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Abstract
Modal logic enjoys topological semantics that may be traced back to McKinsey and Tarski, and the classi-
fication of topological spaces via modal axioms is a lively area of research. In the past two decades, there
has been interest in extending topological modal logic to the language of the mu-calculus, but previously
no class of topological spaces was known to be mu-calculus definable that was not already modally defin-
able. In this paper, we show that the full mu-calculus is indeed more expressive than standard modal logic,
in the sense that there are classes of topological spaces (and weakly transitive Kripke frames), which are
mu-definable but not modally definable. The classes we exhibit satisfy a modally definable property out-
side of their perfect core, and thus we dub them imperfect spaces.We show that the mu-calculus is sound
and complete for these classes. Our examples are minimal in the sense that they use a single instance of a
greatest fixed point, and we show that least fixed points alone do not suffice to define any class of spaces
that is not already modally definable.
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1. Introduction
Topological semantics for modal logic originated with McKinsey and Tarski (1944) in the 1940s
but saw a more recent revival due to the work of Esakia (2001), Shehtman (1999), and others. In
what we call the closure semantics, the modal ♦ is interpreted as the topological closure and � as
the interior. The logic of all topological spaces in this semantics is S4, and we refer to van Benthem
and Bezhanishvili (2007) for an overview of topological completeness of modal logics above S4.
The more expressive derivational semantics – Kudinov and Shehtman (2014) – has gained traction
in recent years but was already considered by McKinsey and Tarski. It is obtained by interpreting
the modal ♦ as the Cantor derivative.1 Esakia (2001, 2004) showed that the derivative logic of all
topological spaces is the modal logic wK4=K+ (♦♦p→ p∨♦p). This is also the modal logic
of all weakly transitive frames, that is, those for which the reflexive closure of the accessibility
relation is transitive. It is well known that the modal logic of transitive frames is K4 – Blackburn
et al. (2001), Chagrov and Zakharyaschev (1997) – which moreover corresponds to a natural class
of topological spaces denoted by Td. Many familiar topological spaces are Td, such as Euclidean
spaces.

Even more recently, topological semantics have been extended to the language of the
μ-calculus – see Baltag et al. (2021), Fernández-Duque (2011a,b), and Goldblatt and Hodkinson
(2017). The relational μ-calculus is notoriously challenging from a theoretical perspective, with
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difficult completeness and decidability proofs – see, respectively, Walukiewicz (2000) and Kozen
(1983). See also Afshari and Leigh (2017), Santocanale and Venema (2010), and Santocanale
(2008) for more recent work exhibiting various modifications to these results and their proofs.
Since a transitive modality is already definable in the basic μ-calculus, Goldblatt and Hodkinson
(2018) obtained completeness and decidability as a corollary for transitive frames, and thus for
Td spaces. This does not work for weakly transitive frames, but surprisingly, Baltag et al. (2021)
showed that the combination of the μ-calculus with topological semantics is much more man-
ageable than the original μ-calculus, with natural and transparent proofs of decidability and
completeness involving only classical tools from modal logic (albeit intricately combined).

Thus, the topological μ-calculus is decidable and complete, potentially placing it as a powerful
yet technically manageable framework for reasoning about topologically defined fixed points. The
Achilles’ heel of this proposal is that despite the sophisticated machinery, no class of topological
spaces was formerly known to be μ-definable but not modally definable. Our goal is to exhibit
such classes of spaces. Here, it is convenient to recall the notion of reducibility of formal languages,
following Kudinov and Shehtman (2014). If L and L ′ are sub-languages of the μ-calculus, then
L reduces to L ′ if every class of spaces definable in L is also definable in L ′ (see Section 2).
If L reduces to L ′, we may also say that L ′ is at least as expressive as L , and if moreover
L ′ does not reduce to L , we say that L ′ is more expressive than L .2 We first show that least
fixed points do not yield any additional expressivity. We then manage to exhibit infinitely many
topologically complete logics in the language of the μ-calculus whose classes of spaces are not
modally definable. These axioms separate spaces into two parts, a perfect part (i.e., without isolated
points) and a complement satisfying some property definable by a modal formula ϕ; we call these
spaces ϕ-imperfect spaces. The perfect part is defined via a greatest fixed point operator. The paper
is structured as follows: in Section 2, we present the relevant material regarding derivative spaces,
the μ-calculus, and axiomatic expressivity. In Section 3 we show that the full μ-calculus is not
more expressive than the μ-free language (with greatest fixed points only). In Section 4, we use
greatest fixed points to construct classes of spaces that are not modally definable. Completeness
results for some of these classes are then laid out in Section 5. We end with some concluding
remarks in Section 6.

2. Background
In this section, we review the syntax and semantics of the topologicalμ-calculus. Following Baltag
et al. (2021) and Fernández-Duque and Iliev (2018), we present our semantics in the general
setting of derivative spaces and work in a language with ν (rather than μ) as primitive.

Definition 1. We fix a countable set Prop of atomic propositions (also called variables). The
language Lμ of the modal μ-calculus is defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ |♦ϕ | νp.ϕ

where p ∈ Prop and in the construct νp.ϕ, the formula ϕ is positive in p, that is, every occurrence of p
lies under the scope of an even number of negations. The abbreviations ϕ ∨ψ , ϕ→ψ , ϕ↔ψ ,�ϕ,
⊥, and 	 are defined as usual. We also assume that every formula ϕ is clean, that is, no bound vari-
able is also a free variable, and for every variable p there is at most one subformula of ϕ of the form
νp.ψ . We denote by ϕ[ψ1, . . . ,ψn/p1, . . . , pn] the formula ϕ where each formula ψi is substituted
for every free occurrence of the variable pi. Some implicit renaming may be carried out to ensure that
the resulting formula is clean. We then introduce the abbreviation μp.ϕ := ¬νp.¬ϕ[¬p/p]. Finally,
the basic modal language L♦ is the fragment of Lμ without occurrences of ν.
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Definition 2. A derivative space is a pair X = (X, d), where X is a set of points and d : P(X)→
P(X) is an operator on subsets of X, satisfying for all A, B⊆ X:

• d(∅)=∅,
• d(A∪ B)= d(A)∪ d(B),
• d(d(A))⊆A∪ d(A).

A derivative model based on X is a tuple of the form M= (X, d,V) with V : Prop→ P(X) a
valuation. Given x ∈ X, we then call (M, x) a pointed derivative model. If p ∈ Prop and A⊆ X, we
define the valuation V[p :=A] by V[p :=A](p) :=A and V[p :=A](q) :=V(q) if q �= p. We then
writeM[p :=A] := (X, d,V[p :=A]).

Definition 3. Given a derivative modelM= (X, d,V), we define by induction on a formula ϕ ∈ Lμ

the extension �ϕ�M of ϕ inM as follows:

• �p�M :=V(p),
• �¬ϕ�M := X \ �ϕ�M,
• �ϕ ∧ψ�M := �ϕ�M ∩ �ψ�M,
• �♦ϕ�M := d(�ϕ�M),
• �νp.ϕ�M := ⋃{A⊆W |A⊆ �ϕ�M[p:=A]}.

We then write M, x � ϕ whenever x ∈ �ϕ�M and we say that ϕ is true at the point x. If M is based
on X andM, x � ϕ, we say that ϕ is satisfiable onM, or on X , or on X , x (depending on what is
deemed relevant).

If �ϕ�M = X, we write M � ϕ. If M � ϕ for all models M based on X we write X � ϕ and we
say that ϕ is valid on X . We also have a notion of pointwise validity, that is, if M, x � ϕ for every
modelM based on X , then we write X , x � ϕ. If X � ϕ for all derivative spaces X , we write � ϕ.
Given a class C of derivative spaces, we write C � ϕ whenever X � ϕ for all X ∈ C . If � is a set
of formulas, we write M, x � � whenever M, x � ϕ for all ϕ ∈ �, and all of the other notations are
adapted accordingly.

Definition 4. Let X = (X, d) be a derivative space. A subspace of X is any derivative space
X ′ = (X′, d′) such that X′ ⊆ X and d′(A)= d(A)∩ X′ for all A⊆ X′. If M= (X, d,V) is a deriva-
tive model based onX , then a submodel ofM is anymodelM′ = (X′, d′,V ′) based on a subspace of
X , and such that V ′(p)=V(p)∩ X′ for all p ∈ Prop. Note that d′ and V ′ are entirely characterized
by X′, d, and V. Hence, we will often abuse notations and let (X′, d,V) stand for (X′, d′,V ′).

In modal logic, it is customary to study morphisms that preserve validity. In the context of
derivative spaces, these are known as d-morphisms – see, e.g., Kudinov and Shehtman (2014).

Definition 5. Let X = (X, d) and X ′ = (X′, d′) be two derivative spaces. A map f : X → X′ is
called a d-morphism from X to X ′ if it satisfies f−1[d′(A′)]= d(f−1[A′]) for all A′ ⊆ X′.

Proposition 6. Let X = (X, d) and X ′ = (X′, d′) be two derivative spaces and f : X → X′
a d-morphism. If ϕ ∈ Lμ and X � ϕ, then X ′ � ϕ.

Presenting our semantics in terms of derivative spaces is useful, as both weakly transitive
Kripke frames and topological spaces (either with the closure or the d operator) can be viewed as
special cases of derivative spaces. While our “intended” semantics is topological, Kripke semantics
will be useful in establishing many of our main results.
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Definition 7. A Kripke frame is a pair F= (W, R), with W a set of possible worlds and R⊆W2.
We denote by R+ := R∪ {(w,w) |w ∈W} the reflexive closure of R. The frame F is said to be rooted
in r if for all w ∈W we have rR+w.We say that F isweakly transitive if wRu and uRv implies wR+v.
In this case, F is also called a wK4 frame, and it induces a derivative space (W, d) with d defined by
d(A) := {w |wRu and u ∈A}.

Slightly abusing terminology, we will identify F and (W, d) (since one can be constructed from
the other). Then, (pointed) derivative models based on wK4 frames will be called (pointed) Kripke
models, while d-morphisms between wK4 frames will be called bounded morphisms.

Useful will be the notion of path. Recall that ω denotes the smallest infinite ordinal.

Definition 8. Let F= (W, R) be a Kripke frame. A path in F is a sequence w= (wi)1≤i≤n ∈Wn,
where n≤ω, and such that we have wiRwi+1 whenever 1≤ i< n. We also say that w begins on wi.
If n=ω, then w is called an infinite path; otherwise, w is said to be of size n.

Now we turn our attention to the “official” semantics of the topological μ-calculus.

Definition 9. Let X be a set of points. A topology on X is a set τ ⊆ P(X) containing ∅ and X,
closed under arbitrary unions, and closed under finite intersections. The pair (X, τ ) is then called
a topological space. The elements of τ are called the open sets of X. The complement of an open
set is called a closed set. If x ∈U ∈ τ , then U is called an open neighborhood of x. Slightly abusing
notation, we will often keep τ implicit and let X refer to the space (X, τ ).

Definition 10. Let X be a topological space, A⊆ X and x ∈ X. The point x is said to be a limit point
of A if for all open neighborhoods U of x, we have U ∩A \ {x} �=∅. We denote by d(A) the set of all
limit points of A and call it the derived set of A. The dual of d is defined by d̂(A) := X \ d(X \A).

Given a topological space X, it is easily observed that the pair (X, d) is a derivative space.
Conversely, the topology τ can be recovered from d since for all A⊆ X, the set A is closed
if and only if d(A)⊆A. For this reason, we choose, again, to identify (X, τ ) and (X, d). Then,
(pointed) derivative models based on topological spaces will be called (pointed) topological mod-
els. Observe that the familiar closure and interior operators can be defined by Cl(A) :=A∪ d(A)
and Int(A) :=A∩ d̂(A). Writing �+ϕ := ϕ ∧�ϕ and ♦+ϕ := ϕ ∨♦ϕ, we then have ��+ϕ�M =
Int(�ϕ�M) and �♦+ϕ�M =Cl(�ϕ�M) for all topological models M. We recall some important
classes of topological spaces that will be useful throughout the text.

Definition 11. Let X be a topological space. A point x ∈ X is said to be isolated if {x} is open. Given
x ∈A⊆ X we say that x is isolated in A if there exists U open such that {x} =U ∩A. The space X is
called dense-in-itself if it contains no isolated point. The space X is called scattered if any subspace
of X contains an isolated point. We say that X is Td if every x ∈ X is isolated in Cl({x}). We say that
X is extremally disconnected if Cl(U) is open for every open set U, and Aleksandroff if arbitrary
intersections of open sets are open.

Aleksandroff spaces are closely connected to Kripke frames, via the following construction.

Definition 12. Let F := (W, R) be a wK4 frame. A set U ⊆W is called an upset if w ∈U and wRu
implies u ∈U. The collection τR of all upsets over W is then a topology, and (W, τR) is called the
topological space induced by F. If M= (W, R,V) is a Kripke model based on F, then ((W, τR),V)
is the topological model induced byM.
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It is not hard to check that a space of the form (W, τR) is always Aleksandroff – and, indeed,
every Aleksandroff space is of this form, see Aleksandroff (1937). In fact, we will simply not dis-
tinguish a weakly transitive Kripke frame from the topological space induced by it. This is partly
motivated by the following proposition.

Proposition 13. Let M= (W, R,V) be an irreflexive and weakly transitive Kripke model, and let
M′ := ((W, τR),V) be the space induced by it. For all w ∈W and ϕ ∈ Lμ, we have

M,w � ϕ ⇐⇒ M′,w � ϕ.

The modal logic of all topological spaces is known as wK4 and consists of the following
inference rules and axioms:

Name Axiom/inference rule
All propositional tautologies

Uniform substitution From ϕ infer ϕ[ψ1, . . . ,ψn/p1, . . . , pn]
N ¬♦⊥
K (Distribution) �(p→ q)→ (�p→�q)
Weak transitivity ♦♦p→ p∨♦p
Modus Ponens From ϕ and ϕ→ψ infer ψ
Monotonicity From ϕ→ψ infer ♦ϕ→♦ψ

Note that this axiomatization differs from the usual presentation, as it is adapted to a language
where ♦ (instead of �) is taken as primitive. The axiomatic system K4 is the extension of wK4
with the axiom 4 :=♦p→♦♦p. The axiomatic system μwK4 is the extension of wK4 with the
fixed point axiom νp.ϕ→ ϕ[νp.ϕ/p] and the induction rule:

from ϕ→ψ[ϕ/p] infer ϕ→ νp.ψ .

Definition 14. Let L be a logic in a sub-language of Lμ. If ϕ is a formula, the statement L� ϕ says
that ϕ is derivable in L. We say that L is sound and complete with respect to a class C of derivative
spaces if for all formulas ϕ we have L� ϕ iff C � ϕ. We call L Kripke complete if it is sound and
complete with respect to some class of Kripke frames, and topologically complete if it is sound and
complete with respect to some class of topological spaces.

Theorem 15. (Baltag et al. 2021). The logic μwK4 is sound and complete with respect to the class
of all wK4 frames, with respect to the class of all topological spaces, and with respect to the class of
all derivative spaces.

In order to compare the expressivity of different languages, we need to introduce the notion of
definable classes.

Definition 16. Given a formula ϕ, we let C (ϕ) be the class of derivative spacesX such thatX � ϕ.
Let C0 be a class of derivative spaces, and let L ⊆ Lμ. We say that C is L -definable within C0 if
there exists ϕ ∈ L such that C (ϕ)∩ C0 = C ∩ C0.

If L ,L ′ ⊆ Lμ, we say that L ′ is at least as expressive as L over C0 if every class definable in
L within C0 is also definable in L ′ within C0. If L ′ is at least as expressive as L but L is not at
least as expressive as L ′, we say that L ′ ismore expressive than L over C0.
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In particular, a L♦-definable class will be called modally definable, and a Lμ-definable class
will be called μ-definable. As discussed in Footnote 2, this notion of expressivity is also known
as reducibility or axiomatic expressivity. The choice to compare expressivity relatively to a class of
derivative spaces is convenient as it allows to derive all kinds of auxiliary results. We will consider
the following classes of interest:

Call := {X | X is a derivative space}
Cfin := {(X, d) ∈ Call | X is finite}
CKripke := {F | F is a wK4 frame}
Cirrefl := {F ∈ CKripke | F is irreflexive}
Ctopo := {X | X is a topological space}
CK4 := {X ∈ Call | X �K4}

It is well established thatCKripke ∩ CK4 is the class of transitive Kripke frames – see Blackburn et al.
(2001), while Ctopo ∩ CK4 is the class of Td spaces – see van Benthem and Bezhanishvili (2007).

3. Classes Defined by Least Fixed Points
Our primary goal is to prove that theμ-calculus is more axiomatically expressive than basic modal
logic; however, as we will see in this section, least (as opposed to greatest) fixed points alone do
not yield additional expressive power. Of course, least and greatest fixed points are interdefinable
using negation, but this is not the case for formulas expressed in negation normal form (or NNF
for short), defined by the following grammar:

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ |�ϕ |♦ϕ | νp.ϕ |μp.ϕ
It is well known that for every formula in Lμ, there is an equivalent formula in NNF. Then, when
omitting the μ operator in the above grammar, one obtain the μ-free language L 0

μ .
We are thus going to show that the full language does not define more classes of spaces than

theμ-free language. In other words, one can recover all the axioms of theμ-calculus (up to equiv-
alence) by enumerating only the μ-free formulas. This result is not only interesting in itself: by
providing a simpler syntactic form for axioms, it will simplify the process of finding one that is
not reducible to a basic modal axiom.

We recall that the extension of μp.ϕ in a derivative modelM= (X, d,V) is defined as

�μp.ϕ�M :=
⋂

{A⊆ X | �ϕ�M[p:=A] ⊆A}.
So, given x ∈ X, we have

M, x �μp.ϕ iff ∀A⊆ X, (�ϕ�M[p:=A] ⊆A) =⇒ x ∈A.
We can then observe that the universal quantification over the subsets of X is, implicitly, nothing
more than a quantification over the possible valuations of p – and this is precisely the kind of
quantification that validity of formulas is able to capture. As a result, one can rewrite axioms in a
way that rids them of their least fixed points. Here, the textbook example would be the formula
μp.�p, which defines the same class of spaces as the well-known Löb axiom �(�p→ p)→�p –
see van Benthem (2006). Drawing inspiration from this result, we arrive at a uniform translation
tr : Lμ → L 0

μ , defined by induction as follows:

• tr(p) := p,
• tr(¬p) := ¬p,

https://doi.org/10.1017/S0960129523000385 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000385


Mathematical Structures in Computer Science 87

• tr(ϕ ∧ψ) := tr(ϕ)∧ tr(ψ),
• tr(ϕ ∨ψ) := tr(ϕ)∨ tr(ψ),
• tr(�ϕ) :=�tr(ϕ),
• tr(♦ϕ) :=♦tr(ϕ),
• tr(νp.ϕ) := νp.tr(ϕ),
• tr(μp.ϕ) :=�+(tr(ϕ)→ p)→ p.

Recall that formulas of the μ-calculus are assumed to be clean, so each formula of the form νp.ϕ
or μp.ϕ comes with its own variable p. Our goal is then to prove that μwK4+ ϕ =μwK4+ tr(ϕ).
One direction is obtained by a stronger claim.

Lemma 17. For all ϕ ∈ Lμ we have μwK4� ϕ→ tr(ϕ).

Proof. By induction on ϕ. This is straightforward for Boolean and modal formulas, so we only
address the fixed point operators. Applying Theorem 15, we reason by Kripke completeness. Let
(M,w) be a pointed wK4 model and suppose that M,w � νp.ϕ. We write M= (W, R,V). Up to
taking the submodel ofM generated by w, we can assume thatM is rooted in w – see Blackburn
et al. (2001, Section 2.1) and Baltag et al. (2021, Lemma V.10). Then there exists A⊆W such
that w ∈A⊆ �ϕ�M[p:=A]. By the induction hypothesis, we have �ϕ�M ⊆ �tr(ϕ)�M, whence A⊆
�tr(ϕ)�M. It follows thatM,w � νp.tr(ϕ), as desired.

Now assume that M,w �μp.ϕ and M,w ��+(tr(ϕ)→ p). Since M is rooted in w, this
implies �tr(ϕ)�M ⊆ �p�M. By the induction hypothesis, we also have �ϕ�M ⊆ �tr(ϕ)�M, and thus
�ϕ�M ⊆ �p�M. If we set A := �p�M, we obtain �ϕ�M[p:=A] = �ϕ�M ⊆A, and thus �μp.ϕ�M ⊆A.
SinceM,w �μp.ϕ, it follows that w ∈A, i.e.,M,w � p. Therefore,M,w ��+(tr(ϕ)→ p)→ p, as
desired.

For the other direction, we will need to transform a model of tr(ϕ) into a model of ϕ. This is
obtained by tweaking a valuation in a way that makes any formula of the form μp.ψ coextensive
with p.

Definition 18. LetM= (W, R,V) be a wK4 model, and let ϕ ∈ Lμ. We define a valuation Vϕ as
follows: for any subformula of ϕ of the form μp.ψ , we set Vϕ(p) := �μp.ψ�M, and for any other
q ∈ Prop we set Vϕ(q) :=V(q). We then defineMϕ := (W, R,Vϕ).

Note thatMϕ is well-defined precisely because the formula ϕ is clean.

Lemma 19. LetM= (W, R,V) be awK4model, and let w ∈W and ϕ ∈ Lμ. IfMϕ ,w � tr(ϕ) then
M,w � ϕ.

Proof. By induction on ϕ. Again, this is straightforward for Boolean andmodal formulas. Suppose
that Mνp.ϕ ,w � νp.tr(ϕ). Then, there exists A⊆W such that w ∈A⊆ �tr(ϕ)�Mνp.ϕ[p:=A]. By the
induction hypothesis, we have

�tr(ϕ)�M[p:=A]ϕ ⊆ �ϕ�M[p:=A]

and by construction we also have Mνp.ϕ[p :=A]=M[p :=A]ϕ . It follows that A⊆ �ϕ�M[p:=A],
and thereforeMνp.ϕ ,w � νp.ϕ.

Now suppose thatMμp.ϕ ,w ��+(tr(ϕ)→ p)→ p. We write A := �μp.ϕ�M and then the fixed
point equation givesA= �ϕ�M[p:=A]. By the induction hypothesis, we also have �tr(ϕ)�M[p:=A]ϕ ⊆
�ϕ�M[p:=A], andM[p :=A]ϕ =Mμp.ϕ by construction, so

�tr(ϕ)�Mμp.ϕ ⊆ �ϕ�M[p:=A] =A= �μp.ϕ�M = �p�Mμp.ϕ .
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Hence, Mμp.ϕ � tr(ϕ)→ p, and in particular Mμp.ϕ ,w ��+(tr(ϕ)→ p). By assumption, it fol-
lows thatMμp.ϕ ,w � p. Therefore,M,w �μp.ϕ.

We can now conclude with the desired result.

Theorem 20. For all formulas ϕ ∈ Lμ, we have μwK4+ ϕ =μwK4+ tr(ϕ).

Proof. Let ϕ ∈ Lμ. From Lemma 17, we know that μwK4� ϕ→ tr(ϕ) and therefore μwK4+
ϕ � tr(ϕ). Conversely, let ψ = (μp1.ψ1, . . . ,μpn.ψn) be the tuple of all formulas of the form
μp.ψ occurring in ϕ, and p := (p1, . . . , pn). Given a pointed wK4 model (M,w), we prove that
M,w � tr(ϕ)[ψ/p]→ ϕ. For suppose M,w � tr(ϕ)[ψ/p]. This yields Mϕ ,w � tr(ϕ), and then
M,w � ϕ from Lemma 19. By Theorem 15, it follows that μwK4� tr(ϕ)[ψ/p]→ ϕ. By uniform
substitution, we also have μwK4+ tr(ϕ)� tr(ϕ)[ψ/p], and therefore μwK4+ tr(ϕ)� ϕ.

As an immediate consequence, we obtain C (ϕ)= C (tr(ϕ)) for all ϕ ∈ Lμ, and this yields the
following result.

Corollary 21. For all classes C0 of derivative spaces, the language Lμ is as expressive as L 0
μ over

C0.

4. Classes Defined by Greatest Fixed Points
The goal of this section is to exhibit μ-definable classes that are not modally definable. Thanks to
the previous section, we know that we can restrict our attention to formulas without least fixed
points. It turns out that a large family of axioms of the form θ ∨ νp.♦pwill yield the desired result.
We easily see that given a pointed Kripke model (M,w), we haveM, x � νp.♦p if and only if there
exists an infinite path beginning on w. Topologically, νp.♦p holds in the perfect core of X, the
largest dense-in-itself subset of X. While the existence of an infinite path is not in general modally
definable, it is not hard to check that C (νp.♦p)= C (♦	), as this is just the class of dense-in-
themselves spaces. However, the story becomesmore complicated if we only require certain points
in the space to satisfy νp.♦p. In this case, the following can be applied to exhibit many modally
undefinable classes of spaces.

Theorem 22. Let θ ∈ Lμ and suppose that for all n ∈N, there exists a wK4 frame Fn = (Wn, Rn)
and rn ∈Wn such that:

(1) Fn is rooted in rn and Fn, rn � θ ∨ νp.♦p;
(2) Fn contains a path of size n;
(3) for all w ∈Wn \ {rn} we have Fn,w � θ .

Then, C (θ ∨ νp.♦p) is not modally definable within Cirrefl ∩ CK4. If in addition every Fn is finite,
then C (θ ∨ νp.♦p) is not modally definable within Cirrefl ∩ Cfin and CKripke ∩ Cfin ∩ CK4.

Remark 23. We recall that both Kripke frames and topological spaces are identified with their
respective derivative spaces, so Cirrefl ∩ CK4 can equivalently be regarded as the class of all Td
Aleksandroff spaces, and Cirrefl ∩ Cfin as the class of finite topological spaces. Thus, Theorem 22
applies to classes of topological spaces, as well as Kripke frames.

Remark 24. It is easily observed that if C is not modally definable within C0 and C0 ⊆ C1, then
C is not modally definable within C1 as well. This allows us to draw interesting consequences

https://doi.org/10.1017/S0960129523000385 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000385


Mathematical Structures in Computer Science 89

rn
w

FnF
point
n,w

rn
w

FnF
cycle
n,w

rn
w

FnF
spine
n,w

Figure 1. The framesFpointn,w ,Fcyclen,w, andF
spine
n,w .

from Theorem 22, as Cirrefl ∩ CK4 is a subclass of Call, CKripke, Ctopo, Ctopo ∩ CK4, and many other
relevant classes.

From now on, we fix a formula θ and a family of frames (Fn)n∈N satisfying the assumptions of
Theorem 22. For all n ∈N, we assume thatWn ∩ω=∅. We start with an elementary observation.

Claim 25. For all n ∈N, the frame Fn is irreflexive and transitive.

Proof. First assume that Fn is not irreflexive, so that there is w with wRnw. Then, (rn,w,w. . .) is
an infinite path beginning on rn, contradicting Fn, rn � νp.♦p. If instead Fn is not transitive, then
since Fn is weakly transitive, this can only occur if there existw, u ∈Wn such thatwRnu, uRnw and
not wRnw. Then, (rn,w, u,w, u, . . . ) is an infinite path beginning on rn – or else (w, u,w, u, . . . )
in case w= rn.

Given a world w ∈Wn, we define the wK4 frames Fpointn,w = (W0, R0), Fcyclen,w = (W1, R1) and
F
spine
n,w = (W2, R2) by:

W0 := Wn ∪ {0}
R0 := Rn ∪ {(rn, 0), (0, 0)} ∪ {(0, u) |wR+

n u}
W1 := Wn ∪ {0, 1}
R1 := Rn ∪ {(rn, 0), (rn, 1), (0, 1), (1, 0)} ∪ {(k, u) | k ∈ {0, 1} and wR+

n u}
W2 := Wn ∪ω
R2 := Rn ∪ {(rn, k) | k ∈ω} ∪ {(m, k) |m< k<ω} ∪ {(k, u) | k ∈ω, wR+

n u}

In words, Fpointn,w is the frame Fn endowed with a reflexive point reachable from the root, and
which sees all the successors of w (as well as w itself). The frames Fcyclen,w and Fspinen,w are constructed
similarly but with respectively a two-element loop and an infinite branch, instead of a reflexive
point. The three frames are depicted in Fig. 1.

If some modal formula ψ defines the same class of spaces as θ ∨ νp.♦p, then by construction
ψ should be refuted at (Fn, rn) for all n but not at (Fspinen,w , rn) or (F

cycle
n,w , rn) or (F

point
n,w , rn), since

in all three of them there is an infinite path beginning on the root. Yet we will prove that if n is
big enough and ¬ψ is satisfiable on (Fn, rn), then it is also satisfiable on (Fpointn,w , rn) for some w,
leading to a contradiction.3 The proof is rather technical, but we can sketch the main lines of our
strategy. First, it is clear that transferring the satisfiability of a diamond formula (i.e., of the form
♦ϕ) or a Boolean formula from (Fn, rn) to (Fpointn,w , rn) is immediate, so the challenge really comes
from box formulas (of the form�ϕ). The central argument is that since nmay be arbitrarily large,
we can select some Fn with an arbitrarily long path. By means of a pigeonhole argument, we will
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then manage to show that on some point w of this path, if �ϕ is satisfied, then so is �+ϕ (when
�ϕ is any subformula of ¬ψ). Then, transferring the truth of �ϕ to the reflexive point of Fpointn,w
will be straightforward. First, we will need a notion of type of a possible world.

Definition 26. Let ϕ be a modal formula. We write ψ � ϕ whenever ψ is a subformula of ϕ. We
also call the box size |ϕ|� of ϕ the number of subformulas of ϕ of the form�ψ . IfM is a derivative
model and w a world in M, we define the box type of w relative to ϕ as the set tϕM(w) := {�ψ |
�ψ � ϕ andM,w ��ψ}.

As explained above, the following result allows to transfer the satisfiability of box formulas, as
soon as the parameter n is large enough.

Claim 27. Let ϕ be a modal formula in NNF and n> 2|ϕ|� . Suppose that there exists a valuation
V over Fn such that Fn,V , rn ��ϕ. Then there exists a world w ∈Wn and a valuation V ′ over
F
point
n,w such that Fpointn,w ,V ′, rn ��ϕ, and V and V ′ coincide over Fn.

Proof. First, we know that Fn contains a path (wi)i∈[1,n] of size n. By construction, there are 2|ϕ|�
different box types relative to ϕ. Thus, by the pigeonhole principle, there exists i, j ∈N such that
1≤ i< j≤ n and tϕM(wi)= tϕM(wj). We then define a valuation V ′ over Fpointn,wj by setting, for all
p ∈ Prop:

V ′(p) :=
{
V(p)∪ {0} if wj ∈V(p)
V(p) otherwise

.

So V and V ′ coincide over Fn, and V ′ is defined over 0 so that this point satisfies the same atomic
propositions as wj. We then prove by induction on ψ � ϕ that Fn,V ,wj �ψ implies Fpointn,wj ,V ′,
0 �ψ :

• If ψ is of the form ψ = p or ψ = ¬p with p ∈ Prop this is just true by construction.
• If ψ is of the form ψ =ψ1 ∧ψ2, then Fn,V ,wj �ψ1 ∧ψ2 implies Fn,V ,wj �ψ1 and
Fn,V ,wj �ψ2 and it suffices to apply the induction hypothesis. If ψ is of the form ψ =
ψ1 ∨ψ2, then Fn,V ,wj �ψ1 ∨ψ2 implies Fn,V ,wj �ψ1 or Fn,V ,wj �ψ2 and the result
follows in the same way.

• Suppose that ψ is of the form ψ =♦ψ0 and Fn,V ,wj �ψ . Then since V and V ′ coincide
over Fn, we have F

point
n,wj ,V ′,wj �ψ as well. By transitivity, it follows that Fpointn,wj ,V ′, 0 �ψ .

• Suppose thatψ is of the formψ =�ψ0 and that Fn,V ,wj �ψ . Then since tϕM(wi)= tϕM(wj),
we have Fn,V ,wi �ψ as well. Since wiRnwj it follows Fn,V ,wj �ψ0, and then F

point
n,wj ,V ′, 0 �

ψ0 by the induction hypothesis. SinceV andV ′ coincide over Fn, we also have F
point
n,wj ,V ′,wj �

�+ψ0. All in all, we obtain F
point
n,wj ,V ′, 0 ��ψ0 as desired.

Now observe that since wiRnwj we must have wj �= rn; otherwise, we would obtain rnRnrn by tran-
sitivity, contradicting Claim 25. Thus, rnRnwj, and from Fn,V , rn ��ϕ we obtain Fn,V ,wj � ϕ,
whence F

point
n,wj ,V ′, 0 � ϕ. Since V and V ′ coincide over Fn, we conclude that Fpointn,wj ,V ′, rn �

�ϕ.
We can then extend the result to any modal formula.

Claim 28. Let ϕ be a modal formula. There exists n ∈N such that if ϕ is satisfiable on (Fn, rn),
then there exists a world w ∈Wn such that ϕ is satisfiable on F

spine
n,w and F

cycle
n,w and F

point
n,w .
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Proof. Applying the theorem of disjunctive normal form for propositional logic, and using the
fact that� and ∧ commute, we can assume that ϕ is of the form ϕ = ∨m

i=1 σi with

σi = ρi ∧�ψi ∧
mi∧
j=1

♦θi,j

for all i ∈ [1,m], where ρi is a propositional formula. Note that since �	 is a tautology, we can
always assume the presence of�ψi. We also suppose that ψi is presented in NNF. We then define

n := 1+max {2|ψi|� | 1≤ i≤m}
and assume that there exists a valuation V such that Fn,V , rn � ϕ. Then there exists i ∈ [1,m]
such that Fn,V , rn � σi. It follows that Fn,V , rn ��ψi with n> 2|ψi|� , so by Claim 27 there exists
w ∈Wn and a valuation V ′ over Fpointn,w such that Fpointn,w ,V ′, rn ��ψi, and V and V ′ coincide over
Fn. It is then clear that Fpointn,w ,V ′, rn � σi, and thus Fpointn,w ,V ′, rn � ϕ.

This proves that ϕ is satisfiable on F
point
n,w . Now consider the function f :W1 →W0 defined by

f (0) := f (1) := 0 and f (w) :=w for all w ∈Wn. Likewise, we define a function g :W2 →W0 by
g(n) := 0 for all n ∈ω, and g(w) :=w for all w ∈Wn. Then, f defines a bounded morphism from
F
cycle
n,w to F

point
n,w , and g defines a bounded morphism from F

spine
n,w to F

point
n,w . It follows that ϕ is

satisfiable on F
spine
n,w and F

cycle
n,w .

We are now ready to prove Theorem 22:

Proof. Suppose toward a contradiction that there is a formula ψ ∈ L♦ defining the same class
as θ ∨ νp.♦p within Cirrefl ∩ CK4. Let n be the integer obtained by applying Claim 28 to ¬ψ .
By Claim 25, the frame Fn is irreflexive and transitive, and we also have Fn � θ ∨ νp.♦p by
assumption, so Fn �ψ as well.

Thus,¬ψ is satisfiable on (Fn, v) for some v ∈Wn. If v �= rn, we denote by F the subframe of Fn
generated by v. Then, F does not contain rn; otherwise, we would have vRnrnRnv and thus vRnv,
a contradiction. The assumption on Fn yields F � θ , so F � θ ∨ νp.♦p and thus F �ψ . Therefore,
Fn, v �ψ , a contradiction. Hence, we have rn = v. Then, by Claim 28, there exists w ∈Wn such
that ¬ψ is satisfiable on F

spine
n,w . Yet Fspinen,w ∈ Cirrefl ∩ CK4 and F

spine
n,w � θ ∨ νp.♦p, so F

spine
n,w �ψ , a

contradiction.
Now suppose that every Fn is finite. By the same reasoning, we can show that C (θ ∨ νp.♦p)

is not modally definable within Cirrefl ∩ Cfin and CKripke ∩ Cfin ∩ CK4. To that end, it suffices to
replace Fspinen,w by, respectively, Fcyclen,w , which is irreflexive and finite, and F

point
n,w , which is transitive

and finite.

Theorem 22 remains a very general statement, and it is worth instantiating it with exam-
ples. The following result shows the existence of infinitely many non-modally definable classes
of spaces.

Proposition 29. Given m ∈N we define .2+
m := (♦+�+q→�+♦+q)∨�m⊥ and IP.2+

m := .2+
m ∨

νp.♦p. Then the class of topological spaces X such that X � IP.2+
m is not modally definable. In

addition, whenever m, k≥ 1 and m �= k we have μwK4+ IP.2+
m �=μwK4+ IP.2+

k .

Proof. It suffices to prove that the assumptions of Theorem 22 are satisfied for θ := .2+
m. In

♦+�+q→�+♦+q, we recognize a variant of the axiom .2 – see Chagrov and Zakharyaschev
(1997), but relative to the reflexive closure R+; we call it .2+, and this also explains the name .2+

m.
Thus, given a frame F= (W, R) we have F � IP.2+

m iff for all w ∈W one of the following holds:
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rmn

(0, 0)

(m, 0)

(0, 1)

(n, 1)

Figure 2. The fork-like frameFmn .

• for all u, v ∈W such that wR+u and wR+v, there exists t ∈W such that uR+t and vR+t;
• there exists no path of sizem+ 1 beginning on w;
• there exists an infinite path beginning on w.

Consider, for all n ∈N, the frame Fm
n := (Wm

n , Rmn ) depicted in Fig. 2. We can see that the Fm
n ’s

fulfill all the conditions of Theorem 22, so we are done (see Remark 24 for why the result applies
to topological spaces). Finally, if 1≤m< k we can see that Fm−1

1 � IP.2+
m whereas Fm−1

1 � IP.2+
k ,

and this proves that μwK4+ IP.2+
m �=μwK4+ IP.2+

k .

In Section 6, we will analyze these axioms further to see that they are well-behaved, but we
find it appropriate to end this section by presenting an intuitive topological interpretation of the
axiom IP.2+

0 , which reduces to .2+ ∨ νp.♦p. Given a formula θ and a space X, we say that X is
θ-imperfect if there exist two disjoint subspaces Y and Z of X such that X = Y ∪ Z, Y � θ and Z is
dense-in-itself.

Proposition 30. Let θ ∈ Lμ, and let X be a topological space. Then, X � θ ∨ νp.♦p if and only if X
is θ-imperfect.

Proof. From left to right, assume that X � θ ∨ νp.♦p. We set Z := {x ∈ X | X, x � νp.♦p} (the per-
fect core of X) and Y := X \ Z. The fixed point equation immediately gives Z = d(Z), so Z is
dense-in-itself. From d(Z)⊆ Z, we also obtain that Z is closed and Y is open. Now, let x ∈ Y
and V be a valuation over Y . We have X,V , x � θ ∨ νp.♦p and by construction X,V , x � νp.♦p, so
X,V , x � θ . Since Y is open, we obtain Y ,V , x � θ . Therefore, Y � θ .

From right to left, suppose that such a decomposition X = Y ∪ Z exists. Let x ∈ X and V be a
valuation over X. Suppose that x ∈ Z. Since Z is dense-in-itself, we have Z ⊆ d(Z)= �♦p�X,V[p:=Z]
so Z ⊆ �νp.♦p�X,V . Therefore, X,V , x � νp.♦p. Otherwise, we have x ∈ Y . If x /∈ Int(Y), then x ∈
Cl(Z) and since x /∈ Z it follows that x ∈ d(Z). We have seen that X,V , z � νp.♦p for all z ∈ Z, so
X,V , x � ♦νp.♦p, and then the fixed point equation gives X,V , x � νp.♦p. Otherwise, we have x ∈
Int(Y). Since Y � θ and Int(Y) is open in Y , we have Int(Y) � θ . Then, Int(Y),V , x � θ and since
Int(Y) is open, we finally get X,V , x � θ . In all cases, we obtain X,V , x � θ ∨ νp.♦p as desired.
Remark 31. By inspection of the proof for the left-to-right implication, we can also assume that
Y is scattered and Z is perfect (i.e., closed and dense-in-itself). This explains and justifies the name
“θ-imperfect.”

In our example, the axiom .2+ is known to define the class of extremally disconnected spaces –
see Definition 11 and also van Benthem and Bezhanishvili (2007). We thus obtain the following
result:
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Corollary 32. The class of spaces that can be written as the disjoint union of an extremally
disconnected subspace and a perfect subspace is not modally definable.

5. Completeness for Imperfect Spaces
We have shown that there are μ-definable classes that are not modally definable, including
infinitely many classes of imperfect spaces. We can make these examples even stronger by show-
ing that the logics we have exhibited are complete for these classes. To this end, we construct the
canonical model and use the technique of the final model applied by Fine and Zakharyashev to
modal logic (see Bezhanishvili et al. 2011; Chagrov and Zakharyaschev 1997) and by Baltag et al.
(2021) to the μ-calculus. Central will be the notion of cofinal subframe logic.

Definition 33. Let F= (W, R) be a Kripke frame. A subframe F′ = (W′, R′) of F is called a cofinal
subframe of F if w′ ∈W′ and w′Rw implies the existence of u′ ∈W′ such that wR+u′. Given M
based on F andM′ a submodel ofM, we callM′ a cofinal submodel ofM if it is based on a cofinal
subframe F′ of F.

Definition 34. Let L be an extension of K. The logic L is called cofinal subframe if whenever F � L
and F′ is a cofinal subframe of F, we have F′ � L.

Definition 35. Let L be an extension of K. Let P ⊆ Prop. The canonical model of L over P is the
modelM := (�, R,V) with:

• � the set of maximal L-consistent subsets of L♦;
• R := {(�,�) |�ϕ ∈ � =⇒ ϕ ∈�};
• V(p) := {� ∈� | p ∈ �} for all p ∈ Prop.

The so-called Truth Lemma then establishes an equivalence between truth and membership at
the worlds ofM, that is,M, � � ϕ if and only if ϕ ∈ �. Combined with the Lindenbaum’s lemma,
this yields completeness of L with respect to its canonical model – see Blackburn et al. (2001,
Section 4.2). If L is an extension of μwK4, the canonical model is defined in the same way, but
the Truth Lemma then fails to hold. The technique designed by Baltag et al. (2021) consists in
restricting oneself to an appropriate cofinal submodel ofM. First, given a L-consistent formulaψ ,
one can construct a finite set of formulas 
 containing ψ , closed under subformulas, and closed
(up to logical equivalence in L) under negation and ♦+. We then define the so-called 
-final
model as follows.

Definition 36. A world � ∈� is called 
-final if there exists ϕ ∈
 ∩ � such that whenever �R�
and ϕ ∈�, we have �R�. The 
-final model is then the submodel M
 of M induced by �
 :=
{� ∈� | � is 
-final}.

Under the right assumptions, it can be proven that (1) M
 is a cofinal submodel of M, (2)
ψ belongs to some 
-final world, and (3) the Truth Lemma holds in M
 for the formulas in

. This yields Kripke completeness of μwK4 and, in fact, of any logic of the form μwK4+ θ

where θ ∈ L♦ and wK4+ θ is a canonical and cofinal subframe logic. Note that this result is
limited to extensions of μwK4 with basic modal axioms. By contrast, the present work is novel
in that it offers completeness results for axioms with fixed points. First, we need a technical
lemma.

Lemma 37. If μwK4+ θ � ϕ, then μwK4+ (θ ∨ νp.♦p)� ϕ ∨ νp.♦p.
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Proof. Wewrite L0 :=μwK4+ θ and L :=μwK4+ (θ ∨ νp.♦p).We proceed by induction on the
length of a proof.

• If ϕ is an axiom of μwK4 or θ itself, then this is clear.
• Suppose that this holds for ϕ, and that L0 � ϕ[ψ1, . . . ,ψn/p1, . . . , pn] is obtained from L0 �
ϕ. By the induction hypothesis, we have L� ϕ ∨ νp.♦p and by substitution it follows that
L� ϕ[ψ1, . . . ,ψn/p1, . . . , pn]∨ νp.♦p.

• Suppose that this holds for ϕ and ϕ→ψ , and that L0 �ψ is obtained from L0 � ϕ and L0 �
ϕ→ψ . By the induction hypothesis, we have L� ϕ ∨ νp.♦p and L� (ϕ→ψ)∨ νp.♦p, and
we deduce L�ψ ∨ νp.♦p.

• Suppose that this holds for ϕ→ψ , and that L0 �♦ϕ→♦ψ is obtained from L0 � ϕ→ψ . By
the induction hypothesis, we have L� (ϕ→ψ)∨ νp.♦p, whence L� ϕ→ (ψ ∨ νp.♦p). By
monotonicity, it follows that L�♦ϕ→♦(ψ ∨ νp.♦p). Since ♦ and ∨ commute, we get L�
(♦ϕ→♦ψ)∨♦νp.♦p. Further, by applying the induction rule to L�♦νp.♦p→♦νp.♦p, we
obtain L�♦νp.♦p→ νp.♦p. Therefore, L� (♦ϕ→♦ψ)∨ νp.♦p.

• Suppose that this holds for ϕ→ψ[ϕ/p] and that L0 � ϕ→ νp.ψ is obtained from L0 � ϕ→
ψ[ϕ/p]. By the induction hypothesis, we have

L� νp.♦p∨ (ϕ→ψ[ϕ/p])
and we prove that

μwK4�ψ[ϕ/p]∧ ¬νp.♦p→ψ[ϕ ∧ ¬νp.♦p/p].
Indeed, consider a wK4 frame M rooted in w and assume that M,w �ψ[ϕ/p]∧ ¬νp.♦p.
From �¬νp.♦p→�¬νp.♦p, we obtain M �¬νp.♦p, so M � ϕ↔ (ϕ ∧ ¬νp.♦p) and thus
M �ψ[ϕ/p]↔ψ[ϕ ∧ ¬νp.♦p/p]. Therefore, M,w �ψ[ϕ ∧ ¬νp.♦p/p], and the result fol-
lows by Theorem 15. We then obtain

L� ϕ ∧ ¬νp.♦p→ψ[ϕ ∧ ¬νp.♦p/p]
and by the induction rule, we derive L� ϕ ∧ ¬νp.♦p→ νp.ψ , or equivalently L� νp.♦p∨
(ϕ→ νp.ψ).

Theorem 38. Let θ be a modal formula such thatwK4+ θ is cofinal subframe and canonical. Then,
μwK4+ θ ∨ νp.♦p is Kripke complete and has the finite model property.

Proof. We write L :=μwK4+ θ ∨ νp.♦p and L0 :=μwK4+ θ . Suppose that L �¬ψ , and let 

be a finite set of formulas containingψ and θ ∨ νp.♦p, and with the closure properties enumerated
above. We introduce

• M= (�, R,V) the canonical model of L, based on F= (�, R);
• M
 = (�
 , R
 ,V
) the
-final submodel ofM, based on F
 = (�
 , R
);
• M0 = (�0, R0,V0) the canonical model of L0, based on F0 = (�0, R0).

See Fig. 3 for a visual depiction of these frames. We know that F
 is a cofinal subframe of F. In
addition, we have L⊆ L0, so for all maximal consistent sets� such that L0 ⊆ � we also have L⊆ �;
it is also clear that R and R0 coincide over�0. Thus, F0 is a subframe of F. We then introduce

�′ := {� ∈�
 |M
 , � �¬νp.♦p}
which induces a generated subframe F′ = (�′, R′) of F. Indeed, if � ∈�′ and �R
�, then since
M
 , � �¬νp.♦p we have M
 ,� �¬νp.♦p too and thus � ∈�′. Further, given � ∈�′ we have
M
 , � �¬νp.♦p, and we obtain ¬νp.♦p ∈ � by the Truth Lemma. If L0 � ϕ, then L� ϕ ∨ νp.♦p
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F

F
 F0
F′

Figure 3. The canonical frame of L and its subframes.

by Lemma 37, and from ϕ ∨ νp.♦p ∈ � and ¬νp.♦p ∈ � we deduce ϕ ∈ �. Therefore, L0 ⊆ �, and
we obtain � ∈�0. This proves that F′ is a subframe of F0.

Now, suppose that � ∈�′, � ∈�0, and �R�. Since F
 is cofinal in F, there exists � ∈�

such that�R+�. By weak transitivity, it follows that �R+�, and since F′ is a generated subframe
of F
 it follows that� ∈�′. Therefore, F′ is a cofinal subframe of F0. As observed by Baltag et al.
(2021), that wK4+ θ is canonical implies that μwK4+ θ is canonical too, so F0 � θ . Since L0 is
cofinal subframe, it follows that F′ � θ as well.

We now show that F
 � θ ∨ νp.♦p. Let V• be a valuation over �
 and � ∈�
 . If � ∈�′, let
(�′, R′,V ′•) be the submodel of (�
 , R
 ,V•) induced by �′. We know that (�′, R′,V ′•), � � θ ,
and since F′ is a generated subframe of F
 , it follows that (�
 , R
 ,V•), � � θ . Otherwise, we
have M
 , � � νp.♦p, but obviously the truth value of νp.♦p does not depend on the valuation
V
 , and thus (�
 , R
 ,V•), � � νp.♦p. This proves our claim. Finally, as mentioned earlier, ψ is
satisfiable onM
 , and this concludes the proof of Kripke completeness.

There remains to prove thatψ is satisfiable on a finite Kripke model. In the work of Baltag et al.
(2021), we find the construction of a finite model M∗


 = (�∗

 , R

∗

 ,V

∗

) – obtained as a quotient

of M
 by so-called 
-bisimilarity – together with a surjection ρ :�
 →�∗

 such that for all

� ∈�
 , the pointed models (M
 , �) and (M∗

 , ρ(�)) satisfy the same formulas among those of


. In particular, this entails thatM∗

 � L and that ψ is satisfiable onM∗


 , as desired.

In order to prove topological completeness, we apply the technique used by Baltag et al. (2021)
to turn a wK4 frame into an appropriate topological space. The construction essentially consists
of replacing every reflexive point w of a frame by countably many copies of w and to arrange them
all into a dense-in-itself subspace, so as to mimic the reflexivity of w in a topological manner.

Definition 39. Let F= (W, R) be a wK4 frame. We denote by Wr the set of reflexive worlds of F
and byWi the set of irreflexive worlds of F. We then introduce the unfolding of F as the space XF :=
(Wr ×ω)∪ (Wi × {ω}) endowed with the topology τF of all sets U such that for all (w, α) ∈U:

(1) there is nUw,α < ω such that for all (u, β) ∈ XF, if wRu, uRw, and β ≥ nUw,α then (u, β) ∈U;
(2) if (u, β) ∈ XF, wRu, and not uRw, then (u, β) ∈U.

Proposition 40. (Baltag et al. 2021).The pair (XF, τF) is a topological space and the map π : XF →
W defined by π(w, α) :=w is a surjective d-morphism.

Theorem 41. Let θ be amodal formula such thatwK4+ θ is cofinal subframe and canonical. Then,
μwK4+ θ ∨ νp.♦p is topologically complete.

Proof. Suppose that ψ is consistent in μwK4+ θ ∨ νp.♦p. We keep the notations of the proof of
Theorem 38. We introduce the spaces X := XF
 , Y := π−1[�′] and Z := X \ Y . We prove that Y
and Z satisfy the conditions of Proposition 30. First, we know that F′ is a generated subframe of
F
 , so �′ is open, and thus so is π−1[�′]= Y . In addition, since F′ �¬νp.♦p, the frame F′ is
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irreflexive, so Y =�′ × {ω} and π|Y is injective. Since π is a d-morphism, the maps π and π−1

are continuous, and since Y is open, so are π|Y and π−1
|Y . Therefore, π|Y is a homeomorphism

between Y and F′. From F′ � θ and Proposition 13, we conclude that Y � θ .
We then prove that Z is dense-in-itself. Let (�, α) ∈ Z and U be an open neighborhood of

(�, α). From (�, α) ∈ Z, we know that� /∈�′, that is,M
 , � � νp.♦p. If α �=ω, then� is reflexive.
We select some β ≥ nUw,α such that β �= α, and by definition of nUw,α we obtain (�, β) ∈U. We also
have (�, β) ∈ Z. Otherwise, we have α =ω, and then � is irreflexive. From this and M
 , � �
νp.♦p, we obtain the existence of � �= � such that �R� andM
 ,� � νp.♦p. We set β := nUw,α if
� is reflexive, and β :=ω otherwise; we then have (�, β) ∈ Z by definition. Depending onwhether
�R� or not, we apply either item 1 or item 2 of Definition 39, and in both cases we obtain (�, β) ∈
U. Both cases bring the existence of some element inU ∩ Z different from (�, α), and we are done.

It follows thatX � θ ∨ νp.♦p. We know thatψ is satisfiable onF
 , and since π is a d-morphism
it follows by Proposition 6 that ψ is satisfiable on X as well. This concludes the proof.

In the following corollary, we finally apply these results to our examples.

Corollary 42. For all m ∈N, the logic μwK4+ IP.2+
m is Kripke and topologically complete.

Proof. Since (♦♦p→ p∨♦p)∧ .2+
m is a Sahlqvist formula, the logic L0 :=wK4+ .2+

m is canonical
(Blackburn et al., 2001, Section 4.3). In order to apply Theorems 38 and 41, we prove that L0
is cofinal subframe. Let F= (W, R) be a wK4 frame such that F � L0, and let F′ = (W′, R′) be a
cofinal subframe of F′.

Let w ∈W′. First, suppose that F,w � .2+. Then if wR+u and wR+v with u, v ∈W′, we have
by assumption uR+t and vR+t for some t ∈W. Then since F′ is cofinal in F we have tR+t′ for
some t′ ∈W′, and thus uR+t′ and vR+t′. This proves that F′,w � .2+. Otherwise, there exists a
valuation V such that F,V ,w � .2+, and since F,V ,w � .2+

m it follows that F,V ,w ��m⊥. From
this, we deduce F′,w ��m⊥. In both cases, we obtain F′,w � .2+

m. Therefore, F′ � L0, and this
proves the claim.

6. Conclusion
We have established some fundamental results regarding the expressivity of the topological
μ-calculus as opposed to basic modal logic. We have shown that the latter is indeed more expres-
sive axiomatically than the former, a fact that was surprisingly difficult to prove. Accordingly, the
examples we have exhibited are optimal in the sense that they involve topologically complete log-
ics, which we have argued correspond to natural classes of spaces. In particular, they are related to
the perfect core of a space, equivalent to the unary version of the tangled derivative, perhaps the
most fundamental topological fixed point. This suggests that we are only scratching the surface of
the jungle of spatial μ-logics, and their classification could be a bold new direction in the study of
topological modal logics.
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Notes
1 Recall that the derivative d(A) of a set A consists of all limit points of A.
2 Note that a stronger notion of expressivity is also considered in the literature: namely, L ′ is at least as expressive as L if
for every ϕ ∈ L there is an equivalent ϕ′ ∈ L ′ (with respect to a fixed semantics). To avoid confusion, we may call the latter
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local expressivity, and the notion we are concerned with axiomatic expressivity. Thus, local expressivity refers to the capacity
of a language to define sets of points locally in a given model, while axiomatic expressivity refers to its capacity to axiomatize
classes of models. With this terminology in mind, while it was known that μ-calculus is locally more expressive than the
basic modal language over topological spaces – see, for example, Fernández-Duque (2011a) - here we will show that it is also
axiomatically more expressive.
3 Later we will see that the same result with (Fspinen,w , rn) and (Fcyclen,w , rn) follows for free.
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