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Using direct numerical simulations, we investigate the heat transport in bulk and boundary
flows separately in rotating Rayleigh–Bénard convection in cylindrical cells. In the
bulk we observe a steep scaling relationship between the Nusselt number (Nu) and the
Rayleigh number (Ra), which is consistent with the results from simulations using periodic
boundary conditions. For the boundary flow, we observe a power law NuBF ∼ (Ra/Raw)1

at the leading order, where NuBF is the local Nusselt number of the boundary flow and Raw
is the onset Rayleigh number of the wall mode. We develop a model using the boundary
layer marginal stability theory to explain this power law, and further show that a more
precise description of the data can be obtained if a higher-order correction is introduced.
A striking finding of our study is the observation of a sharp transition in flow state,
manifested by a sudden drop in NuBF with a corresponding collapse of the boundary
flow coherency. After the transition, the boundary flow breaks into vortices, leading to
a reduction in flow coherency and heat transport efficiency. As the physical properties
of the vortices should not depend on the aspect ratio, NuBF for all aspect ratios collapse
together after the transition. Moreover, the centrifugal force helps trigger the breakdown
of the coherent boundary flow state. For this reason, NuBF for the cases with non-zero
centrifugal force collapse together. We further develop a method that enables us to separate
the contributions from the bulk and boundary flows in the global Nusselt number using
only the global Nu and it does not require the centrifugal force to be absent.

Key words: rotating flows, Bénard convection, turbulent convection

1. Introduction

Natural convection under the influence rotation occurs widely in many geo- and
astrophyiscal environments (Chen & Guo 2003; King et al. 2009; Cheng et al. 2015, 2018;
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Plumley & Julien 2019). For example, the large-scale vortices observed in the giant planets,
such as the ‘Great Red Spot’ at the atmosphere of Jupiter, are sustained by convection
under a strong Coriolis force (Guervilly, Hughes & Jones 2014; Favier, Guervilly &
Knobloch 2019; Cai 2021). Moreover, moist convection is considered an important factor
in explaining the formation of a polar vortex in giant planets (O’Neill, Emanuel & Flierl
2015) and the upscale energy transfer strengthening the large cyclones at Jovian high
latitudes (Siegelman et al. 2022). Understanding the dynamics of these systems relies
deeply on the observations. However, owing to the difficulty in data acquisition and the
complexity of these systems, idealized models are very useful complementary approaches
used to investigate the dynamics of these systems. A classical physical model for rotating
convection is the rotating Rayleigh–Bénard convection (RBC). When the system is rapidly
rotating, the horizontal pressure gradient is balanced by the Coriolis force at the leading
order, which is known as the geostrophic balance. Rayleigh–Bénard convection under
geostrophic balance possesses features relevant to many important issues of the geo-
and astrophysical systems, thus, it has attracted considerable interest in recent decades
(Knobloch 1998; King et al. 2009; Stevens et al. 2009; Zhong et al. 2009; Weiss et al.
2010; King, Stellmach & Aurnou 2012; Ecke & Niemela 2014; Stellmach et al. 2014;
Kunnen 2021). In this system, the rotation rate can be characterized by the Ekman number
Ek ≡ ν/(2ΩH2), and the strength of buoyancy forcing is represented by the Rayleigh
number Ra ≡ (αg�H3)/(κν). Here α is the thermal expansion coefficient of the fluid, g
is the gravitational acceleration, Δ = Thot − Tcold is the temperature difference between
the hot and cold plates, H is the height of convection cell, ν is the kinetic viscosity, κ is
the thermal diffusivity and Ω is the rotating rate. Rotation suppresses the vertical fluid
motions as a result of the Taylor–Proudman constraint. For a laterally unlimited domain,
bulk convection emerges when Ra is beyond the onset Rayleigh number Rac (Niiler &
Bisshopp 1965)

Rac = (8.7 − 9.63Ek1/6)Ek−4/3. (1.1)

For the systems with lateral boundaries, however, distinct flow structures can be found
in the region adjacent to the sidewalls. These structures are called wall mode, which is
azimuthally periodic and precesses in the retrograde direction (Zhong, Ecke & Steinberg
1991; Ecke, Zhong & Knobloch 1992; Favier & Knobloch 2020). Different from the
direction of precession, the mean azimuthal velocity of the outer part of the wall mode is
positive (prograde). For a cylindrical system with non-slip boundaries, the onset Rayleigh
number of the wall mode is given by (Zhang & Liao 2009)

Raw = π2
√

6
√

3Ek−1 + 46.6Ek−2/3. (1.2)

For a large Pr number, the wall mode emerges at a smaller Ra than the bulk convection.
When the bulk flow emerges, the wall-localized flow structure is also understood as the
boundary zonal flow (Zhang et al. 2019; Zhang, Ecke & Shishkina 2021; Ecke, Zhang
& Shishkina 2021; Wedi et al. 2022). To avoid confusion, hereafter we refer to this flow
structure adjacent to the sidewall as the boundary flow, whether or not the bulk convection
sets in.

Among the various topics in geostrophic RBC, determination of the scaling relationship
of heat transport efficiency is one of the key issues. This is not only attributed to the
fact that heat transport itself is crucial in many physical problems, heat transport may
also reflect the transition in flow morphology and the dominating force balance in the
system. For this reason, the scaling relationship of the heat transport efficiency can help
one to better understand the essential physics of the system, which may also enable
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simplification of the physical models or parameterization of the main physical quantities
of the system. Moreover, the scaling relationship of heat transport efficiency provides
the possibility to estimate the physical quantities or explain the features of the geo- and
astrophysical environments that are beyond the achievable parameter range in experiments
or simulations. The heat transport efficiency is quantified by the Nusselt number Nu ≡
(〈uzT − κ∂T/∂z〉x,y)/(κΔ/H), where 〈·〉x,y denotes the average over the horizontal plane.
For laterally unbounded cases, a steep scaling relationship Nu ∼ (Ra/Rac)

3 can be found
numerically (King et al. 2012; Cheng et al. 2015). However, recent experiments and
numerical simulations using cylindrical cells observed much smaller scaling exponents
than 3 (Lu et al. 2021). Such a difference suggests that the boundary flow has a distinct
Ra dependence of the heat transport efficiency from the bulk. In practical situations, the
existence of lateral boundaries is inevitable. Moreover, in order to reach the geostrophic
regime, many experiments are chasing for even smaller Ek and higher Ra. One can enhance
Ra by using the so-called annular centrifugal Rayleigh–Bénard convection (ACRBC)
system through the generation of supergravity induced by rapid rotation and the strong
centrifugal force (Jiang et al. 2020; Wang et al. 2022), or simply by increasing the system
height H. However, for the ACRBC system, the rotating axis is perpendicular to the
effective gravity (centrifugal force), which is different from the rotating RBC system
(rotating axis is parallel to the gravity). Thus, increasing H is a more reasonable method
to increase Ra in a rotating RBC system. On the other hand, increasing H or the rotation
rate Ω can both effectively extend the lower limit of the achievable Ek, but for the latter,
the centrifugal effect could be strong so that the flow structures are significantly changed
(Horn & Aurnou 2018; Hu et al. 2021; Hu, Xie & Xia 2022; Hu & Xia 2023). For this
reason, in a rotating RBC system, it is believed to be advantageous to extend the parameter
range by utilizing slender cells with a large system height (Cheng et al. 2015, 2020; de Wit
et al. 2020). In this case, the influence of boundary flows can be significant. Thus, it is
crucial to quantitatively understand the influence of boundary flow, so that one can assess
and even extract the contributions of the boundary flow from the total heat flux.

In this study we use direct numerical simulations (DNS) to investigate rotating RBC in
cylindrical cells with various aspect ratios, aiming to obtain a systematic understanding
of the heat transport in rotating RBC in the presence of the boundary flows. To achieve
this objective, we examine the bulk and boundary flows separately. The remainder of this
paper is organized as follows. In § 2.1 we briefly introduce the numerical method used in
this study. In § 2.2 we explain how the bulk and boundary flows are decomposed in our
study, and demonstrate the reliability of our method. In §§ 3.1 and 3.2 we discuss the heat
transport efficiency of the bulk and boundary flows separately. In § 3.3 we report a sharp
transition in flow morphology, which is manifested as the collapse of coherency of the
boundary flow structure and accompanied with a sudden drop in heat transport efficiency
associated with the boundary flow. In § 3.4 we take a whole-system approach and provide
a unifying understanding of the global heat transport efficiency.

2. Methodology

2.1. Numerical set-up
We consider a rotating cylindrical RBC cell with an upward rotational vector. The top and
bottom plates are non-slip and with constant temperature Tcold and Thot, respectively. The
sidewall is non-slip and adiabatic. The geometrical property of the cell is described by
the aspect ratio Γ = D/H, where D is the diameter of the convection cell. This system is
governed by the three-dimensional Navier–Stokes equations with Oberbeck–Boussinesq

975 A46-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

87
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.872


G.-Y. Ding and K.-Q. Xia

approximation. Since the centrifugal effect is usually unavoidable in many of the rapid
rotating experiments, we have conducted a series of simulations that consider the
centrifugal effect to examine the influence of centrifugal force. The centrifugal force
is quantified by the Froude number Fr ≡ (RΩ2)/g, which is the ratio of centrifugal
acceleration over the gravitational one. Here R ≡ D/2 is the radius of the cell. Length,
velocity, time and temperature are respectively non-dimensionalized by the height of the
convection cell xref = H, the convective free-fall velocity uref = (αgHΔ)1/2, the free-fall
time tref = xref /uref and the temperature difference between the hot and cold plates
Tref = Δ. The dimensionless governing equations with centrifugal effect are

∂u
∂t

+ u · ∇u = −∇p +
√

Pr
Ra

∇2u − 1
Ek

√
Pr
Ra

êz × u + θ êz − Fr
2r
Γ

θ êr, (2.1)

∂θ

∂t
+ u · ∇θ = 1√

RaPr
∇2θ, (2.2)

∇ · u = 0. (2.3)

Here Pr ≡ ν/κ is the Prandtl number, which is the ratio between momentum and thermal
diffusivity of the working fluid. All our simulations are done at Pr = 4.38 (corresponding
to water at about 40 ◦C). The dimensionless temperature variation θ is defined as θ ≡
(T − Tm)/Δ, where Tm ≡ (Thot + Tcold)/2. For the sake of simplicity, symbols without
special notation stand for the non-dimensional quantities in the rest of this paper.

The governing equations are solved in the cylindrical coordinates using a well-tested
DNS code called CUPS, which is a fully parallelized DNS code based on the finite volume
method with fourth-order precision (Kaczorowski & Xia 2013; Kaczorowski, Chong &
Xia 2014; Chong, Ding & Xia 2018). In this study we focus on the systems with Pr > 1,
in which case the characteristic length scale of the temperature field (Bachelor length
scale) is smaller than that of the velocity field (Kolmogorov length scale). In a traditional
single-resolution scheme, the grid spacing is determined by Bachelor length scale, which
is over-resolved for the velocity field. To improve computational efficiency without any
sacrifice in precision, we used a multiple-resolution strategy. In this case, the momentum
and temperature equations are solved in two grid sets. The momentum equations are
solved in a coarser grid set than the temperature equation, which can still allow Batchelor
and Kolmogorov length scales both being resolved. Using this algorithm, computational
sources spent on the momentum solver is significantly reduced. We conducted three series
of simulations: set I varies Ra and fixes Ek at Ek = 1.85 × 10−6; set II has similar
conditions as set I, but includes the centrifugal effect; and in set III, Ra is fixed at
Ra = 2 × 107 and Ek is varied. Three aspect ratios (Γ ) are used in sets I and II, which
are Γ = 0.5, 1 and 2. In set III we fix Γ = 4. Additionally, we also conduct a series
of simulations in a cubic cell with aspect ratio 1 and lateral periodic boundaries. These
simulations use the same Ekman number as sets I and II. All statistical quantities are
taken over 400 convective free-fall time units and, for those with a high rotating rate, the
statistical period is longer. In the main text of this paper, we focus on sets I and II with fixed
Ek. In Appendix F the cases with fixed Ra and the data of set III are discussed. Table 1
in the supplemental material available at https://doi.org/10.1017/jfm.2023.872 lists all the
numerical set-ups for the simulations in this study, and the parameters for the cases in sets
I and II are shown in figure 1.
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Γ = 0.5, Fr = 0
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Γ = 1.0, Fr = 0.12

Γ = 2.0, Fr = 0

Γ = 2.0, Fr = 0.24

Figure 1. Parameter space for the cases in set I and II. In these two data sets, Ek is fixed to be 1.85 × 10−6 and
Pr = 4.38. The black dashed and grey dot-dashed lines, respectively, correspond to Ra = Rac and Ra = Raw.

2.2. Decomposition of bulk and boundary flows
The key to quantitatively understand the global heat transport of this system is to
decompose the corresponding contributions from the bulk and the boundary flows. In
previous studies the decomposition was achieved using a series of different radii as the
cutoff (Ecke, Zhang & Shishkina 2022). In this study we wish to decompose the respective
contributions from these two regions according to the distinct features of these two regions.
In order to develop a reliable and reasonable method for the decomposition across various
situations with differing turbulence intensities, we first concentrate on the flow structures
present within this system. In figure 2(a) we present the distributions of the azimuthal
velocity 〈uφ〉t,φ averaged over time and the azimuthal direction for Ra = 8.71 × 108. From
figure 2(a) one can see flow structures with positive azimuthal velocity near the sidewall.
It would be intuitive to separate the boundary flow and the bulk flow according to the zero
crossing of uφ from the outer positive part close to the sidewall to the inner negative part.
However, such wall-localized boundary flow is a two-layer structure in which the outer
and inner layers have opposite azimuthal velocities. Thus, using the simple zero-crossing
criterion cannot extract the boundary flow in its entirety. We remark that this two-layer
structure is consistent with the analytical solution of the velocity component parallel to the
sidewall for the wall mode given by Herrmann & Busse (1993). Such similarity suggests
the connection between the wall mode and the boundary flow. This two-layer structure can
also be found in the averaged convective heat flux 〈Jz〉t,φ shown in figure 2(c), where Jz is
the local convective heat flux defined as Jz ≡ √

RaPruzθ . We see that the region adjacent
to the sidewall and with positive azimuthal velocity has positive convective heat flux; and
the region next to it and with negative uφ has negative Jz.

To better identify the two-layer structure of the boundary flow and explain the method
decomposing the bulk and the boundary flows, we present the root-mean-square (r.m.s.)
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Figure 2. (a) Mean azimuthal velocity. (b) Vertical averaged r.m.s. of the azimuthal velocity 〈u2
φ〉1/2

t,z,φ .
(c) Mean convective vertical heat flux. (d) The convective vertical heat flux averaged temporally and in the
vertical and azimuthal directions 〈Jz〉t,z,φ . The insets of (b,d) show the corresponding data from r/R = 0 to
1, respectively. The control parameters for (a–d) are Ra = 8.71 × 108, Ek = 1.85 × 10−6, Fr = 0 and Γ = 1.
The dot-dashed and dashed lines in (a–d) respectively correspond to rBF and r0. (e) Width of the boundary
flow δBF/H (close symbols) and δ0/H (open symbols) as a function of Ra. The blue dot-dashed and red dashed
lines in (e) represent the best fits of the data for δBF and δ0, respectively.
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value of the azimuthal velocity 〈u2
φ〉1/2

t,z,φ in figure 2(b) and the mean convective heat flux
〈Jz〉t,z,φ in figure 2(d). The subscript 〈·〉t,z,φ denotes the average over time and the vertical
and azimuthal directions. We remark that the azimuthal component of the boundary flow is
azimuthally periodic and its flow strength cannot be correctly reflected from 〈uφ〉t,z,φ , thus
decomposing the bulk and the boundary flow according to 〈uφ〉t,z,φ can be problematic
especially at high Ra when the bulk fluctuations are strong. For this reason, we instead use
the r.m.s. 〈u2

φ〉1/2
t,z,φ in the bulk-boundary-flow decomposition. From the profile of 〈u2

φ〉1/2
t,z,φ

presented in figure 2(b), one can clearly see a two-layer structure near the boundary and a
bulk with a relatively weak flow strength. We fit the data near the two peaks using parabolic
functions, which are shown as the red dot-dashed and blue dashed curves in figure 2(b),
respectively. We fit the bulk part of 〈u2

φ〉1/2
t,z,φ (r/R < 0.7) using linear functions, which

are denoted by the grey dotted lines in figure 2(b). We then define the left intersection
between the parabolic fitting of the inner peak and the linear fitting as rBF (indicated
by the red triangles), which is the edge separating the bulk and the boundary flow, as
shown by the vertical black dot-dashed lines in figure 2. The blue and red shaded regions
in figure 2(b,d) respectively represent the bulk and the boundary flows. We then define
r0 as the zero crossing of the outer parabolic fitting (indicated by the blue stars), which
separates the prograde (outer) and retrograde (inner) parts of the boundary flow. As heat
transport is one of the main topics of this study, we need to ensure that the method we used
for the decomposition can effectively identify the different domains with distinguishing
features especially in terms of the heat transfer. To examine our method, we also present
the mean convective heat flux 〈Jz〉t,z,φ and the result of the decomposition in the same plot,
as shown in figure 2(d). We see that the boundary flow with distinguishable features in the
convective heat flux can be properly identified, which provides certain validation for our
method. More examples of the decomposition for various Ra and different flow states are
presented in Appendix A.

The width of the entire boundary flow δBF ≡ Γ/2 − rBF and the outer boundary flow
δ0 ≡ Γ/2 − r0 can then be determined, respectively. We present the results of δBF and δ0
for sets I and II in figure 2(e). We find that the results of different Γ collapse together for
both δBF and δ0. Interestingly, it seems that δBF and δ0 exhibit similar Ra dependence but
only differ by a constant, which is found to be δBF ≈ 2.7δ0 in our study. Zhang et al. (2021)
observed a scaling relationship δ0 ∼ Ra1/4 using Pr = 0.8. More recently, the experiments
conducted by Wedi et al. (2022) suggests that for Pr = 6.55, δ0 is insensitive to Ra. The
numerical study conducted by Ecke et al. (2022) also has observed a relatively weak Ra
dependence of δ0, which is given by δ0/H ∼ (Ra − Raw)1/6Ek2/3. We plot the black and
red dashed lines respectively referring to δBF,0 ∼ Ra1/4 and δBF,0 ∼ Ra0 in figure 2(e) for
comparison. For Ra � 1 × 109, both δBF and δ0 are insensitive to Ra, which agrees with
δBF,0 ∼ Ra0 indicated by Wedi et al. (2022). When Ra approaches to about 1 × 109, δBF

and δ0 slightly increases with Ra. Even though the data are scattered for Ra � 1 × 109,
it seems that δBF,0 ∼ Ra1/4 deviates from the data of either δBF or δ0. As pointed out by
Wedi et al. (2022), the exponent of the power law for δ0 with Ra could depend on Pr.
Thus, such a discrepancy between our study and Zhang et al. (2021) may be attributed
to the difference in Prandtl numbers. Nevertheless, for Ra � 1 × 109, it is reasonable to
consider that δBF and δ0 are not sensitive to Ra.
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(a) (b)

Figure 3. (a) Plot of Nubulk as a function of Ra/Rac. The grey and black dashed lines respectively represent
the power-law fittings of the periodic and all cylindrical results. The vertical black dot-dashed line indicates
Raw. (b) Plot of Nubulk − 1 as a function of Ra/Ra∗

c − 1. The orange dotted curves refer to Nubulk − 1 ∼
(Ra/Ra∗

c − 1)1.39. The inset in (b) presents the log–log plot.

3. Results

3.1. Heat transport properties of the bulk
Using the criterion discussed in § 2.2, we proceed to investigate the heat transport in the
bulk and boundary flows separately. We define Nubulk as the Nusselt number of the bulk

Nubulk ≡
〈√

RaPruzθ − ∂θ

∂z

〉
t,z,φ,r�rBF

. (3.1)

We plot Nubulk as a function of Ra/Rac in figure 3(a). For comparison, we also present
Nu from simulations using lateral periodic boundary conditions. For Ra smaller than
the bulk onset Rac, all simulations yield Nubulk = 1, meaning that heat is transferred
conductively in the bulk. For Ra > Rac, steep scaling relationships can be observed for
all cases. The periodic results can be described by Nu ∼ Ra3.3±0.2, which agree with
the steep scaling relationships observed in previous studies with a small Ekman number
and using non-slip top and bottom plates and lateral periodic boundary conditions (King
et al. 2009, 2012; Stellmach et al. 2014; Cheng et al. 2015) and the polar region of
a spherical shell convection system (Gastine & Aurnou 2023). This steep scaling is
attributed to the nonlinear effect arising from the Ekman pumping near the non-slip
top and bottom plates (Stellmach et al. 2014; Julien et al. 2016; Plumley et al. 2016,
2017). Despite the minor data scattering, all Nubulk for cylindrical cases have roughly
the same scaling relationships Nubulk ∼ Ra3.3±0.1, which is consistent with that of the
periodic cases. For the cases close to the bulk onset, one can also describe the data using
Nubulk − 1 ∼ (Ra/Rac − 1)γ

∗
. We find that the exponent γ ∗ for this scaling relationship

is roughly 1.39 ± 0.07, as we show in figure 3(b). The Ra∗
c in figure 3(b) is the onset of

bulk convection determined by extrapolating the best fit power law shown in figure 3(a) to
Nubulk = 1. Although the magnitude of γ ∗ is different from the exponent γ in the scaling
relationship Nubulk ∼ (Ra/Rac)

γ , we find that the result for the bulk is consistent with the
periodic case, as shown in figure 3(b). This result demonstrates the similar feature in heat
transport between the bulk of a system with lateral boundaries and the case with periodic
boundary conditions.
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Additionally, we find that the onset of bulk convection in the cylindrical cells is slightly
larger than the linear stability analysis of the unbounded problem as given by (1.1)
(Ra∗

c ≈ 1.40Rac). We also note that although all the cylindrical data are very close to each
other, those of Γ = 2, Fr = 0 seem to have an onset value closer to Rac than the others.
This suggests that the difference in Rac may be related to the aspect ratio. Moreover, when
examining data near Ra/Rac ≈ 1, we observe that the Nubulk values for these cases are
actually greater than 1, implying the presence of convection in the bulk. However, as the
Ra dependence for these cases is significantly weaker than the so-called ‘steep scaling’, we
deduce that this vertical convective heat transport should arise from plume-like structures
emanating from the boundary flow rather than the bulk convective instability. Such flow
emission from the wall-localized structures has been reported by Favier & Knobloch
(2020) and will be further discussed in § 3.2. As the onset of bulk convection is affected by
both bulk convective instability and perturbations from the boundary flow, the influence
of aspect ratio to the onset of bulk convection cannot be sufficiently explained by onset
theories for either the unbounded system (Niiler & Bisshopp 1965) or the wall mode
(Herrmann & Busse 1993; Zhang & Liao 2009). Further theoretical study is required
to understand the onset of bulk convection in a rotating system with a lateral boundary.
Additionally, the flow strength (quantified by the Reynolds number) for the bulk is also
independent of the aspect ratio when bulk convection emerges. Details of the Reynolds
number for the bulk can be found in Appendix E.

3.2. Heat transport properties of the boundary flow
Since the bulk of the cylindrical cell reproduces the heat transport properties of the
domains with lateral periodic boundary conditions, the difference in global heat transport
between these two systems must then be attributed to the boundary flow. Thus, a
quantitative investigation of the heat transport in the boundary flow is the key for
understanding the global heat transport in the system with lateral boundaries. Analogous
to (3.1), the Nusselt number for the boundary flow NuBF can be defined as

NuBF ≡
〈√

RaPruzθ − ∂θ

∂z

〉
t,z,φ,r�rBF

. (3.2)

We plot NuBF as a function of Ra/Raw in figure 4(a). Compared with Nubulk, as shown in
figure 4(a), the behaviour of NuBF appears to be more complicated. For Ra/Raw � 3, NuBF
for all aspect ratios can be described by a linear relationship NuBF − 1 ≈ 6(Ra/Raw − 1),
which agrees with the reported supercritical behaviour of the global Nusselt number
beyond the onset of convection (Zhong et al. 1991; Ecke et al. 1992; Cross & Hohenberg
1993; Zhong, Ecke & Steinberg 1993; Julien et al. 2012; Ecke et al. 2021). In figure 4(b)
we plot NuBF − 1 as a function of Ra/Raw − 1, which better demonstrates the linear
dependence of convective heat flux near the onset of the wall mode.

As Ra/Raw further increases, results for different aspect ratios diverge. When
Ra/Raw � 10, NuBF roughly follows a similar scaling relationship for all cases. The
qualitative behaviour is the same whether or not the centrifugal force persists. Comparing
the data with the red dot-dashed line in figure 4(a) indicating NuBF ∼ (Ra/Raw)1, we find
that the observed scaling exponent is close to 1.

Here we propose a theoretical model explaining the leading order of this scaling
relationship, following the idea of the marginal boundary layer stability analysis (Malkus
1954; King et al. 2012). For Ek � 10−1, the second term in (1.2) is negligible, thus, it can
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Figure 4. (a) Plot of NuBF as a function of Ra/Raw. The vertical grey dot-dashed line indicates Rac. The
inset of (a) is the zoomed-in view of the results around Ra/Raw = 50. (b) Plot of NuBF − 1 as a function of
Ra/Raw − 1. The grey dot-dashed curves correspond to NuBF − 1 = 6(Ra/Raw − 1). The dashed lines refer to
the best fit of NuBF = C(Ra/Raw)γBF , and the red dot-dashed line is the guide for the eye indicating NuBF ∼
(Ra/Raw)1. The grey dotted curves correspond to the relationship (B3) with higher-order correction (HOC).

be simplified to

Raw ≈ π2
√

6
√

3Ek−1. (3.3)

We remark that (3.3) is identical to the onset Rayleigh number of the wall mode in a
semi-infinite system with a shear free top and bottom (Herrmann & Busse 1993). Within
the thermal boundary layer (with thickness δ), the buoyancy unstablizes the flow, while
the Coriolis force acts as a dominating stablizer. The local stability criterion at the edge
of the thermal boundary layer is given by Raδ/Raδ

w ≈ 1, where Raδ = αgΔδδ
3/(κν),

Raδ
w = Raw(Ekδ), Ekδ = ν/(2Ωδ2). Here Δδ is the temperature difference across the

thermal boundary layer. Substituting Ekδ into (3.3) we obtain Raδ
w ∼ A(Ekδ)−1, where

A is a prefactor. The marginal stability criterion can then be written as

Raδ

Raδ
w

≈ αgΔδδ
3Ekδ

Aκν
= αgΔδδ

2AΩκ
≈ 1, (3.4)

which gives

δ = 2AΩκ

αgΔδ

. (3.5)

Since the heat transport of the boundary flow is dominated by the thermal boundary layer,
we can assume that

Nu ≈ κΔδ/δ

κΔ/H
= Δδ

Δ

H
δ

. (3.6)

Assuming

Δδ ∼ Δ/2, (3.7)

we can have

Nu ∼ H/δ. (3.8)
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Geostrophic rotating Rayleigh–Bénard convection with lateral boundary

Γ Fr γBF C Γ Fr γBF C

0.5 0 0.8 ± 0.1 1.68 0.5 0.06 0.79 ± 0.02 1.87
1 0 0.84 ± 0.05 2.31 1 0.12 0.86 ± 0.06 1.48
2 0 0.80 ± 0.03 3.82 2 0.24 0.92 ± 0.01 1.17

Table 1. The results of the best fits of NuBF = C(Ra/Raw)γBF .

Using this assumption, we obtain the following relationship:

Nu ∼ αg�H
4AΩκ

∼ RaEk ∼ (Ra/Raw)1. (3.9)

The data presented in figure 4(a) exhibit scaling relationships close to (3.9).
We further fit the data using the power-law relationship NuBF ≈ C(Ra/Raw)

γ

BF, with
C being an aspect-ratio dependent prefactor and γBF the exponent; we list the results in
table 1. From table 1 we can see that the obtained scaling exponents are all smaller than
unity, suggesting that the above theory may not be able to fully explain the data, and other
effects should be introduced. A plausible reason for such discrepancy is the neglect of the
higher-order term in the critical Rayleigh number Raw. The critical Rayleigh number of the
wall mode given by Zhang & Liao (2009) consists of two terms, as shown in (1.2). We drop
the second term in (1.2) when deriving the scaling relationship of NuBF (3.9). However,
since Ekδ ∼ 1/δ2, for a large Nu number, the thermal boundary layer could be sufficiently
thin so that the second term in (1.2) is not negligibly small. By including the second term
in (1.2), one can then obtain a relationship for NuBF with high-order correction,

NuBF

(
π2

√
6
√

3 + 46.55Ek1/3
(

Δ

Δδ
NuBF

)2/3 )
∼ RaEk. (3.10)

Detailed derivations of (3.10) are presented in Appendix B.
In figure 4(a) we plot the solutions of (3.10) as grey dashed curves. By introducing

the second term of (1.2) in the derivation, (3.10) results in a close agreement with the
data, suggesting that neglecting the higher-order term in (1.2) could be one of the reasons
leading to the discrepancy between the obtained exponents and (3.9). However, one can
see that (3.10) is not a power-law relationship but instead an equation for NuBF, which
is mathematically more complicated than (3.9). As (3.9) describes the leading-order
behaviour of NuBF, in the latter discussions we use (3.9) instead of (3.10) describing NuBF,
but it is important to note that the higher-order correction is required in a strict manner.

3.3. Transition in boundary flow morphology
In figure 4(b), when Ra increases and is beyond the range obeying (3.9), we can see a
sudden drop in NuBF at Ra/Raw ≈ 50. After the sudden drop, NuBF becomes independent
of Γ and all data collapse together. To understand this sudden drop in NuBF, we need to
examine the flow structure before and after this transition.

We present the temperature fields at the mid-height for different Ra numbers close to
the drop of NuBF in figure 5. Here figure 5(a) corresponds to Ra = 8.71 × 108 (before the
sudden drop in NuBF, marked by ‘Before’ in figure 4a) and figure 5(b) Ra = 1.02 × 109

(after the sudden drop, marked by ‘After’ in figure 4a). One can find a coherent boundary
flow structure with clear azimuthal periodicity adjacent to the sidewall in the case ‘Before’.
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Figure 5. (a,b) Instantaneous temperature field θ at the mid-height and (c,d) the space–time plot of the
sidewall temperature at mid-height for (a,c) Ra = 8.71 × 108 (case ‘Before’) and (b,d) 1.02 × 109 (case
‘After’), respectively. All plots are for Γ = 1, Ek = 1.85 × 10−6 and Fr = 0. The grey dashed and black
dot-dashed circles in (a,b) respectively correspond to r0 and rBF .

The flow in the azimuthal direction is constrained within the boundary flow region (r >

rBF). One can also observe the emissions of plume-like structures at the contacts of the hot
and cold parts. Such plume-like structures move radially to the bulk. As bulk convection is
insufficiently strong for mixing, one can still observe an azimuthally periodic pattern away
from the boundary flow in the temperature field. When the transition occurs, the boundary
flow breaks into fragmented vortices leading to a collapse of the coherent boundary flow
state. In this case, the convective mixing is sufficiently strong and the periodic pattern away
from the boundary flow does not exist anymore. These plume-like structures emitting from
the bulk boundary flow region act as an important source for vortex production, leading to
the result that vortex density at the edge of the boundary flow is higher than the uniform
distribution. Details of the vortex distribution can be found in Appendix D.

We denote the state with coherent boundary flow as the coherent boundary flow state and
the state after transition as the vortical boundary flow state. One of the consequences of
this transition is a sharp decrease of the size of coherent structures: from the wavelength
λ of the boundary flow unit to the diameter of vortices. Once the coherent structure is
fragmented, heat will be dissipated more easily during the transport and, hence, becomes
less efficient in heat transport. Such transition in flow morphology is consistent with
the sudden drop in NuBF observed in figure 4(a). Moreover, as the size of the boundary
vortices should be independent of Γ , NuBF in the vortical boundary flow state will also be
independent of Γ , which can be found from the data for Ra beyond the transition shown
in figure 4.
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Geostrophic rotating Rayleigh–Bénard convection with lateral boundary

However, we wish to remark that although after the transition occurs the boundary
flow breaks into vortices, one can still observe some heritage features of the coherent
boundary flow state, such as a certain integer mode number and retrograde precession of
the flow mode. In figure 5(c,d) we present the space–time plot of the sidewall temperature
at mid-height for the cases ‘Before’ and ‘After’, respectively. In figure 5(d), even if the
temperature signal is highly fluctuating, one can still observe mode number N switching
between N = 3 and 4. The boundary flow structure precesses in the retrograde direction,
which is similar to the coherent state. A similar phenomenon has also been observed in
Favier & Knobloch (2020).

This transition also diminishes the difference between the bulk and the boundary flow
in flow morphology. We show the streamlines for four cases in figure 6, where (a,b)
corresponds to the coherent boundary flow state, and (c,d) the vortical boundary flow
state. Comparing figures 6(a) and 6(b), one can see that the boundary flow structure for
Ra = 8.71 × 108 is not much different from that for Ra = 8 × 107, even though in the
former case bulk convection has already emerged and the latter is below the onset of bulk
convection. In figure 6(b) both the coherent boundary flow and bulk convective Taylor
columns coexist. These two structures can be easily distinguished from the streamlines.
For Ra = 1.02 × 109, the system enters the vortical boundary flow state. As shown in
figures 6(c) and 6(d), the boundary flow breaks into columns. In this case, it is difficult to
distinguish the bulk and the boundary flows according to flow morphology. However, we
remark that even in the vortical boundary flow state, the boundary flow and the bulk flow
are still statistically different regions.

Such transition in flow morphology also help to understand the influence of centrifugal
force to NuBF. For the cases with centrifugal force (set II), one can neither observe a sudden
drop nor the Γ dependence in NuBF in figure 4(a). To understand such phenomenon, we
present the vertical snapshots of the temperature field along the azimuthal direction at
r/R = 0.95 (within the boundary flow) in figures 7. In figures 7(a) and 7(c) we respectively
present the temperature snapshots for the cases ‘Before’ and ‘After’ the transition, clearly
depicting the change from the coherent boundary flow state to the vortical one. In
figure 7(b) we present the snapshot of the case with parameters similar to the case ‘Before’
(Ra = 8.71 × 108, Γ = 1), except that it has non-zero centrifugal force Fr = 0.12. The
temperature distribution in figure 7(b) exhibits noticeable differences from figure 7(a)
(corresponding to case ‘Before’), but looks very similar to figure 7(c) (corresponding to
case ‘After’). Instead of a coherent boundary flow structure, vortical columns are observed
in figure 7(b), suggesting that the centrifugal force helps trigger the breakdown of the
boundary flow. We also present the temperature field for Fr = 0.12 and Ra = 1.02 × 109

in figure 7(d), which has a similar Ra to case ‘After’. Similar vortical flow structures can
be observed in both figures 7(b) and 7(d), suggesting that the presence of the centrifugal
force strongly suppresses the transition in boundary flow morphology. The breakdown of
boundary flow coherency induced by the centrifugal force may then lead to a decrease in
heat transport efficiency, as shown in figure 4. This could be the reason why no significant
drop in NuBF can be found for the cases with non-zero Fr, and their magnitudes of NuBF
are overall smaller than those with zero Fr.

Additionally, we also observe a weak Γ dependence in the Reynolds number (Re) of
the boundary flow before the breakdown of boundary flow coherency. A drop in Re can
be found when the transition occurs, although the drop in Re in much less significant
than that of NuBF. Details of the Reynolds number for the boundary flow can be found in
Appendix E.
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Figure 6. Streamlines coloured by the temperature fluctuation θ − 〈θ〉r,φ for (a) Ra = 8.0 × 107, (b) 8.71 ×
108 (case ‘Before’), (c) 1.02 × 109 (case ‘After’) and (d) 1.30 × 109. All panels are with Γ = 1, Ek = 1.85 ×
10−6 and Fr = 0.

3.4. Global heat transport in a cylindrical convection cell
With quantitative understandings of the heat transport in the bulk and the boundary flow,
as respectively discussed in §§ 3.1 and 3.2, we are now in a position to explain the global
Nusselt number. In this study we have two variables to indicate the flow state: Ra/Raw
for the properties of the boundary flow and Ra/Rac for the bulk. When we discuss the
global heat transport, we first need to choose which variable would be a better choice.
If we focus on the parameter range in which only geostrophic convection is present, the
boundary flow always persists owing to the fact that Raw is smaller than Rac. On the
other hand, the bulk region can be either conductive or convective in this parameter range,
depending on whether it is beyond the onset of bulk convection. In these two different
bulk states, the heat transport of the bulk and, hence, the global one can be significantly
different. To better distinguish conductive and convective bulk states, it will be convenient
to use Ra/Rac as the variable of choice for examining the global heat transport efficiency.
Additionally, as discussed in 3.1, the scaling exponent γ for Nubulk ∼ (Ra/Rac)

γ and
γ ∗ for Nubulk − 1 ∼ (Ra/Rac − 1)γ

∗
are in fact different when Ra is close to onset of

bulk convection. Such a difference may introduce inaccuracy when reconstructing the

975 A46-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

87
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.872


Geostrophic rotating Rayleigh–Bénard convection with lateral boundary

1

0

1

0

1

0

1

0π π

π π

z

z

Rφ Rφ

–0.3 –0.2–0.1 0.1 0.2 0.30

(a) (b)

(c) (d )

Figure 7. Vertical snapshots of the temperature field along the azimuthal direction at r/R = 0.95. The left
panels refer to cases with Fr = 0 and the right panels with Fr = 0.12. The Rayleigh number for (a,b) is Ra =
8.71 × 108 and for (c,d) is 1.02 × 109. The aspect ratio Γ equals to 1 for all cases. Snapshots (a,c) correspond
to the cases ‘Before’ and ‘After’, respectively.

global Nu. Nevertheless, for Ra/Rac ≈ 1, the contributions from the boundary flow are
significant and the difference between the descriptions of Nubulk may have a minor
influence. For reason of simplicity, we hereby use Nubulk ∼ (Ra/Rac)

γ to describe the
heat transport efficiency for the bulk. As for the boundary flow, (3.9) only captures the
leading-order effect and (3.10) obviously provides a more precise description. Also for
the purpose of a concise final result that could capture the dominating heat transport
properties of the system, we use (3.9) for NuBF in the following discussion. We also wish
to remark that one can obtain a more precise description if more accurate (but probably
more complicated) relationships for the Nubulk and NuBF are applied.

The global Nusselt number can be viewed as a superposition of the contributions from
the bulk and the boundary flow. When the width of the boundary flow δBF is much smaller
than the cell radius R, we can assume that rBF/R ≈ 1. In this case, Nu can be written as

Nu = r2
BF
R2 Nubulk + R2 − r2

BF
R2 NuBF ≈ Nubulk + 4δBF/H

Γ
NuBF. (3.11)

For fixed Ek and Ra � Rac, the heat transport efficiency of the boundary flow follows the
power-law relation NuBF ∼ (Ra/Raw)1. We define Nuc

BF ≡ NuBF|Ra/Rac=1. We note that
Ek is fixed for sets I and II; thus, the local Nusselt number of the boundary flow can be
written as

NuBF = Nuc
BF(Ra/Rac)

1. (3.12)

On the other hand, Nubulk can be described by the steep scaling Nubulk ≈ Ra/Raγ
c . Thus,

(3.11) is written as

Nu ≈ (Ra/Rac)
γ + B(Ra/Rac)

1 (Ra � Rac), (3.13)

where the prefactor B is defined as

B ≡ 4δBF/H
Γ

Nuc
BF. (3.14)
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Figure 8. Plot of Nu as a function of Ra for sets I and II. The grey upper triangles are data collected from
Funfschilling et al. (2005). The dashed curves refer to (3.13) for Ra > Ra∗

c and (3.15) for Ra < Ra∗
c . The red

dotted line corresponds to Ra = Rat.

For the coherent boundary flow state (Ra � Rat), when the data obey (3.9), the width of
boundary flow δBF is independent of Ra. Thus, for a given Γ and Ek, the prefactor B is
roughly a constant. At Ra = Rac, one can obtain B ≈ Nu|Ra/Rac=1 − 1, wherein B can be
determined using Nu at Ra = Rac. However, the existence of sidewall may slightly alter
the onset of bulk flow, as shown in figure 3(a). Thus, the exact onset Rayleigh number of
the bulk may need to be determined in experiments. We note that, for Ra � Rac, the Ra
dependence of Nu is given by

Nu ≈ 1 + B(Ra/Rac)
1 (Ra � Rac), (3.15)

which is noticeably different from (3.13). Thus, the exact onset Rayleigh number of the
bulk convection and Nu|Ra=Rac can be determined according to transition from (3.15) to
(3.13). We plot Nu vs Ra in figure 8, and also (3.13) for Ra > Ra∗

c and (3.15) for Ra < Ra∗
c

as dashed curves in the same figure. Here Ra∗
c is the onset Rayleigh number determined

according to the transition from (3.15) to (3.13). We remark that (3.15) is valid only when
NuBF follows (3.9). Due to the existence of the transitional regime, the Rayleigh number
that (3.9) becomes valid is close to Rac for sets I and II, as shown in figure 4(a). Thus, not
all data for Ra < Rac obey (3.15). Nevertheless, for cases beyond and below the onset of
bulk convection, their Ra dependences of Nu are significantly different, so that Nu|Ra=Rac
can still be determined. From figure 8, one can see that (3.13) can properly describe
the obtained Nu in the geostrophic regime. The red vertical dotted line corresponds to
the transition in flow morphology in the boundary flow (Ra = Rat). When the transition
occurs, the scaling relation for the boundary flow (3.9) becomes invalid and Nu gradually
deviates from (3.13). As Ra further increases, buoyancy gradually becomes dominant and
Nu asymptotically approaches the results of a non-rotating RBC.
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4. Conclusion

In this study we use a DNS approach to investigate the geostrophic rotating RBC in
cylindrical cells. We explore the rotating RBC system in cylindrical cells with different
aspect ratios and over a wide range of Ra from the onset of boundary flow to the
rotation-unaffected regime. Our simulation yielded three data sets. Set I has Ek fixed
and Ra varying and in set III we have Ra fixed and Ek varying. We compare these two
data sets in order to reveal the Ra and Ek dependences of the heat transport and flow
morphology of this system. As centrifugal force is inevitable in experiments, to ensure
that our findings can be applied to the practical situations, set II is produced to study
the effects of the centrifugal force. To understand the heat transport of this system with
lateral boundaries, we decompose the bulk and the boundary flow and investigate these
two domains separately.

We first focus on sets I and II with Ek fixed. For the bulk region, the Ra dependence of
Nubulk is consistent with the numerical simulations using periodic boundary conditions.
As for the boundary flow, after an intermediate regime, we observed a similar scaling
relationship close to NuBF ∼ (Ra/Raw)1 for all cases. For set I, such a scaling relationship
can be observed at Ra/Raw � 10 (Ra � ×108), and deviates from it at Ra/Raw ≈ 60
(Ra ≈ 1 × 109). For set II, data for Ra/Raw � 60 (Ra � 1 × 109) obey the above scaling
relationship. By introducing the idea of boundary layer marginal stability theory, one can
obtain the leading-order scaling relationship NuBF ∼ (Ra/Raw)1 if only the dominating
term for Raw is used, and a more precise description of the data can be obtained if the
higher-order term in Raw is considered.

As Ra increases, we observe a sharp transition in boundary flow morphology from
the coherent state to the vortical state, which is accompanied by a sudden drop in NuBF.
When the transition occurs, the scaling relationship NuBF ∼ (Ra/Raw)1 breaks down. The
transitional Rayleigh number Rat for Ek = 1.85 × 10−6 is found approximately equaling
8.71 × 108 in our study. After the transition, the boundary flow breaks into vortices,
manifesting the breakdown of flow coherency. Consequently, a drop in NuBF can be
observed as a result of the transition in flow morphology that the boundary flow becomes
fragmented and heat exchange with the surrounding becomes more significant. After the
transition, it becomes difficult to identify the bulk and the boundary flows based on flow
morphology alone. Although this transition is difficult to discern from the global Nu, we
remark that such a transition is well defined according to the sharp change in both NuBF
and the flow morphology. Additionally, comparing the temperature field for sets I and II,
we find that the centrifugal force helps trigger the breakdown of the boundary flow and
results in a weaker flow coherency. This probably is the reason why one cannot observe
such a transition for the cases with non-zero Fr, and why NuBF for the cases with zero
Fr is larger than those with non-zero ones. However, the current study is not sufficient to
fully understand the influence of centrifugal force on the boundary flow. This would be an
interesting topic for future studies.

Finally, we then revisit the global Nu and try to provide a unifying understanding. For
the geostrophic rotating RBC, the global Nu can be described by (3.13). When centrifugal
force exists but does not significantly alter flow structures, its influence is reflected on the
magnitude of the prefactor B only and will not affect the scaling exponent. We further
show that the prefactor B can be determined using the global Nu. Thus, (3.13) can still be
used to describe Nu for experiments whether or not the centrifugal force is present. For
set III with fixed Ra and Ek varying, the main discoveries are analogous to those for sets I
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and II, but with some variations in the width of the boundary flow and also the global Nu.
Details of the discussions can be found in Appendix F.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.872.
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Appendix A. Validation of the decomposition method

We provide more examples for demonstrating the reliability of our method decomposing
the boundary flow and the bulk. In figure 9 we provide the r.m.s. of the azimuthal velocity
〈u2

φ〉1/2
t,z,φ and the convective heat flux 〈Jz〉t,z,φ for Ra = 4.00 × 107 and 1.30 × 109, which

respectively correspond to the case without bulk convection (wall mode only) and the
vortical state that the boundary flow breaks into vortices. The results shown in figure 9
demonstrate that the two-layer boundary flow structure commences from the wall-mode
state (figure 9a,c) and persists well into the turbulent state (figure 9b,d) in a rotating RBC
system. Moreover, our method of decomposing the bulk and boundary flows works reliably
for all these different states.

Appendix B. Details of the NuBF scaling relationship

As assumed in (3.7), the scaling relationship (3.9) requires that Δδ/Δ being constant and
that the thermal boundary layer dominating the heat transport. We examine the mean
vertical temperature profiles of the boundary flow 〈θ〉t,r>rBF,φ for different Γ in data
set I (Fr = 0), as shown in figures 10(a)–10(c). According to whether NuBF obeys the
scaling relationship (3.9), we respectively plot the temperature profiles using solid (obey)
and dot-dashed (not obey) curves. For small Ra/Raw, a large temperature gradient at the
central region can be observed. As Ra/Raw increases, the central temperature gradient
decreases, leading to an increase in the temperature drop across the thermal boundary
layer Δδ/Δ, as illustrated by the black arrow in figure 10(a) for example. To quantitatively
examine the approximation (3.7), we respectively fit the centre and boundary parts of the
temperature profiles in figures 10(a)–10(c) using linear functions, and obtain Δδ/Δ and
δ/H according to the intersection of these two linear fittings, as demonstrated by the inset
of figure 10(a). The results of Δδ/Δ are presented in figure 10(d). The magnitude of Δδ/Δ

increases as Ra/Raw increases for Ra/Raw � 10, suggesting that the approximation (3.7)
is not valid. This result explains why NuBF for Ra/Raw � 10 does not obey the scaling
relationship (3.9). On the other hand, broadly speaking, a saturation can be found in Δδ/Δ

for Ra/Raw � 10, and a small temperature gradient outside the boundary layer can be
observed from figure 10(a–c) for the cases obeying (3.9). Approximation (3.7) requires
that Δδ/Δ is insensitive to Ra, but it is not necessarily to be 1/2. Thus, although Δδ/Δ

exhibit Γ dependence when it reaches a plateau, it does not affect the derivation of the
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Figure 9. (a,c) The vertically averaged r.m.s. of azimuthal velocity 〈u2
φ〉1/2

t,z,φ , and (b,d) the convective vertical
heat flux averaged temporally and in the vertical and azimuthal directions 〈Jz〉t,z,φ . All results are for the case
of Ek = 1.85 × 10−6, Fr = 0 and Γ = 1. The Rayleigh number Ra for (a,b) is 4.00 × 107 and for (c,d) is
1.30 × 109. The black dot-dashed and grey dashed lines respectively correspond to rBF and r0. The grey dotted
lines correspond to the linear fitting to the bulk part. The blue and red shaded regions respectively refer to the
bulk and boundary flow. Insets correspond to the data for r/R ∈ [0, 1].

scaling relationship. These results help validate the approximations for (3.9) and explain
why, for Ra/Raw � 10, the data do not obey (3.9).

Additionally, in § 3.2 we provide a higher-order correction for the Ra dependence of
NuBF. Here we provide a detailed derivation of (3.10). By using the full terms of Raw given
by (1.2), then the marginal instability argument of the thermal boundary layer Raδ

w ∼ Raδ

can be written as

π2
√

6
√

3
1

Ekδ
+ 46.55

(Ekδ)2/3 ∼ αgΔδδ3

κν
. (B1)

Assuming Δδ/Δ ≈ 0.5 and Nu ≈ (Δδ/δ)/(Δ/H), one can then obtain

NuBF

(
π2

√
6
√

3 + 46.55Ek1/3
(

Δ

Δδ
NuBF

)2/3 )
∼ RaEk, (B2)

which is the equation given by (3.10) and it is obviously not a power-law relationship. To
determine the solution of (3.10), one needs to introduce additional constrains, i.e.

NuBF

(
π2

√
6
√

3 + 46.55Ek1/3
(

Δ

Δδ
NuBF

)2/3 )
≈ ARaEk, (B3)
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Figure 10. Temperature distribution 〈θ〉t,r>rBF ,φ averaged horizontally and temporally in the boundary flow for
(a) Γ = 0.5, Fr = 0, (b) Γ = 1, Fr = 0 and (c) Γ = 2, Fr = 0 (all data from set I). The solid (dot-dashed)
curves refer to the cases obeying (not obeying) the scaling relationship NuBF ∼ (Ra/Raw)1. The inset of (a)
illustrates the definitions of δ/H and Δδ/Δ. The dashed lines in the inset denote the linear fittings of the centre
and boundary profiles. (d) The normalized temperature drop Δδ/Δ as a function of Ra/Raw.

where A is the fitting parameter so that the solution of (B3) matches the magnitudes of the
numerical data. The grey curves shown in figure 4(a) are the solutions solved in the above
way.

Appendix C. Influence of the mode number of the boundary flow

The Γ dependence of the parameter C shown in table 1 reveals the fact that local heat
transport efficiency in the boundary depends on the aspect ratio. Such dependence on
the aspect ratio is surprising, as other quantities such as Nubulk and δBF exhibit no
significant Γ dependence, and NuBF for different Γ originally collapse together when
Ra/Raw is close to unity but start to diverge as Ra increases. As we discuss in § 3.3, the
fragmentation of the coherent boundary flow could lead to a drop of NuBF, which suggests
the connection between the typical length scale of the boundary flow and the local heat
transport efficiency. We note that the mode number N of the boundary flow is always an
integer, and the unit sizes of the boundary flow (2πR/N) are different among different
aspect ratios. Thus, a possible reason for the Γ dependence of NuBF may be attributed to
the difference in unit sizes of the boundary flow between different aspect ratios.
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To examine the connection between the unit size 2πR/N of the boundary flow and
NuBF, we provide a set of data with the same aspect ratio 1 (R is fixed) but a different
mode number N. Comparing the results with different N but similar R or Γ may help
eliminate the possible influence related to the aspect ratio. We find that by using an initial
flow field whose boundary flow has a specific mode number N, the boundary flow can be
locked in the chosen mode number N when the system is stable. The boundary flow for
Γ = 1, Fr = 0 discussed previously and for most cases in the rest of this study has mode
number N = 3. By using the initial field with N = 2, we can control the mode number of
the stable state. We present an example for Ra = 3.4 × 108 and Γ = 1 in figures 11(a) and
11(b), demonstrating that the azimuthal mode number can be selected to be either N = 2
(figure 11a) or N = 3 (figure 11b). Since λ = πΓ/N is inversely proportional to N, the
cases with N = 2 have larger λ than those with N = 3. Using this method, we can control
the mode number N and the wavelength λ without changing the aspect ratio. We remark
that only cases for Ra � 5.12 × 108 (Ra/Raw � 30) can have a stable mode number of
N = 2 for Γ = 1. We speculate that, for high Ra, the system is more turbulent, which
could make the boundary flow less coherent and more difficult to be stabilized in a state
with a small mode number. The change of preferred mode number as Ra increases was
also observed in a previous study (Zhong et al. 1993).

From figure 11(c) we see that NuBF for the internal mode N = 2 are overall larger than
for the internal mode N = 3, demonstrating that the heat transport efficiency is positively
related to unit size (inversely proportional to the mode number N) within the boundary
flow. The mode number dependence of heat transport efficiency is not a minor effect that
is not only reflected on NuBF, but it also has significant influence on the global Nusselt
number. We compare Nu for N = 2 and N = 3 in figure 11(d) and find that Nu for N = 2
is noticeably larger than that of N = 3, albeit the two modes (flow states) are nominally
under an identical set of global control parameters and boundary conditions, indicating
the existence of multiple states in the boundary flow. We remark that the multiple state
can be observed up to Ra/Raw ≈ 30, which is well beyond the onset of the boundary flow.
Additionally, both Nu and NuBF exhibit significant dependence on the mode number. On
the contrary, in the wall-mode state the heat transport efficiency is not very sensitive to the
mode number (Zhong et al. 1993), which can also be seen from figures 11(c) and 11(e) that
NuBF and Nu for the lowest Ra of N = 2 have roughly similar values with those of N = 3.
For the reasons we mentioned above, we infer that the multiple states observed in this study
are different from the linear mode with an integer mode number in the azimuthal direction
when the boundary flow (or wall mode) first emerges. To the best of our knowledge, this
is also the first time reporting the influence of multiple states to the heat transport in the
boundary flow well beyond the onset. Since the global Nusselt number is sensitive to the
mode number, it is crucial to track the mode number when conducting global Nusselt
measurements. On the other hand, it is interesting and also important to systematically
investigate mode evolution of the boundary flow in long-term experiments and also the
mechanism inducing the mode number dependence of local heat transport efficiency in
future studies.

Appendix D. Distribution of vortex density

The distribution of temperature fluctuation θrms ≡ (〈θ2〉t − 〈θ〉2
t )

1/2 reflects the evolution
of the flow structures in the system. Figure 12 presents the temperature fluctuations
averaged over the azimuthal direction 〈θrms〉φ for different Ra. For Ra close to the onset of
the wall mode shown in figure 12(a), the temperature fluctuations are mainly found within
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Figure 11. (a,b) Snapshots of the temperature distributions at the mid-height for the modes N = 2 and N = 3
(both in Γ = 1 cell), respectively. The Rayleigh number for these two cases is 3.40 × 108, and the Froude
number is zero. The grey dashed and black dot-dashed circles respectively correspond to r = r0 and r = rBF .
Plot of (c) NuBF and (d) Nu for both N = 2 and N = 3 (legends are the same as in c). Both these cases are for
Γ = 1 and Fr = 0.

the boundary flow (wall mode in this state). Since the Ra for figure 12(a) is below the onset
of bulk convection, θrms is negligible for the majority of the bulk, especially for the regions
near the top and bottom plates. When Ra is beyond the onset of bulk convection, as shown
in figure 12(b) with Ra ≈ Rac, the regions near the top and bottom plates show strong
temperature fluctuations, which may be attributed to the thermal boundary layers. As for
the boundary flow, temperature fluctuations are maximized within the outer boundary
flow (with positive azimuthal velocity). A similar distribution of θrms can be found in
figure 12(c), corresponding to the case ‘Before’ in the coherent boundary flow state. One
may note that regions with high temperature fluctuation may exceed the boundary flow
(vertical black dot-dashed lines) for figures 12(a)–12(c). Such distribution corresponds to
the emission of the plume-like structures as discussed in § 3.3 and shown in figure 5(a).
Due to the weak convective mixing in this state, the plume-like structures are able to
preserve the heat contents after radial emission. When the transition in flow morphology
occurs and the boundary flow breaks into vortical columns, one can observe a vertically
expanded region with strong temperature fluctuations roughly centralized at r0. In this
case, the bulk convection is sufficiently strong to mix the flow structures emitting from the
boundary flow, so that one cannot observe high temperature fluctuations in the bulk. As
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Figure 12. Temperature fluctuation 〈θrms〉φ averaged over the azimuthal direction for (a) Ra = 2.00 × 107, (b)
3.40 × 108, (c) 8.71 × 108 (case ‘Before’), (d) 1.02 × 109 (case ‘After’) and (e) 1.54 × 109. All panels are with
Γ = 1 and Fr = 0. The lower row refers to the radial distributions of vortex density for ( f ) Ra = 8.71 × 108,
(g) 1.02 × 109 and (h) 3.07 × 109. All vertical grey dot-dashed and dashed lines respectively correspond to rBF

and r0, and the red inclined dashed lines in ( f –h) refer to the uniform distribution Pω(r) = 2r/R2.

Ra further increases, temperature fluctuations are strongest at the area adjacent to the top
and bottom plates, as shown in figure 12(e). Focusing on the radial distribution, one can
still observe a vertically expanded region maximizing at r0, corresponding to the columnar
structures.

The distribution of the vortex is discussed. We extract the vortices using the Q criterion
(Hunt, Wray & Moin 1988). The method of vortex extraction we used in this study
is similar to those in Chong et al. (2020) and Ding et al. (2021). The vortex density
distribution function Pω for different Rayleigh numbers are shown in figures 12( f )–12(h),
wherein ( f ) corresponds to the coherent boundary flow state (Ra = 8.71 × 108) and (g,h)
the vortical boundary flow state (Ra = 1.02 × 109 and 3.07 × 109). For comparison,
we also show the density for uniform distribution Pω(r) = 2r/R2. We find that for
the coherent boundary flow state, Pω peaks at r = r0, suggesting that most columnar
vortices in the system originate from the boundary flow. Although more columnar vortices
are emerging from the bulk, the maximum of Pω is still at r = r0, meaning that the
boundary flow generates columnar vortices more frequently than the bulk. Comparing
figures 12( f )–12(h), we find that the vortex density gradually approaches a uniform
distribution as Ra increases, but the boundary still has a higher vortex density even at
Ra = 3.07 × 109 (Ra/Rac ≈ 9.1, corresponding to the vortical boundary flow state).
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Appendix E. Reynolds number of the bulk and the boundary flow

Other than the heat transport, the flow strength of the boundary flow is also an important
quantity depicting the evolution of the system. The flow strength of the boundary flow is
represented by the Reynolds number

Re ≡ u
√

Ra/Pr. (E1)

As we discuss in § 2.2, the mean velocity of the boundary flow cannot correctly reflect
its flow strength due to the periodicity. For this reason, we use the r.m.s. of different
velocity components to evaluate the Reynolds number. In this study we define six different
Reynolds number, as shown in figure 13. The subscripts in Re∗,BF and Re∗,+ respectively
denote the Reynolds numbers evaluated using the mean velocity r.m.s. of the boundary
flow 〈u2∗〉1/2

t,z,φ,r�rBF
and the outer boundary flow 〈u2∗〉1/2

t,z,φ,r�r0
, and Re∗,bulk refers to the

average over the bulk, i.e. 〈u2∗〉1/2
t,z,φ,r�rBF

. The subscripts in Reφ,∗ and Rez,∗ respectively
represent the Reynolds number for the azimuthal uφ and vertical components uz. As
shown in figure 13, we find that all four Reynolds numbers follow a scaling relationship
Re ∼ (Ra/Raw)1. We remark that in the experiments conducted by Wedi et al. (2022)
they found that the maximum velocity normalized by the free-fall velocity umax

φ follows
a scaling relationship umax

φ = 4.7Ek3/2Ra1/2Pr0.8. According to our definitions of the
Reynolds number (E1), their results also suggest a scaling relationship Re ∼ (Ra/Raw)1 as
we observed in figure 13, although they use the maximum instead of the mean velocity and
their parameters are far beyond the bulk onset Rac, meaning that their experiments should
mainly belong to the vortical boundary state. Additionally, from figure 13 we can also
observe a drop in Re when the transition of flow morphology occurs, although the drop in
Re is less significant than that of NuBF. As for the bulk flow shown in figures 13(e) and
13( f ), one can observe non-zero flow strength below the onset of the bulk flow, which is
induced by the shearing of the boundary flow. In this state one can observe a Γ dependence
in both Reφ,bulk and Rez,bulk, which should arise from the different bulk averaging areas. As
the bulk convection emerges, both Reφ,bulk and Rez,bulk become more sensitive to Ra and
gradually become comparable with the flow strength of the boundary flow. Additionally,
the data for all cases collapse together, which is similar to those observed in Nubulk, as
shown in figure 3.

Appendix F. Results for the cases with fixed Ra

In this system the heat transport efficiency of the bulk is usually considered as a
function of Ra/Rac, while for the boundary flow, NuBF is a function of Ra/Raw. In
the previous sections we focused on the cases with Ek fixed and Ra varying, wherein
Ra/Rac and Ra/Raw only differ by a constant, thus it would be easy to unify the different
scaling relationships for the bulk and the boundary flow. However, since Rac and Raw
have different Ek dependence, when Ra is fixed and Ek varying, extra efforts may
be required to unify the heat transport efficiency of different regions. Moreover, some
responding parameters (such as the thickness of the boundary flow) may have significant
Ek dependence that could affect the global heat transport. Thus, it is important to examine
our findings in the cases where Ek is changed. In this section we concentrate on the data
from set III, which has Ra fixed and Ek varying. The heat transport of the bulk and the
boundary flows for set III will be discussed.

We first examine the width of the boundary flow for set III. Using a similar method as
described in § 2.2, we obtain δBF and δ0 for set III. We present the results as functions of
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lines represent Re ∼ (Ra/Raw)1. The vertical dotted lines correspond to Ra = Rat, and the grey vertical dashed
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Ek in figure 14. Different from sets I and II wherein δBF and δ0 are largely not sensitive
to Ra, one can observe clear Ek dependence in figure 14. According to the Ek dependence
of δBF and δ0, we respectively fit the data for Ek ≤ 3.67 × 10−5 and Ek ≥ 3.67 × 10−5

using δ ∼ Ekβ , where β is the exponent of the power law, and present the best fit results in
figure 14. For small Ek (Ek ≤ 3.67 × 10−5), we obtain δ0 ∼ Ek0.38, which is close to the
thickness of the outer Stewartson layer (the portion close to the sidewall) Ek1/3 (Kunnen,
Clercx & Van Heijst 2013). As for δBF, we observe a scaling relationship δBF ∼ Ek0.21 for
Ek ≤ 3.67 × 10−5, which is also close to the thickness of the inner Stewartson layer (the
portion away from the sidewall) Ek1/4. For large Ek (Ek ≥ 3.67 × 10−5), we find that δ0
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Figure 14. Width of the boundary flow δBF and outer boundary flow δ0 for set III (Ra fixed and Ek varying).
The open (solid) symbols refer to δ0 (δBF). The dashed and dot-dashed lines respectively refer to the best fits
for the data with Ek ≤ 3.67 × 10−5 and Ek ≥ 3.67 × 10−5.

follows δ0 ∼ Ek0.67. This result agrees with the scaling relationship δ0 ∼ Ek2/3 suggested
by Zhang et al. (2021). As for δBF, we observe a slightly smaller exponent δBF ∼ Ek0.57.
We remark that such a scaling is close to the scaling relationship δ0 ∼ Ek1/2 indicated
by Wedi et al. (2022), although they were studying δ0 instead of δBF in their paper. The
transitions from δ0 ∼ Ek0.38 to δ0 ∼ Ek0.67 and from δBF ∼ Ek0.21 to δBF ∼ Ek0.57 are
consistent with the breakdown of coherent boundary flow into columnar vortices, as we
discuss next.

Analogous to §§ 3.1 and 3.2, we decompose the bulk and the boundary flow and
examine the heat transport for these two regions separately for set III. We present the
results for Nubulk for set III in figure 15(a). Similar to sets I and II with fixed Ek
shown in figure 3(a), Nubulk equals 1 for Ra/Rac < 1, meaning that heat transport in
the bulk is through conduction before the onset of bulk convection. As for Ra/Rac > 1,
bulk convection emerges and Nubulk increases as Ra/Rac increases. Similar to the cases
with periodic boundary conditions, one can also observe a steep scaling relationship
Nubulk ∼ (Ra/Rac)

3.3±0.3 for set III. As Ra/Rac further increases, the rotating rate and
the strength of the Coriolis force decrease. Since we fix Ra in set III, the magnitude of
Nubulk gradually approaches a constant corresponding to the non-rotating case.

We now examine the results of NuBF for set III, as shown in figure 15(b). Similar to
sets I and II, we can also observe some of the data following the scaling relationship
(3.9). Comparing figures 15(a) and 15(b), we find that the three smallest data points for
Ra/Raw still obey (3.9), which are well below the onset Rayleigh number Rac of bulk
convection. This is quite different to the results of sets I and II shown in figure 4(a). In
those cases, the Rayleigh number that NuBF begins to be governed by (3.9) is close to Rac.
This result also suggests that the Rayleigh number for (3.9) being valid does not necessarily
equal Rac. The close magnitudes of these two Rayleigh numbers in figure 4(a) could
probably be a coincidence. As Ra/Raw further increases, NuBF becomes less sensitive
to Ra/Raw, although one cannot observe a sudden drop in NuBF as can be found in set I
(Γ = 1 and 2, Fr = 0, for example). This change of NuBF behaviour is also attributed
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Figure 15. Plots of (a) Nubulk and (b) NuBF for set III (Ra fixed and Ek varying). The cross symbols in
(a) are data with lateral periodic boundary conditions for comparison, and the grey dashed line refers to
Nubulk ∼ (Ra/Rac)

3.3. The red dot-dashed line in (b) refers to NuBF ∼ (Ra/Raw)1. Plots (c,d) correspond to
the power spectrum of the temperature distribution along the azimuthal direction at r/R = 1, z/H = 0.5, and
(e, f ) present the space–time plot of the temperature at the same location. Plots (c,e) and (d, f ) respectively
correspond to the case Ra/Raw ≈ 16 and 20 (i.e. before and after the transition), as indicated by the
arrows in (b).

to the transition in flow morphology of the boundary flow. Since set III has Γ = 4
and a relatively large mode number N, it may be difficult to identify the breakdown of
the coherent boundary flow into columnar vortices from the temperature field. For this
reason, we instead present the time-averaged power spectrum density Eθ of the temperature
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distribution along the azimuthal direction at r/R = 1, z/H = 0.5 in figure 15(c,d).
For figure 15(c) with Ra/Raw ≈ 16 (coherent boundary flow state), one can observe a clear
peak in Eθ , meaning that the boundary flow is coherent and with a strong azimuthally
periodic pattern. As for figure 15(d) (Ra/Raw ≈ 20), one could still find a peak at the
azimuthal frequency of 20, but its magnitude is much reduced compared with that of
15(c) (Ra/Raw ≈ 16), showing that the boundary flow is not coherent and breaks into
vortices, i.e. the system enters the vortical boundary flow state. Such a transition in flow
morphology can be better illustrated from the space–time plot of the sidewall temperature.
Figure 15(e) (corresponding to the case before transition) depicts a coherent boundary flow
state with band-like structures in the space–time plot. On the other hand, as can be seen
from figure 15( f ), one can see that the boundary flow becomes fragmented, suggesting
the transition of the boundary flow morphology to a vortical state. The results shown
in figures 15(b)–15( f ) depict a similar physical picture as figures 4(a) and 5: when the
coherent boundary flow breaks down into columnar vortices, the characteristic length
scale of the boundary flow decreases. As a result, the boundary flow structure becomes
less coherent and the heat transport efficiency drops. We define Ekt as the transitional
Ekman number of the boundary flow when Ra is fixed. According to the changes in flow
morphology and NuBF, Ekt roughly equals 2.66 × 10−5 for Ra = 2 × 107, corresponding
to Ra/Raw ≈ 16.

Another important finding of this study is the relationships (3.13) and (3.15) describing
the global Nusselt number. When deriving (3.13) and (3.15), we assume that δBF is
insensitive to the change of Ra. However, as shown in figure 14, δBF has significant Ek
dependence. For this reason, we need to modify the derivation in § 3.4.

Starting from (3.11), we assume δBF/H ∼ Ek1/4 according to figure 14 and also the
scaling relationship of the inner Stewartson layer. Using the relation (3.9), (3.11) can be
written as

Nu ≈ (Ra/Rac)
γ + B′(Ra/Rac)Ek−1/12 (Ra/Rac ≥ 1), (F1)

where B′ is the prefactor defined as

B′ ≡ 4δc
BF/H
Γ

Nuc
BF(Ekc)1/12. (F2)

Here δc
BF is defined as δc

BF ≡ δBF|Ra/Rac=1, and Ekc is the onset Ekman number of the bulk
convection for the fixed Ra (Ra = 2 × 107 for this data set). Similar to those discussed
in § 3.4, such a prefactor B′ can be determined according to just the Nusselt number at
Ra/Rac − 1,

B′ = [Nu|Ra/Rac=1 − 1](Ekc)1/12. (F3)

As for Ra/Rac < 1, we let Nubulk = 1 and one can obtain

Nu ≈ 1 + B′(Ra/Rac)Ek−1/12 (Ra/Rac ≤ 1). (F4)

Comparing (3.13) with (F1) and (3.15) with (F4), one sees that the main difference is the
prefactor Ek−1/12. However, the exponent of this prefactor is so small that it is reasonable
to neglect its variation, i.e. Ek−1/12 ≈ Ek−1/12

c . Then, (F1) is reduced to (3.13) and (F4)
to (3.15). Thus, even though δBF has significant Ek dependence, as shown in figure 14, Nu
can still be described by (3.13) and (3.15) at the leading order.

We present the data of Nu as a function of Ra/Ra∗
c in figure 16. Here Ra∗

c is the onset
Rayleigh number determined according to the transition from (F4) to (F1). We also plot
(F4) and (F1) as the dashed curve in figure 16. The grey dotted line in figure 16 corresponds
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101100

100

101
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Ra/Rac
∗

Figure 16. Plots of Nu as a function of Ra/Ra∗
c for set III (Ra fixed and Ek varying). The red dashed curve

represents fittings to (F1) for Ra/Ra∗
c ≥ 1 and to (F4) for Ra/Ra∗

c ≤ 1. The grey dotted line corresponds to
Ek = Ekt.

to the transition in flow morphology, which is determined by the drop of NuBF (Ek =
2.66 × 10−5 and Ra/Ra∗

c ≈ 1.9). One can see that (F4) and (F1) can properly describe the
data before the transition occurs. Similar to sets I and II, for Ra/Ra∗

c beyond the transition,
(F1) begins to deviate from the data of Nu, which is attributed to the breakdown of (3.9).
Since in set III Ra is fixed, when Ra/Ra∗

c further increases, Nu gradually approaches a
constant corresponding to the non-rotating case (Nu for the fixed Ra). Additionally, all Nu
for Ra/Ra∗

c ≤ 1 consist with (F4). We remark that this could be attributed to the fact that
the parameter range of Ek does not extend to the onset of the wall mode. When Ek further
decreases (Ra/Ra∗

c decreases), we may also observe an intermediate regime not obeying
(F4), which has been found in Nu for set I (as shown in figure 8). This result also suggests
that Ra/Rac ≈ 1 is not a required condition for (3.9) to become valid. In other words, the
onset of bulk convection could be independent of the heat transport of the boundary flow.
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