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We present a theory to describe the Nusselt number, Nu, corresponding to the heat or
mass flux, as a function of the Rayleigh–Darcy number, Ra, the ratio of buoyant driving
force over diffusive dissipation, in convective porous media flows. First, we derive exact
relationships within the system for the kinetic energy and the thermal dissipation rate.
Second, by segregating the thermal dissipation rate into contributions from the boundary
layer and the bulk, which is inspired by the ideas of the Grossmann and Lohse theory
(J. Fluid Mech., vol. 407, 2000; Phys. Rev. Lett., vol. 86, 2001), we derive the scaling
relation for Nu as a function of Ra and provide a robust theoretical explanation for the
empirical relations proposed in previous studies. Specifically, by incorporating the length
scale of the flow structure into the theory, we demonstrate why heat or mass transport
differs between two-dimensional and three-dimensional porous media convection. Our
model is in excellent agreement with the data obtained from numerical simulations,
affirming its validity and predictive capabilities.
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1. Introduction

Carbon dioxide (CO2) sequestration is a process aimed at long-term storage of
large volumes of CO2 (Schrag 2007), primarily to mitigate climate change and
support energy transition. One of the most promising sequestration strategies involves
natural underground reservoirs. In this case, liquid CO2 is injected in saline aquifers,
geological porous formations located hundreds of metres beneath the Earth’s surface and
confined by horizontal impermeable layers (Huppert & Neufeld 2014; De Paoli 2021).
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Saline aquifers are filled with brine, highly salted water denser than CO2. Because of
this density difference, the injected volume of CO2 will sit on top of the brine, and a
critical configuration takes place: in case of fractures in the top confining layer of the
formation, CO2 would migrate upwards and eventually reach the upper strata up to the
atmosphere (Hidalgo et al. 2015). However, CO2 is partially soluble in brine and the
resulting mixture, which is heavier than both starting fluids, sinks downwards through
the porous rocks and safely traps the CO2 (Emami-Meybodi et al. 2015; Letelier et al.
2023). To determine the optimal CO2 injection rate and predict the long-time behaviour
of the injected CO2, it is therefore imperative to conduct a meticulous assessment of
the flow dynamics and the associated mixing laws (MacMinn et al. 2012; Guo et al.
2021). An idealized representation of this complex system consists of a porous domain
fully saturated with fluid and confined between a heated bottom plate and a cooled top
plate (Hewitt, Neufeld & Lister 2012; Wen, Chang & Hesse 2018). The top-to-bottom
temperature difference induces a density gradient that drives the flow. This configuration,
which we label here as Rayleigh–Darcy (RD) convection, serves as a fundamental model of
the aforementioned process, where the CO2 concentration field, responsible for the density
increase in the case of geological carbon sequestration, is replaced by a temperature field.

Indeed, thermal and solutal convective porous media flows can be considered equivalent
and controlled by the same governing equations provided that: (i) in the temperature-driven
flow, the solid phase is locally in thermal equilibrium with the liquid phase, and (ii) in
the corresponding concentration-driven system, the solid is impermeable to the solute.
Additional factors to be accounted for a proper comparison between these systems are
the dependency of the viscosity and the fluid density with respect to the value of
the scalar. While viscosity is generally weakly sensitive to temperature variations, it
may be considerably affected by the local value of solute concentration. However, it
has been previously shown by Hidalgo et al. (2012) that, in convective porous media
flows, concentration-induced viscosity variations do not significantly affect the global
transport properties of the system. In contrast, the shape of the density-concentration (or
density-temperature) curves is shown to be crucial. For a general introduction to the RD
convection, we refer to the reviews by Hewitt (2020) and De Paoli (2023). In this work, we
will refer to fluid characterized by a constant viscosity and a linear dependency of density
with the transported scalar (temperature).

The single control parameter in RD convection is the Rayleigh–Darcy number Ra, which
indicates the relative strength between driving forces (convection) and dissipative effects
(diffusion and viscosity), while the major response parameter of the system is the Nusselt
number Nu, a dimensionless measure of the amount of heat (or solute) exchanged. Similar
to the Rayleigh–Bénard (RB) convection (i.e. a fluid heated from below and cooled from
the top, in the absence of any porous medium), in recent years, major efforts have been
put into understanding the scaling relation between Nu and Ra, where Ra is intended as
the thermal Rayleigh number (Ahlers, Grossmann & Lohse 2009). The classical theory
(Malkus 1954; Priestley 1954; Howard 1966) posits that at significantly high Ra, the
buoyancy flux should be independent of the layer’s height (L). In the high-Ra regime
within a porous medium, this argument predicts a linear scaling of Nu ∼ Ra. It has also
been rigorously demonstrated that the linear scaling serves as an upper bound (Doering
& Constantin 1998; Otero et al. 2004; Wen et al. 2012; Hassanzadeh, Chini & Doering
2014). Interestingly, such scaling also means that the dimensional flux is independent of
thermal diffusivity and, as a result, a realization of the scaling indicates the system reaches
the so-called ultimate regime (Hewitt et al. 2012; Pirozzoli et al. 2021). In comparison, in
RB convection, a similar argument leads to Nu ∼ Ra1/3 (Malkus 1954; Priestley 1954;
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Transport scaling in porous media convection

Howard 1966), different from the diffusion-free ultimate scaling Nu ∼ Ra1/2 proposed by
Kraichnan (1962) and Spiegel (1963). A detailed introduction to the scalings in RB is
provided by Ahlers et al. (2009), Chillà & Schumacher (2012) and Xia et al. (2023).

Direct numerical simulations (DNS) have been conducted in both two and three
dimensions for RD convection to investigate heat transfer scaling at finite Ra. The
two-dimensional (2-D) DNS at high Ra (103 � Ra � 104) by Otero et al. (2004) suggested
a slightly sublinear Nu(Ra) scaling. Subsequent DNS, as reported by Hewitt et al. (2012),
extended up to Ra = 4 × 104, and indicated that the scaling Nu ∼ Ra is asymptotically
attained, albeit with a correction to the linear scaling. A simple fit, Nu = 0.0069 Ra +2.75,
was proposed to accommodate the data within this range. For three-dimensional (3-D)
RD convection, DNS conducted by Pirozzoli et al. (2021) and De Paoli et al. (2022)
reached up to Ra = 8 × 104 and suggested that the appropriate scaling for Nu is given by
Nu = 0.0081 Ra +0.067 Ra0.61. This contrasts with an alternative fit proposed by Hewitt,
Neufeld & Lister (2014), where Nu = 0.0096 Ra +4.6 was considered for the data within
the range up to Ra = 2 × 104.

It is crucial to underline that the previously mentioned corrections to the linear scaling
are purely empirical in nature. This leads to the fundamental question: can we provide an
explanation for these corrections and quantify them? To address this, we turn our attention
to the Grossmann–Lohse (GL) theory (Grossmann & Lohse 2000, 2001), a key tool for
comprehending the effective scaling of Nusselt and Reynolds numbers in relation to Ra
in turbulent RB convection. The central premise of the GL theory can be summarized
as follows. First, it establishes a connection between Nu and Ra by considering their
relationship with the kinetic energy dissipation rate and thermal dissipation rate through
exact relations. Second, the theory dissects these dissipation rates into contributions from
the boundary layer (BL) and the bulk flow. In this work, we will derive corresponding
exact relations for RD convection. By applying the principles of the GL theory, we can
deduce the BL and bulk contributions to the thermal dissipation rate, shedding light on
the origins and expressions of the corrections to the linear scaling.

2. Governing equations

We consider a fluid-saturated porous domain heated from below and cooled from above,
as sketched in figure 1(a i). Although we discuss here the problem of a thermally driven
flow in a porous medium that is locally in thermal equilibrium with the fluid, the same
conclusions apply when the scalar is a solute, provided that the governing parameter (Ra)
is matched. The size of the domain considered in W is the wall-parallel directions x, y
and L in wall-normal direction z, along which gravity (g) acts. The flow is visualized in
terms of dimensionless temperature T . For sufficiently high Ra, a columnar flow structure
develops both in 2-D and in 3-D flows, as one can observe from the cross-section relative
to the domain midheight in figure 1(a ii), while the near-wall region (figure 1a iii) is
populated by thin filamentary plumes. This structure differs significantly from the classical
RB turbulence, reported in figure 1(b), which is controlled in the bulk by large-scale rolls.
In RB convection, large-scale structures span the entire domain, with typical length scales
comparable to the height of the system. In comparison, in RD convection, columnar-like
structures prevail, and are characterized by length scales distinct from the system’s height.
This difference will be taken into account when we build up a theory for RD convection
in the following sections.

Before presenting the dimensionless equations, we introduce the scaling quantities
employed. The equations are made dimensionless with respect to convective flow scales
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Figure 1. Instantaneous dimensionless temperature field T for convection in (a) porous media for Ra = 104,
W/L = 1 (Pirozzoli et al. 2021), labelled as RD convection, and (b) in classical RB turbulence (thermal
Rayleigh number 109, Prandtl number 1, W/L = 1). The temperature distribution is shown over the entire
volume (a i, b i), at the centreline z = 1/2 (a ii, b ii) and near the upper wall (a iii, b iii).

(Pirozzoli et al. 2021), namely, velocities are scaled with U = αg�K/ν, where α is the
thermal expansion rate, Δ the temperature difference between the bottom and the top
plate, g the acceleration due to gravity, ν the kinematic viscosity and K the permeability
of the porous medium, which we assume to be homogeneous and isotropic. Lengths are
scaled with L and time with φL/U . The dimensionless temperature is obtained as T =
(T∗ − T∗

top)/Δ, with T∗ and T∗
top the dimensional temperature field and the temperature

value at the top boundary, respectively. Finally, pressure is scaled by gL(ρ∗
top − ρ∗

bot),
where the top-to-bottom fluid density difference (ρ∗

top − ρ∗
bot) is used. In an incompressible

RD system, the heat transport is controlled by the dimensionless advection–diffusion
equation (Pirozzoli et al. 2021),

∂T
∂t

+ u · ∇T = 1
Ra

∇2T, (2.1)

where u and T are the velocity and temperature fields, respectively, t is time and Ra is the
Rayleigh–Darcy number defined as

Ra = αg�KL
κν

. (2.2)

In this parameter, the medium (K), domain (g, L) and fluid (α, Δ, ν, κ) properties are
included, where κ is the thermal diffusivity. The momentum transport and the flow
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Transport scaling in porous media convection

incompressibility are accounted by the Darcy law and continuity equations,

u = −(∇p − Tk), (2.3)

∇ · u = 0, (2.4)

respectively, where p is the reduced pressure field and k is the unit vector aligned with z.
At the horizontal boundaries, we consider the temperature constant and equal to T = 1

at the bottom plate and T = 0 at the top, so that an unstable configuration is achieved and
the flow is driven by convection. No-penetration boundary conditions are assumed at both
plates for the velocity, while the sides are considered periodic. Equations (2.1), (2.3) and
(2.4) together with these boundary conditions determine the flow dynamics, which are
controlled by two dimensionless parameters, namely Ra and the horizontal domain width
W/L. The latter does not appear explicitly in the equations, but may play a significant role
in determining the flow structure, especially at low Ra.

3. Nusselt number and exact conservation equations

First, we will correlate the thermal (Nusselt number) and the kinetic (Péclet number)
response parameters to the control parameter (Rayleigh–Darcy number), and then the
thermal dissipation will be linked to the Nusselt number.

The temporal and horizontal average of (2.1) can be written as

∂

∂z

(
Ra 〈uzT〉A −

〈
∂T
∂z

〉
A

)
= 0. (3.1)

The Nusselt number then reads (Letelier, Mujica & Ortega 2019; Ulloa & Letelier 2022)

Nu = Ra 〈uzT〉A −
〈
∂T
∂z

〉
A
. (3.2)

Here the following notations are used for different averaging procedures. Overbars · · ·
correspond to the time average of a dimensionless value f , while an average over the
horizontal surface and an average over the whole volume domain are denoted by 〈· · · 〉A
and 〈· · · 〉,

f̄ = 1
τ

∫ t0+τ

t0
f dt, (3.3)

〈 f 〉A = 1
A

∫ W/L

0

∫ W/L

0
f dx dy, (3.4)

〈 f 〉 = 1
V

∫ W/L

0

∫ W/L

0

∫ 1

0
f dx dy dz, (3.5)

respectively, where A = (W/L)2 is the dimensionless horizontal surface area and V =
(W/L)2 is the dimensionless volume of the whole domain based on our characteristic
length scale L. Two exact relations exist in our system and can be derived from the
governing equations. Using the dimensionless velocity u to dot product both sides of (2.3)
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and combining with the incompressible continuity equation (2.4), we get

|u|2 = −∇ · ( pu) + Tuz. (3.6)

The volume and time average of (3.6) reads

〈|u|2〉 = − 1
V

∫∫
Σ

( pu) · n̂ dS + 〈Tuz〉, (3.7)

where Σ is the boundary surface of the domain, dS denotes the surface element on the
boundary and n̂ is the normal unit vector for the surface elements. The mean power given
by the pressure gradient vanishes due to the non-penetration boundary condition,

1
V

∫∫
Σ

( pu) · n̂ dS = − 1
V

∫∫
Σ(z=0)

puz dS + 1
V

∫∫
Σ(z=1)

puz dS = 0. (3.8)

The mean buoyancy power in (3.7) can be written as

〈Tuz〉 = 1
V

∫ 1

0
〈Tuz〉AA dz = 1

Ra

∫ 1

0

(
Nu +

〈
∂T
∂z

〉
A

)
dz. (3.9)

Here, the last equivalence comes from the Nu definition (3.2). Since we use L as our length
scale, z ∈ [0, 1]. The last term in the above equation reads

1
Ra

∫ 1

0

〈
∂T
∂z

〉
A

dz = 1
Ra

∫ 1

0

∂〈T〉A

∂z
dz = 1

Ra

(〈T〉A|z=1 − 〈T〉A|z=0
) = − 1

Ra
. (3.10)

Reintroducing (3.10) back into (3.9), after some algebraic manipulations we get

〈Tuz〉 = 1
Ra

∫ 1

0

(
Nu +

〈
∂T
∂z

〉
A

)
dz = 1

Ra
(Nu −1). (3.11)

Combining (3.7), (3.8) and (3.11), we obtain an expression for the mean dimensionless
velocity square, 〈|u|2〉 = 1

Ra
(Nu −1). (3.12)

We introduce the velocity scale

V = U
√〈|u|2〉, (3.13)

with U = αg�K/ν, and one finally obtains an exact relation

Pe2 = (Nu −1) Ra (3.14)

with

Pe = VL
κ

= Ra
V
U , (3.15)

where Pe is the Péclet number. The relation (3.14) aligns with the findings reported by
Hassanzadeh et al. (2014), albeit derived from a slightly different set of equations for
porous media convection. Note that for RB convection, the analogous exact relation is εu =
ν3/L4(Nu −1) Ra Pr−2, where εu is the kinetic energy dissipation rate and Pr is the Prandtl
number (Ahlers et al. 2009). To assess the validity of (3.14), we consider the numerical
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Figure 2. (a) The r.m.s. of velocity used to estimate the Péclet number, Pe. Horizontal component
(r.m.s.(u)), vertical component (r.m.s.(w)) and total (defined as

√
[r.m.s.(u)]2 + [r.m.s.(w)]2 for 2-D cases, and√

2[r.m.s.(u)]2 + [r.m.s.(w)]2 for 3-D cases) are reported; data from Hewitt et al. (2012, 2014). (b) Comparison
of Pe compensated with (Nu −1) Ra as from (3.14). Here Pe is computed with V defined as in (3.17) for the data
from Hewitt et al. (2012, 2014), and as in (3.13) for data from De Paoli et al. (2024). (c) Ratio of the Nusselt
number to the dimensionless thermal dissipation, derived in (3.25); data from Pirozzoli et al. (2021) and De
Paoli et al. (2024).

measurements available in the literature. For 2-D flows, Pe is measured by De Paoli et al.
(2024) using (3.13) and (3.15). The velocity root mean square (r.m.s.) at the centreline (2-D
and 3-D) is computed by Hewitt et al. (2012, 2014) and reported in figure 2(a).

Since in all directions no mean flow exists, we have that V is obtained from the r.m.s. of
the velocity components (ui), namely

V = U
(〈

[r.m.s.(ux)]2 + [r.m.s.(uy)]2 + [r.m.s.(uz)]2
〉)1/2

. (3.16)

Assuming that the centreline flow is representative of the kinetic energy of the system, we
have that

V ≈ U
(〈

[r.m.s.(ux)]2 + [r.m.s.(uy)]2 + [r.m.s.(uz)]2
〉
Σ(z=1/2)

)1/2
. (3.17)

We use this approximation to compute V and verify the validity of (3.14) for the data of
Hewitt et al. (2012, 2014). We finally observe in figure 2(b) that (3.14) (dashed line) is in
excellent agreement with the measurements obtained from the exact definition of Pe (2-D
and V computed with (3.13) from De Paoli et al. (2024)) and also with measurements
obtained from the approximated definition of Pe (2-D and 3-D, V computed with (3.17)
from Hewitt et al. (2012, 2014)).

We will now derive an equation to correlate the mean thermal dissipation to the Nusselt
number. Multiplying the dimensionless thermal advection–diffusion equation (2.1) by T ,
integrating over the whole domain and time-averaging, we have〈

∂

∂t

(
T2

2

)〉
= −〈Tu · ∇T〉 + 1

Ra

〈
T∇2T

〉
. (3.18)

Under the assumption of a statistically steady state,〈
∂

∂t

(
T2

2

)〉
= ∂

∂t

〈
T2

2

〉
= 0. (3.19)
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The first term on the right-hand side of (3.18) can be further written as

− 〈Tu · ∇T〉 =
〈

T2

2
∇ · u

〉
−
〈
∇ ·

(
u

T2

2

)〉
= − 1

V

∫∫
Σ

(
u

T2

2

)
· n̂ dS = 0. (3.20)

Here we employed again continuity (2.4) and the no-penetration boundary condition. The
second term on the right-hand side of (3.18) reads

1
Ra

〈
T∇2T

〉 = 1
Ra

[〈
∇2
(

T2

2

)〉
− 〈|∇T|2〉

]
. (3.21)

Combining results from (3.18)–(3.21), one obtains

〈|∇T|2〉 = 〈
∇2
(

T2

2

)〉
. (3.22)

We can use the following procedure to further simplify the right-hand side of (3.22):

〈
∇2
(

T2

2

)〉
= 1

V

∫∫
Σ

(
T∇T

) · n̂ dS (3.23)

= A
V

(〈
T

∂T
∂z

〉
Σ(z=1)

−
〈
T

∂T
∂z

〉
Σ(z=0)

)
= Nu . (3.24)

Here we considered that V = A = (W/L)2, applied the boundary conditions for T and uz,
as well as the Nu definition (3.2). Combining (3.22) and (3.24), we get〈|∇T|2〉 = Nu, (3.25)

where 〈|∇T|2〉 represents the dimensionless mean thermal dissipation. This relation,
which holds also for RB convection (Ahlers et al. 2009), has been also presented before
for RD flows (Otero et al. 2004; Hidalgo et al. 2012; De Paoli 2023) and for Hele-Shaw
convection the limit of infinitely thin domains (Letelier et al. 2019; Ulloa & Letelier 2022).
The ratio of the Nusselt number to the dimensionless thermal dissipation is compared in
figure 2(c) for the numerical results of Pirozzoli et al. (2021) and De Paoli et al. (2024).
We observe that, also in this case, the agreement between theory and simulations is good,
confirming the validity of (3.25). Finally, one obtains the dimensional thermal dissipation
rate,

ε = κ
Δ2

L2

〈|∇T|2〉 = κ
Δ2

L2 Nu . (3.26)

Equations (3.14) and (3.26) represent the two exact relations we derived in our system.

4. Application of GL theory and scaling relation for the Nusselt number

With the two exact relations derived in the previous section, we can now apply the main
ideas of the GL theory to RD convection. The key idea of the GL theory (Grossmann &
Lohse 2000, 2001) is to split the kinetic and thermal dissipation rates into contributions
from the BLs and bulk. In RD convection, the procedure becomes even simpler than in
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Transport scaling in porous media convection

RB, as only the thermal dissipation rate appears in the exact relations. We separate the
mean thermal dissipation as

ε = εBL + εbulk, (4.1)

and apply the respective scaling relations for εBL and εbulk, based on the BL theory
and fully developed flow in the bulk. The horizontal- and time-averaged profiles of
temperature, shown in figure 3(a), confirm that the flow can be split into two distinct
regions: a well-mixed bulk with nearly uniform properties, and a thin BL characterized
by a linear temperature profile, the slope of which is unitary when z is rescaled with Nu
(figure 3b). The thickness of this BL, λ/L, can be determined as the distance from the wall
at which the linear function fitting the temperature profile in the bulk (0.4 � z � 0.6)
intersects the near-wall temperature fit. The measurement procedure is illustrated in
figure 3(c), where the intersection is marked by the bullet. The Nusselt number sets the
thickness of the BL λ/L = 1/(2 Nu) (De Paoli et al. 2022). In RD convection, it has
been proposed by Otero et al. (2004) that the thermal BL thickness scales as λ/L ∼ Ra−1

(consistent with Nu ∼ Ra, from the classical theory (Malkus 1954; Priestley 1954; Howard
1966) and the upper bound scaling derived by Doering & Constantin (1998)). As illustrated
in figure 3(d), this approximation is verified. Although both in 2-D and 3-D cases the
thermal BL thickness follows λ/L ∼ Ra−1, the prefactor differs (see figure 3d). This
discrepancy arises from the distinct flow structures in 2-D and 3-D cases. In 3-D cases,
owing to the additional degree of freedom compared with the 2-D case, plumes can freely
move and reorganize towards the most efficient configuration, resulting in a different value
of Nu. Consequently, the BL thickness also varies. This phenomenon is analogous to RB
convection, where 2-D and 3-D flows exhibit different BL thicknesses due to variations in
Nu (Van Der Poel, Stevens & Lohse 2013).

The profiles of dimensionless thermal dissipation 〈|∇T|2〉A obtained from De Paoli et al.
(2022) are shown in figure 4(a) for different values of the Rayleigh number. In the inset, the
dissipation is rescaled by the respective Nusselt number, and shown up to 1. We observe
that the BL contribution to the dissipation is more pronounced as Ra is increased. A more
quantitative description is provided in the following. The thermal dissipation rate in the
BL scales as ∼ κ(Δ/λ)2. Therefore, taking into account the layer extension (λ/L ∼ Ra−1),
the BL contribution towards the total thermal dissipation rate reads

εBL ∼ κ
Δ2

λ2
λ

L
∼ κ

Δ2

L2 Ra . (4.2)

Assuming the flow in the bulk is well mixed (Grossmann & Lohse 2000; Bader & Zhu
2023; Song, Shishkina & Zhu 2024), we get

εbulk ∼ Vθ2

�
. (4.3)

Here, V and θ are the typical velocity and temperature scales, respectively. The
characteristic length scale is �, defined as the wavelength associated with the
power-averaged mean wavenumber at the midheight (k̄), i.e. �/L = 2π/k̄. In numerical
simulations, k̄ is obtained from the time-averaged spectrum of the temperature field
at z = 1/2 (Hewitt et al. 2014). The importance of εBL and εbulk relative to the total
dissipation ε, is reported in figure 4(b) for 3-D RD convection (De Paoli et al. 2022).
Here, εBL and εbulk are obtained from the profiles, and represent the mean value within
the respective regions. In RB, to derive the scalings, the length scale is assumed to be the
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Figure 3. (a) Horizontal- and time-averaged profiles of temperature are shown for different Ra (De Paoli et al.
2022). The near-wall region is magnified in (b), where the wall-normal coordinate is rescaled with Nu. The
profiles are self-similar, and in the BL follow a linear behaviour (solid line) with unitary slope. (c) The thickness
of the BL is determined as the distance from the wall of the intersection between the linear profile fitting the
bulk (0.4 � z � 0.6) and the near-wall regions (z ≤ 0.1 Nu / Ra). The case relative to Ra = 104 is reported.
A close-up view of the near-wall region is shown in the inset. (d) Thickness of the thermal BL λ/L as a
function of the Rayleigh number. The 3-D measurements computed as discussed (bullets) are very well fitted
by the correlation 50/ Ra. The correlation proposed for 2-D flows by Otero et al. (2004) (λ/L ∼ 15/ Ra) is also
reported, as well as the value obtained from the Nusselt number λ/L = 1/(2 Nu); data from De Paoli et al.
(2022).

height of the domain L, which makes sense as there exist large-scale rolls. However, here
in RD, the typical flow structures are columnar-like, making the length scale � different
from L. This difference is clearly visible in figures 1(a i) and 1(b i). From the definition of
Nu (3.2) and assuming that in the bulk, θ ∼ Nu(κΔ)/(VL), and when Nu only comes from
the fluctuation in the bulk, θ ∼ (εbulk/V)(L/Δ), we get

εbulk ∼ κ
Δ2

L2 Pe
�

L
. (4.4)

The same bulk scaling has also been reported for rapidly rotating convection (Song et al.
2024) and magnetoconvection with strong vertical magnetic fields (Bader & Zhu 2023).
In all these three systems, in the bulk there exists a new horizontal dominant length
scale that is different from the height of the domain. In each of these three systems,
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Figure 4. (a) Horizontal- and time-averaged profiles of dimensionless thermal dissipation, 〈|∇T|2〉A, are
shown for different Ra (De Paoli et al. 2022). In the inset, the dissipation is rescaled by the respective Nusselt
number, and shown up to 〈|∇T|2〉A/ Nu = 1. The BL contribution to the dissipation is more pronounced as
Ra is increased. (b) Contributions to the mean scalar dissipation ε within the BL (εBL) and in the bulk region
(εbulk); data are from De Paoli et al. (2022).

a new dominant length scale emerges, distinct from the domain’s height. This disparity
constitutes a significant deviation from the original GL theory.

Determining the dominant wavelength in RD convection is a challenging task. The
reason is linked to the complex way in which the dynamic near-wall flow structures interact
with the stationary, large-scale columnar plumes controlling the bulk. A detailed review
is provided by Hewitt (2020), which we summarize here with additional details including
later results (De Paoli et al. 2022). In 3-D cases, using asymptotic stability theory, Hewitt
& Lister (2017) derived that

�/L ∼ Ra−1/2 (3-D). (4.5)

Numerical simulations by Hewitt et al. (2014) and De Paoli et al. (2022), best fitted
by scaling exponents of −0.52 and −0.49, respectively, agree well with this prediction
(see also figure 5a). Therefore, we employ this scaling relation (�/L ∼ Ra−1/2) for the
centreline in 3-D cases. The situation is more complex in 2-D cases. Hewitt, Neufeld &
Lister (2013b) derived analytically the scaling relation

�/L ∼ Ra−5/14 (2-D). (4.6)

Wen, Corson & Chini (2015) have shown that for Ra ≤ 19 976 the centreline dominant
length scale is well approximated by �/L ∼ Ra−0.40. However, one can observe in
figure 5(b) that when Ra ≥ 39 716, the interplume spacing measured by Wen et al. (2015)
is not unique. The conclusion is that in 2-D RD convection, at Ra ≥ 39 716, a precise
scaling remains to be established by running simulations in very wide domains and for
very long times. In view of this, we consider the scaling proposed by Hewitt et al.
(2013b), which represents the best theoretical prediction available, to be valid. Therefore,
combining (4.4) with (3.14), (4.5) and (4.6), we get

εbulk ∼ κ
Δ2

L2 Nu1/2 (3-D), (4.7)
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Figure 5. Dominant length scales �/L in the bulk (z = 1/2) for (a) 3-D (Hewitt et al. 2014; De Paoli et al.
2022) and (b) 2-D (Hewitt et al. 2012; Wen et al. 2015) simulations. Theoretical scaling relations defined in
(4.5) and (4.6), corresponding to 3-D and 2-D flows, respectively, are also indicated (dashed lines).

and

εbulk ∼ κ
Δ2

L2 Nu1/2 Ra1/7 (2-D). (4.8)

Finally, combining (3.26), (4.1), (4.2), (4.7) and (4.8), we reach an expression for Nu as
a function of Ra for the 3-D and the 2-D cases, as follows:

Nu = A3 Ra +B3 Nu1/2 (3-D), (4.9)

Nu = A2 Ra +B2 Nu1/2 Ra1/7 (2-D). (4.10)

As reported in figure 6, these scaling relations fit very well the data obtained from
numerical simulations, both in the 2-D and in the 3-D cases. The values of the coefficients
A2, A3, B2, B3, indicated in figure 6, are obtained as best fitting from the data shown,
representing the numerical results available and with Ra > 2 × 103. The choice of
considering values larger than this threshold is motivated by the flow topology: at low Ra
the bulk flow structure is not columnar, as it is dominated by large-scale convective rolls
(Graham & Steen 1994), and therefore our theory does not apply. The expressions of Nu
derived in (4.9) and (4.10) take the form of a linear scaling with a sublinear correction. The
linear scaling was previously proposed for 2-D (Hewitt et al. 2012) and 3-D (Hewitt et al.
2014) flows. The scaling proposed here provides similar results to the linear scaling with
sublinear corrections proposed for the 3-D case by Pirozzoli et al. (2021). However, in this
case one fitting parameters fewer is used, i.e. all scaling exponents are known. The good
agreement of the present scaling relations with the numerical measurements available in
the literature suggests that the theory proposed is indeed valid and promising for higher
Ra. The RD system is completely defined by two parameters, namely the Rayleigh number
Ra and the aspect ratio W/L. In 3-D flows at high-Ra, it has been observed that all major
flow statistics converge for an aspect ratio of W/L = 1 (De Paoli et al. 2022). This differs
in 2-D systems: also at high Ra and due to the additional lateral confinement, the aspect
ratio may have an influence on � (Wen et al. 2015). Therefore, it may be required to take
W/L into account in the present theory to better describe the transport properties in 2-D
RD flows. To this aim and also to assess the physics of the scaling prefactors, additional
simulations in large domains and at larger Ra are needed.
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Figure 6. Compensated Nusselt number as a function of Rayleigh number. Results are for 2-D (Hewitt et al.
2012; Wen et al. 2015; De Paoli, Zonta & Soldati 2016; Pirozzoli et al. 2021; De Paoli et al. 2024) and 3-D
(Hewitt et al. 2014; Pirozzoli et al. 2021) simulations. New fitting curves are obtained considering all data with
Ra > 2 × 103, with numerical values of the coefficients being A2 = (6.386 ± 0.007) × 10−3, B2 = 0.2533 ±
0.0050 and A3 = (8.592 ± 0.033) × 10−3, B3 = 1.376 ± 0.059. The coefficients of determination (R2) for the
best fitting curves provided are 0.991 and 0.999 in the 2-D and in the 3-D cases, respectively.

5. Conclusions

In summary, we have established two exact relationships, one pertaining to the
Péclet number and the other to the thermal dissipation rate, in the context of
Rayleigh–Darcy (RD) convection – a fundamental system for heat and mass transport in
porous media. Inspired by previous models developed for RB convection (Grossmann &
Lohse 2000, 2001), we have formulated a scaling theory for heat transfer in 2-D and 3-D
RD flows, where the Nusselt number is expressed as a function of the Rayleigh number as
described by (4.9) and (4.10). This theory enables us to provide a theoretical explanation
to the sublinear empirical corrections proposed in prior studies (Pirozzoli et al. 2021).
Our investigations, supported by both the 2-D and 3-D literature results, confirm the
validity of the proposed theory. Moreover, by taking the length scale of the flow structures
into account, we also shed new light on the physical origins of the disparities in scaling
relations between 2-D and 3-D RD convection.

Our findings are relevant to convective flows in homogeneous and isotropic porous
media where the top-to-bottom density difference is defined. However, these hypotheses
represent idealized conditions not taking into account additional flow features that occur
in realistic processes, such as hydrodynamic dispersion (Liang et al. 2018; Tsinober
et al. 2022; Tsinober, Shavit & Rosenzweig 2023), medium heterogeneity (Simmons,
Fenstemaker & Sharp 2001; Dentz, Hidalgo & Lester 2023), anisotropy (Ennis-King,
Preston & Paterson 2005; De Paoli et al. 2016) and alternative flow configurations
(Hidalgo et al. 2012; De Paoli, Zonta & Soldati 2017; Letelier et al. 2023). Nonetheless,
present findings represent a crucial step required to develop a robust and physically
sound theory for convection in porous media flows, which can be further expanded
to include the presence of the different variations mentioned above. We consider for
instance the sequestration of carbon dioxide in saline aquifers. Such a system is usually
modelled as a rectangular domain initially filled with brine and confined by two horizontal
low-permeability layers, and therefore it is assumed to be impermeable at the bottom
boundary (no-flux) (Huppert & Neufeld 2014). Here, the solute enters from the top, in
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correspondence of which the concentration of CO2 is constant. This flow configuration,
defined as ‘one-sided’ (Hewitt, Neufeld & Lister 2013a) or ‘semi-infinite’ (Ennis-King
et al. 2005), is subject to a transient behaviour: the average CO2 concentration within
the system will increase over time, and it will be progressively harder to keep dissolving
solute. In quantitative terms this means that, after a short initial phase in which dissolution
increases due to the formation and growth of the fingers, the flux of solute through the
top boundary will later reduce as a result of the saturation of the domain. The dynamics
of such a system has been thoroughly characterized (Slim 2014), and it is shown to be
quantitatively related to the dynamics observed in RD convection (Hewitt et al. 2013a; De
Paoli et al. 2017). In order to describe the evolution of the one-sided system with a simple
box-model, accurate predictions of the transport scaling in RD convection are essential. In
the presence of high-permeability formations such as the Utsira Sand reservoir at Sleipner
(Bickle et al. 2007), the Rayleigh–Darcy number may be as high as 6 × 105 (Hewitt et al.
2013a), which is beyond current numerical capabilities. As a result, the theoretical results
provided in our work will play a crucial role as a tool to determine the long-term evolution
of flows in semi-infinite domains.
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