-functioning items being discarded and thus is not
advisable. In addition, further research may show that for some applications, having items that are
at least essentially monotone might be sufficient. In this case, one could consider contrasting HEM
with its complement, to determine whether there is support for essential monotonicity (rather than
manifest monotonicity).

The procedure could be extended to assess monotonicity for a set of items at once. However,
this approach runs the risk of masking violations for a particular item if the other items are
monotone, so it seems that any global analysis should be followed by an analysis at the item level
even if the global analysis indicates overall support for latent monotonicity. Multiple testing does
not appear to be problematic, because the simulation study has shown that regardless of test length
and sample size the probability of rejecting monotonicity for an item that is monotone appears to
be close to 0. Likewise, the probability of finding strong support in favor of monotonicity when
a nonmonotone item is evaluated appeared to be close to 0, also suggesting that multiple testing
may not be problematic for the proposed procedure, especially if it is used in an exploratory rather
than a confirmatory setting.

The Bayes factor provides a measure of relative support (Kass & Raftery, 1995), and does not
directly inform the researcher about the probability that manifest monotonicity is true but rather
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about the extent to which this has become more likely after having observed the data. Hence, the
Bayes factor provides researchers with an objective assessment of the degree of support in favor
or against the hypotheses, which they can use to determine whether they consider a hypothesis to
be plausible after having observed the data.

The proposed procedure makes use of an uninformative prior distribution that does not favor
any particular ordering of the conditional item probabilities. Because test items are artifacts
constructed with the specific purpose of monotonically measuring a specific trait, one could argue
that the prior distribution should take this substantive information into account and should to
some degree favor monotonic and essentially monotonic orderings over orderings that show large
deviations from monotonicity. Such a prior distribution would concentrate its density around the
area corresponding to manifest monotonicity. However, such an informative prior would a priori
favor the property that is evaluated by the procedure, and this would affect the Bayes factor. We
posit that for the assessment of latent monotonicity, a measure of support should solely reflect
the extent to which the data (and not the researcher’s prior expectations) support the model
assumption, and hence that the use of an uninformative prior should be preferred. We contend
that this is consistent with the idea that model assumptions should be critically evaluated and
that concerns raised about this assumption should be eliminated not by indicating that items were
meant to behave monotonically by the person who designed them, but rather by determining the
extent to which the data support this claim. This is precisely what the proposed procedure aims
to do.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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