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Convective flows near a solid embedded in a
fluid-saturated porous medium heated
from above
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Convective flows near a cylindrical solid inclusion in a fluid-saturated porous medium
heated from above are studied using the Darcy–Boussinesq equations. The impermeability
condition is imposed on the inclusion surface. Two-dimensional convective flows uniform
in the direction of the cylinder axis are considered. An Oseen-like approximation
is implemented, however, different from the conventional Oseen approximation,
quasilinearization is applied to the nonlinear terms in the energy equation and not in the
momentum equation. It is shown that, when the thermal conductivity of the inclusion
is higher than that of the fluid, the convective flow at a distance from the inclusion
larger than the inclusion size takes the form of horizontal vortices directed away from
the inclusion. In the case of low thermal conductivity of the inclusion, the direction of
convective circulation is opposite: in the horizontal plane passing through the cylinder
axis, the fluid is leaking to the inclusion.

Key words: convection in porous media, buoyant jets

1. Introduction

This paper is devoted to the formation of flows in a stratified fluid at a violation of stable
stratification. It is known that the motionless state of a fluid heated strictly from above is
stable with respect to any disturbances (Sorokin (1954), see also Gershuni & Zhukhovitsky
(1976)). A similar situation is observed in solutal convection (in the absence of thermal
diffusion), when the concentration depends linearly on the vertical coordinate and the
concentration of the denser component is greater at the bottom (Gershuni & Zhukhovitsky
1976). Since stable stratification prevents vertical flows associated with the work against
gravity, but does not prevent horizontal flows, situations may arise when a weak violation
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of stable stratification (a weak violation of the homogeneity of the density gradient) can
lead to the emergence of flows with a horizontal component of velocity significantly
exceeding the vertical one.

Stable stratification can be violated near inclined walls. This problem was studied for
the first time by Prandtl (1952) who investigated it in application to the downslope wind in
the mountains. He considered an inclined sidewall having a constant temperature deviation
from the temperature profile corresponding to stable stratification occurring far from the
wall and found a flow in the boundary layer near the wall. His analytical solution shows
that, if the wall is hotter than the surrounding air, an upward flow along the wall occurs,
while in the opposite case a downward flow arises. His work also provides qualitative
considerations of the flows at the ends of the wall. For the case of upward flow, a sink
is located at the bottom of the mountain into which the valley wind rushes, which can
move mainly horizontally due to the stable stratification of the air. The flow that occurs
at the top is less noticeable. Wunsch (1970) and Phillips (1970) independently and almost
simultaneously investigated a problem similar to that studied by Prandtl, but for ocean
flows. They considered two similar tasks: the effect of inclined thermally insulated walls
on thermal convection in the case when the fluid is stably stratified far from the wall,
and the effect of an impermeable wall on solutal convection in a similar situation. Flows
occurring in the boundary layer were investigated. An analytical solution was found. In
the second case, mixing occurs near the walls. Obviously, by analogy with Prandtl’s
problem, there should be sinks and sources at the ends of the wall. Shapiro & Burkholder
(2012) also performed a study that can be considered as a continuation of Prandtl work.
They analytically and numerically investigated the case where a finite-length section on
an inclined surface is cooled compared with the equilibrium temperature profile in the
environment. Two variants of boundary conditions were considered: the first variant, when
the boundary condition is set for the temperature (analogous to the Prandtl condition);
and the second, when the boundary condition is set for the normal component of the
temperature gradient. In the main part near the wall, they obtained a downward flow, and at
the ends of the cooled section, two nearly horizontal jets. This last result confirms Prandtl
qualitative considerations.

In Baidulov, Matyushin & Chashechkin (2007), the formation of the diffusion-induced
flow around a sphere was studied experimentally and theoretically for the case when the
stable stratification was created due to the gradient of solute concentration. Initially, both
the sphere and the stratified fluid were at rest, further flows were produced by the small
buoyancy force arising due to the inhomogeneity of the horizontal density distribution
around a sphere. Numerical simulations have shown that the cellular structures stretched
in the horizontal direction are formed around a sphere. In this work, the emphasis was on
the investigation of the initial and transient stages of the formation of convective structures,
and no special attention was paid to steady flows and their characteristics.

There are also works in the literature devoted to the occurrence of flows in stably
stratified binary mixtures, when the stable stratification created by a vertical concentration
gradient is violated by horizontal heating. Chen, Briggs & Wirtz (1971) experimentally
investigated the effect of lateral heating on convective phenomena in a vertical layer
containing a salt solution with a vertical concentration gradient providing stable
stratification. They found the formation of layered convection when the critical Rayleigh
number was exceeded. In this case, a system of horizontal narrow convective cells was
observed in the layer. They called the situation unstable when these cells were extended
from one wall to the other. Lee & Hyun (1991) investigated this problem numerically.
They observed the growth of convective cells in the horizontal direction from the heated
wall. At a small Rayleigh number, these cells had a small horizontal length and did not
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reach the other wall. Kamakura (1993) investigated a similar problem experimentally and
numerically. Common for these studies is the discovery of layered convection in the form
of narrow horizontal convective cells, which is associated with the suppression of vertical
flows under conditions of stable stratification.

Stable stratification can also be violated by a solid body immersed in the fluid whose
thermal conductivity differs from that of the fluid. In this case, different from the case
considered by Prandtl (1952) and Wunsch (1970), the inclusion surface is curved and the
inclusion dimensions are limited. This problem was studied in Singh (1977) where a steady
convective flow around a sphere in an infinite fluid heated from above was considered. The
problem was solved analytically by expanding in a series, in a small parameter, the Grashof
number, within the Stokes and Oseen approximations. Using the Stokes approximation
cannot give a solution satisfying the boundary conditions at infinity. For this reason,
the flow far from the body was considered within the Oseen approximation, and then
the solutions found within the two approximations were matched. In fact, the method
of matched asymptotic expansion was used. Two cases were considered: (i) when the
thermal conductivity of the sphere is low; (ii) when the surface temperature of the sphere
is maintained constant and equal to the temperature of the fluid in the central plane. It
was found that in the case of low thermal conductivity of the sphere, the flow is similar to
that obtained earlier for a stationary sphere in a rotating fluid. In the case of an isothermal
sphere, the flow pattern was similar to the flow around a sphere uniformly rotating in a
fluid which is at rest at infinity. The results obtained in Singh (1977) are in good agreement
with experimental observations of natural convective flow around an isothermal sphere or
cylinder immersed in a thermally stratified fluid (Eichhorn, Lienhard & Chen 1974).

Singh’s work is limited to the consideration of small Grashof numbers at which an
analytical solution to the problem can be obtained, which is why the horizontal structures
that could be expected to occur in a stratified fluid at a violation of stable stratification
were not found. We study a problem similar to that investigated by Singh, but for a porous
medium saturated with fluid. The simple form of the equations of thermal buoyancy
convection in a saturated porous medium in the Darcy–Boussinesq approximation should
allow for a fairly complete analytical study of the problem (over a wide range of
parameters) and a description of the expected horizontal structures.

The importance of the problem under study is related to the following issues. The first
issue is related to thermal convection in soils containing water. In permafrost regions, at
a certain depth, the soil has been frozen for many centuries. In winter, the upper part of
the soil (active layer) above the permafrost freezes completely or partially (in the latter
case, a layer of thawed soil remains). In the summer, during the hottest period, the active
layer of soil melts. At the bottom, there remains unmelted soil (permafrost). At the same
time, in the part of the layer where the temperature is higher than the density inversion
temperature, conditions arise for the formation of stable thermal stratification. If there
are solid inclusions in the active layer, convection may occur there. Such inclusions can
be various utility lines, for example, pipes. Convection in permafrost conditions in the
active layer of soil, in particular, was considered in Magnani et al. (2024). The other issue
is associated with the solutal convection, which is very similar to thermal convection.
Here one can distinguish two classes of problems. First, soils under certain conditions
may contain salt water with density stratification. This may occur when coastal regions
containing fresh water aquifers are flooded with sea water. If this water is used for water
supply purposes, it is important from a practical point of view to know how sea water
interacts with fresh water. Also, sea water intrusion into coastal regions is important for
agriculture, if it is carried out in these regions. Density stratification may occur not only in

1002 A5-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1153


T.P. Lyubimova, D.V. Lyubimov and E.S. Sadilov

salt water, but also in oil (in oil fields). Density stratification of water may also occur when
hot water or water containing dissolved salts is artificially injected through recharge wells
or infiltration ponds. Second, there is the problem of waste spreading in groundwater (see,
for example, the works Kodešová et al. (2023, 2024)).

The study of convective flows in porous media with solid inclusions is also important
for hydrology due to the possibility of such flows in fractured rocks in the presence of
a geothermal temperature gradient and a salt concentration gradient. The effect of solid
square blocks placed inside a porous medium filled with fluid on the onset of convection
was studied by Rees & Nield (2016). Although their work is devoted to the effect of solid
blocks on the onset of convection, in reality they discuss the effect of the blocks on the
stability of the ground state, which is not a stationary state. In the ground state, there are
vortices at the corners of the square blocks. However, this remark is purely terminological.

The structure of the paper is as follows. In § 2, the governing equations are formulated.
Analytical results obtained in the framework of Stokes and Oseen type approximations are
presented in §§ 3 and 4. Finally, § 5 presents the results of numerical simulations based on
the complete nonlinear equations.

2. Governing equations

Let us consider convective flows near a solid inclusion in a porous medium saturated with
fluid. The inclusion has the shape of a horizontal cylinder of circular cross-section (see
figure 1). We write down the equations of convective filtration in the framework of the
Darcy–Boussinesq approximation,

−∇p − v + Ra Tγ = 0, (2.1)

∂T
∂t

+ (v · ∇)T = �T, (2.2)

div v = 0. (2.3)

Here, v is the velocity, p is the convective addition to the hydrostatic pressure, T is
the temperature counted from a reference value, γ is the unit vector directed vertically
upwards, Ra = gβAKR2/(νχ) is the analogue of the Rayleigh number for a porous
medium (g is the gravity acceleration, β is the thermal expansion coefficient, A is the
value of imposed temperature gradient, K is the permeability, R is the inclusion radius, ν
is the kinematic viscosity of fluid and χ = κm/(ρcp)f is the effective thermal diffusivity
of medium (κ is the thermal conductivity, ρ is the density, cp is the specific heat; the
quantities with the subscript m are related to the porous medium and those with the
subscript f – to the fluid)). We assume that conditions are uniform in the axial direction. In
this case, the problem allows two-dimensional solutions and we restrict our analysis to such
solutions. Let us discuss the justification of this approach. Due to the type of boundary
conditions for temperature, at small Rayleigh numbers the flow should not depend on the
z coordinate (the horizontal coordinate along the cylinder axis), i.e. it is two-dimensional.
Three-dimensional effects are possible only at large Rayleigh numbers. In this case,
the length of the vortices will be a function of the z coordinate. But the existence of
these vortices is not obvious. The reasons for that are the following. If we were dealing
with usual convection between coaxial cylinders with an inner cylinder having a thermal
conductivity equal to that of the fluid, heated from below, then, firstly, the motionless state
would be possible, and, secondly, at Rayleigh numbers greater than the critical value,
convective flows with two opposite circulation directions would be possible, in which
case a flow dependent on the z coordinate would naturally be included in the problem.
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Figure 1. Geometry of the problem.

In the problem under consideration, it is not so. We have a basic state determined by the
boundary conditions that limit the circulation direction. In addition, since we have stable
stratification, disturbances in the form of convective flows, similar to the case of usual
convection, are suppressed.

Restricting ourselves to such solutions and introducing the stream function associated
with the velocity components by the relations

vx = −∂ψ
∂y
, vy = ∂ψ

∂x
, (2.4a,b)

we obtain the following equations in terms of ψ and T:

�ψ = Ra
∂T
∂x
, (2.5)

∂T
∂t

+ J(ψ, T) = �T. (2.6)

Here, J(ψ, T) is the Jacobian with respect to x, y (x is the horizontal coordinate).
To complete the set of governing equations we need to add the energy equation in the

inclusion

α
∂T̃
∂t

= κ�T̃. (2.7)

Here, T̃ is the temperature in the inclusion, κ = κs/κm, α = (ρcp)s/(ρcp)m, indices s and
m are related to the inclusion and the porous medium, respectively.

3. Analytical study in the framework of the Stokes-like approximation

Let us at first consider the case where the inclusion is embedded in a saturated porous
matrix of infinite extent.

Far from the inclusion, at r → ∞, the flow is absent and a constant vertical temperature
gradient corresponding to stable stratification (heating from above) is maintained,

vr = −1
r
∂ψ

∂ϕ
→ 0, T → y. (3.1a,b)

Here, y is the vertical coordinate.
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On the surface of the inclusion, at r = 1, we impose the impermeability condition,
continuity of temperature and thermal flux:

ψ = 0, (3.2)

T = T̃, (3.3)

∂T
∂r

= κ
∂T̃
∂r
. (3.4)

In the centre of the inclusion we suppose the absence of any singularities.
Let us look for stationary solutions.
Firstly consider the case of small Rayleigh numbers, using the Stokes-like expansion:

ψ = Raψ1 + Ra2ψ2 + · · · , (3.5)

T = T0 + Ra T1 + · · · , (3.6)

T̃ = T̃0 + Ra T̃1 + · · · . (3.7)

The equation for the stream function in the first order and the equations for temperatures
in the zeroth order in cylindrical system of coordinates have the form

[
1
r
∂

∂r

(
r
∂

∂r

)
+ 1

r2
∂2

∂ϕ2

]
ψ1 =

(
cosϕ

∂

∂r
− sinϕ

r
∂

∂ϕ

)
T0, (3.8)

[
1
r
∂

∂r

(
r
∂

∂r

)
+ 1

r2
∂2

∂ϕ2

]
T0 = 0, (3.9)

[
1
r
∂

∂r

(
r
∂

∂r

)
+ 1

r2
∂2

∂ϕ2

]
T̃0 = 0. (3.10)

The boundary conditions are

r = 1 : ψ1 = 0, T0 = T̃0,
∂T0

∂r
− κ

∂T̃0

∂r
= 0, (3.11)

r → ∞ : vr1 = −1
r
∂ψ1

∂ϕ
→ 0, T0 → r sinϕ. (3.12)

The problem (3.8)–(3.12) has the following solution:

ψ1 = −1
4
(κ − 1)
(κ + 1)

(
1 − 1

r2

)
sin 2ϕ, (3.13)

T0 = r sinϕ − (κ − 1)
(κ + 1)

1
r

sinϕ, (3.14)

T̃0 = r sinϕ − (κ − 1)
(κ + 1)

r sinϕ. (3.15)

The radial component of the velocity is

vr1 = −1
r
∂ψ1

∂ϕ
= 1

2
(κ − 1)
(κ + 1)

(
1
r

− 1
r3

)
cos 2ϕ. (3.16)

1002 A5-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1153


Convective flow near a solid

In the case of high thermal conductivity of the inclusion (κ → ∞) instead of solutions
(3.13)–(3.16) we have

ψ1 = −1
4

(
1 − 1

r2

)
sin 2ϕ, vr1 = 1

2

(
1
r

− 1
r3

)
cos 2ϕ, (3.17a,b)

T0 = 0, T̃ = 0. (3.18a,b)

It can be seen that the resulting solution in the considered orders of smallness is
uniformly valid at any distance from the inclusion.

Consider now the temperatures in the first order of smallness (for finite κ). In this order
the equations for temperatures have the form

[
1
r
∂

∂r

(
r
∂

∂r

)
+ 1

r2
∂2

∂ϕ2

]
T1 = 1

r

(
∂T0

∂ϕ

∂

∂r
− ∂T0

∂r
∂

∂ϕ

)
ψ1, (3.19)

[
1
r
∂

∂r

(
r
∂

∂r

)
+ 1

r2
∂2

∂ϕ2

]
T̃1 = 0. (3.20)

The boundary conditions are

r = 1 : T1 = T̃1,
∂T1

∂r
− κ

∂T̃1

∂r
= 0, (3.21)

r → ∞ : T1 = 0. (3.22)

Equations (3.19)–(3.20) have the following solution:

T1 =
(

Ar + B
r

− 1
4
κ − 1
κ + 1

r log r − 1
8
(κ − 1)2

(κ + 1)2
log r

r

)
sinϕ +

(
D
r3 − 1

32
κ − 1
κ + 1

r

+ 1
32
(κ − 1)(3κ + 1)

(κ + 1)2
1
r

− 1
12
(κ − 1)2

(κ + 1)2
log r

r3

)
sin 3ϕ,

(3.23)

T̃1 = Ãr sinϕ + C̃r3 sin 3ϕ. (3.24)

It can be seen that the solution for T1 cannot satisfy the boundary conditions at infinity
for arbitrary values of constants A, B, D. The reason for this is the same as in the
well-known Whitehead paradox for the problem of the flow around the bodies.

Let us estimate the term (v · ∇)T and terms describing thermal dissipation (terms in
equation (2.2)). For this, we use the solutions (3.13) and (3.14). Taking into account that
T ≈ T0, ψ ≈ Raψ1, we obtain the following order of magnitude for the nonlinear term at
large distances, Ra/r. A typical dissipative term has the form

(
1
r
∂

∂r
+ 1

r2
∂2

∂ϕ2

)
T = κ − 1

κ + 1
1
r3 , (3.25)

i.e. it has the order 1/r3. The ratio of these two members is

Nonlinear term
Nonlinear thermal dissipation term

= O(Ra r2) at r → ∞, (3.26)

can be seen from this relation, at r → ∞ this ratio tends to infinity and nonlinear
terms cannot be neglected. This means that nonlinear terms can only be neglected for
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r � 1/
√

Ra. In dimensional form, this condition has the form rd � l ≡ √
νχ/gβAK,

where rd is the dimensional radial coordinate. Only for such small rd can the Stokes
approximation be used. For large rd, nonlinear terms must be taken into account. In this
connection, the Oseen approximation is used.

To resolve this problem the Oseen-like approximation can be used.

4. Analytical study in the framework of the Oseen-like approximation

4.1. Case of the inclusion of high thermal conductivity
Let us implement the Oseen-like approximation but, different from the conventionally used
one, apply the quasilinearization to nonlinear terms in the energy equation and not in the
momentum equation.

Neglecting nonlinear terms in the momentum equation for porous media is a common
practice, since the presence of a porous skeleton greatly slows down the motion of the
fluid. In this case, the nonlinear terms are much smaller in order of magnitude than the
friction force. Darcy law of friction was originally suggested neglecting nonlinear terms.
If we consider taking into account nonlinear terms, then this is primarily the Forchheimer
term, −cFK−1/2ρF|v|v, and not the term (v · ∇)v. One of the reasons for this is that in
most situations, the term −cFK−1/2ρF|v|v is larger in order of magnitude than the term
(v · ∇)v. This issue is discussed in more detail in the book by Nield 2006.

The classical Oseen approximation is valid for sufficiently small Reynolds numbers.
In this case, the nonlinear terms at small distances from the inclusion are much smaller
than the friction force. Quasilinearization is required only because at large distances the
nonlinear term exceeds the friction force by an order of magnitude. In the case of large
Reynolds numbers, the use of boundary layer concepts is required. This is the opposite
limiting case (see Dyke 1964).

Note that if we start from the nonlinear version of the momentum equation, then within
the framework of the Oseen approximation, we will still have to omit the nonlinear term
(at least in the leading order of smallness). This is due to the fact that when using the
Oseen approximation, we replace the nonlinear term (v · ∇)v by (U · ∇)v, where U is
the velocity at infinity. In our case, the velocity vanishes at infinity, so we do not take into
account the nonlinear terms in the momentum equation (this is also true with respect to
the Forchheimer term). In our case, the temperature gradient at infinity is non-zero, so the
quasinonlinear term is present in the energy equation.

A similar approach was used in Balasubramaniam & Dill (1991) for the investigation of
the thermocapillary bubble migration.

We start with the case of the inclusion of high thermal conductivity. Then, we have the
equations

�ψ = Ra
∂T
∂x
, (4.1)

�T = ∂ψ

∂x
, (4.2)

with the previous boundary conditions.
It is convenient to introduce the temperature deviation from the distribution at infinity

(T = y + ϑ). Equations (4.1)–(4.2) retain their form (though T is replaced by ϑ), and the
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Convective flow near a solid

boundary conditions for ϑ are

r = 1 : ϑ = −y, (4.3)

r → ∞ : ϑ = 0. (4.4)

We arrive at the linear inhomogeneous problem, whose solutions have certain symmetry

ψ(x,−y) = −ψ(x, y), ϑ(x,−y) = −ϑ(x, y) θ(x,−y) = −θ(x, y),
ψ(−x, y) = −ψ(x, y), ϑ(−x, y) = ϑ(x, y).

}
(4.5)

We seek a solution to the problem (4.1)–(4.4) by renormalizing the stream function

ψ → ρψ, ρ =
√

Ra (4.6)

(Rayleigh number is positive for heating from above). Then the equations take the form

�ψ = ρ
∂ϑ

∂x
, (4.7)

�ϑ = ρ
∂ψ

∂x
. (4.8)

We can simplify equations (4.7)–(4.8). For that, we introduce two auxiliary functions,

Φ = (ψ + ϑ)/2, (4.9)

Ψ = (ψ − ϑ)/2. (4.10)

For functions Φ and Ψ , the decoupled equations are obtained:

�Φ = ρ
∂Φ

∂x
, (4.11)

�Ψ = −ρ ∂Ψ
∂x
. (4.12)

Eliminate the first derivative in (4.11) by representing Φ in the form Φ = eαxF. For the
function F we obtain the equation

�F + 2α
∂F
∂x

+ α2F = ρ
∂F
∂x

+ αρF. (4.13)

It is seen that, at α = ρ/2, the terms with the first derivative cancel each other, and the
equation for F takes the form

�F = 1
4ρ

2F. (4.14)

Similarly, representing Ψ in the form Ψ = e−αxG with the same α, we arrive at the same
equation for G as for F:

�G = 1
4ρ

2G. (4.15)

From relations (4.9)–(4.10), we get

ψ = Φ + Ψ = eαxF + e−αxG, (4.16)

ϑ = Φ − Ψ = eαxF − e−αxG. (4.17)

We can rewrite the boundary conditions (3.2)–(3.4) for r = 1 in the form

F = −1
2 e−α cosϕ sinϕ, G = −1

2 eα cosϕ sinϕ. (4.18a,b)
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At the infinity (r → ∞) we have the boundary conditions

F eα cosϕ → 0, G e−α cosϕ → 0. (4.19a,b)

The functions F and G are odd in y. For symmetry with respect to x, we have the relations

eαxF(x)+ e−αxG(x) = −e−αxF(−x)− eαxG(−x), (4.20)

eαxF(x)− e−αxG(x) = e−αxF(−x)− eαxG(−x). (4.21)

Subtracting (4.21) from (4.20) yields

G(x) = −F(−x). (4.22)

Thus,

ψ = eαxF(x)− e−αxF(−x), (4.23)

ϑ = eαxF(x)+ e−αxF(−x). (4.24)

Now we need to find a function F satisfying the equation of membrane type. The
eigenfunctions of this equation are written in the form

Fn = fn(r) sin nϕ, (4.25)

where the angle ϕ is counted from the axis x. For fn, the following equation is obtained:

f ′′
n + 1

r
f ′
n − n2

r2 fn − ρ2

4
fn = 0. (4.26)

By introducing a new variable ξ = ρr/2, we rewrite the (4.26) in the form

f ′′
n + 1

ξ
f ′
n −

(
n2

ξ2 + 1
)

fn = 0. (4.27)

The solution of (4.27) involves the modified Bessel functions of the second kind Kn(ξ).
Thus, we have

F =
∞∑

n=1

CnKn(ξ) sin nϕ. (4.28)

Computations yield

Cn = n
(−1)n

αKn(α)
In(α), (4.29)

where In(α) are the modified Bessel functions of the first kind.
For large values of the argument, the Bessel functions of the second kind have the

asymptotics

Kn(ξ) =
√

π

2ξ
e−ξ

(
1 + 4n2 − 1

8ξ
+ · · ·

)
. (4.30)

This means that for large r
F ∼ e−(ρ/2)r. (4.31)

Therefore, the functions ψ and ϑ have the asymptotics (for x > 0)

ψ, ϑ ∼ e(ρ/2)r(cosϕ−1), (4.32)

i.e. for any directions, except the ones close to horizontal, ψ and ϑ decay exponentially
and, for a nearly horizontal direction, the power-law asymptotic behaviour takes place.
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Figure 2. Streamlines of the stationary flow (a) and isolines of temperature deviation from the linear
profile (b) found in the framework of the Oseen approximation for Ra = 10, κ → ∞.

Let us find out a more precise asymptotic formula for the horizontal velocity vx at y = 0,
i.e. at ϕ = 0. Since vx = −∂ψ/∂y, for y = 0, we have

vx|y=0 = −eαx ∂F(x)
∂y

∣∣∣∣
y=0

+ e−αx ∂F(−x)
∂y

∣∣∣∣
y=0

. (4.33)

Since
∂

∂y
= sinϕ

∂

∂r
+ 1

r
cosϕ

∂

∂ϕ
, (4.34)

then
∂F
∂y

∣∣∣∣
y=0

=
∞∑

n=1

n
x

CnKn(ξ), (4.35)

where now ξ = ρx/2.
Substituting (4.35) into (4.33) leads to

v = − 1
x3/2

√
π

ρ

∞∑
n=1

nCn + · · · . (4.36)

Thus, for the velocity, we got the power-law asymptotics with a scaling exponent 3/2.
The flow has the form of horizontal vortices directed along the x axis, and the jet velocity

decreases according to the law x−3/2.
Thus, we have obtained the asymptotic representation of the solutions of (4.14),

satisfying the boundary conditions and for small Rayleigh number, uniformly valid at
any distances from the inclusion. The analysis of the structure of the solution allows us
to conclude that, even at low values of the Rayleigh number, the convective flow at the
distances from the inclusion larger than the inclusion size has the form of horizontal
vortices directed away from the inclusion. As an example, the streamlines of stationary
flows at Ra = 10 and Ra = 100 are presented in figures 2 and 3.
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Figure 3. Streamlines of the stationary flow (a) and isolines of temperature deviation from the linear
profile (b) found in the framework of the Oseen approximation for Ra = 100, κ → ∞.

0

1

2

3

4

5

4 8

r ϕ
12 16

0

0

0.2

–0.8

–0.4

0.4

0.8

1.2

1.6

2.0

100

10

10

100
Ra = 1

Ra = 1

Vr

–1.2
0.4 0.6 0.8 1.0 1.2 1.4 1.6

(b)(a)

Figure 4. Distributions of the radial component of velocity in the radial direction at ϕ = 0 (a) and in the
azimuthal direction at r = 5 (b) (κ → ∞, Ra = 1, 10, 100).

The distributions of the radial component of velocity in the radial direction at fixed ϕ
and in the azimuthal direction at fixed r are shown in figure 4. It can be seen that with an
increase in the Rayleigh number, the maximum value of the radial component of the fluid
velocity (and the stream function) increases, and the thickness of the vortices decreases.

In figure 5 we compare the distributions of the radial velocity component in the
radial direction at ϕ = 0, κ → ∞ for Ra = 0.01 and Ra = 1 obtained in the Oseen- and
Stokes-type approximations. There is good agreement for Ra = 0.01 and some worse for
Ra = 1. This means that the Oseen and Stokes approximations give close results only for
sufficiently small values of the Rayleigh number.
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Figure 5. Distributions of the radial component of velocity in the radial direction at ϕ = 0, κ → ∞ for
Ra = 0.01 (a) and Ra = 1 (b) obtained in the Stokes-like (i) and Oseen-like (ii) approximations.

4.2. Case of the inclusion of finite thermal conductivity

Now consider the case for finite κ . In this case the equation for T̃ is additionally required.
The temperature deviation from the distribution at infinity (T̃ = y + θ ) is also used.
Equation (2.7) retains its form (though T̃ is replaced by θ ). The thermal boundary
conditions in this case are more complex and can be written as follows:

r = 1 : ϑ = θ,
∂ϑ

∂r
− κ

∂θ

∂r
= (κ − 1) sin ϕ, (4.37)

r → ∞ : ϑ = 0. (4.38)

In terms of F and G, the boundary conditions have the form

F = 1
2

e−α cosϕθ, G = −1
2

eα cosϕθ, (4.39)

∂F
∂r

− e−2α cosϕ ∂G
∂r

− κ e−α cosϕ ∂θ

∂r
= (κ − 1) sin ϕ. (4.40)

At infinity (r → ∞) we have the boundary conditions

F eα cosϕ → 0, G e−α cosϕ → 0. (4.41a,b)

Now we write the solution for θ in the form

θ =
∞∑

k=1

Ekr2k−1 sin (2k − 1)ϕ. (4.42)

The coefficients Cn and Ek should be found from the boundary conditions. Using the
boundary condition (4.39), we find the following expressions for the coefficients Cn:

Cn =
∞∑

k=1

cnkEk, cnk = (−1)n+1

2Kn(α)
[I|n−2k+1|(α)− In+2k−1(α)]. (4.43)
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Instead of the boundary condition (4.40) we can write

∞∑
k=1

apkEk = bp, (4.44)

where

apk = −α
2

∞∑
l=1

(−1)l

Kl(α)
[Kl−1(α)+ Kl+1(α)][I|l−2k+1|(α)− Il+2k−1(α)]

× [I|l−2p+1|(α)− Il+2p−1(α)] − (2p − 1)κδpk,

(4.45)

bp = (κ − 1)δ1p. (4.46)

This boundary condition can be used for finding of Ep, but previously we should cut all
sums. Then, the boundary condition (4.40) will be

N∑
k=1

apkEk = bp, (4.47)

where

apk = −α
2

2N∑
l=1

(−1)l

Kl(α)
[Kl−1(α)+ Kl+1(α)][I|l−2k+1|(α)− Il+2k−1(α)]

× [I|l−2p+1|(α)− Il+2p−1(α)] − (2p − 1)κδpk, (4.48)

bp = (κ − 1)δ1p. (4.49)

We also cut sums in the expressions for F and θ :

F =
2N∑

n=1

CnKn(ξ) sin nϕ, θ =
N∑

k=1

Ekr2k−1 sin (2k − 1)ϕ. (4.50a,b)

Now we can write the solution for (4.47) in the form

E = A−1B, (4.51)

where we used the matrix notations

E =

⎛
⎜⎜⎝

E1
E2
...

EN

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

b1
b2
...

bN

⎞
⎟⎟⎠ , A =

⎛
⎜⎜⎝

a11 a12 . . . a1N
a21 a22 . . . a2n
...

...
. . .
...

aN1 aN2 . . . aNN

⎞
⎟⎟⎠ . (4.52a–c)

The wxMaxima package was used for finding the solution.
The results for the specific values of parameters are presented in figures 6 and 7

(N = 20). It is seen that, similar to the case of high thermal conductivity of the inclusion,
with the increase of the Rayleigh number, the flow gradually takes the form of horizontal
vortices, in which the fluid moves in the horizontal plane away from the inclusion. With a
further increase in the Rayleigh number, the maximum value of the stream function grows
and the thickness of the vortices decreases. Isolines of temperature deviation from the
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Figure 6. Streamlines of the stationary flow (a) and isolines of temperature deviation from the linear profile
(both in fluid and solid inclusion) (b) obtained in the framework of the Oseen approximation at Ra = 1, κ = 1.5.
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Figure 7. Streamlines of the stationary flow (a) and isolines of temperature deviation from the linear profile
(both in fluid and solid inclusion) (b) obtained in the framework of the Oseen approximation at Ra = 10,
κ = 1.5.

linear profile with increasing Rayleigh number form less pronounced horizontal structures
(thermal plumes) than fluid flows. The temperature deviation decreases with increasing
distance from the inclusion faster than the stream function.

In figure 8 we compare the distributions of the radial component of velocity in the
radial direction at fixed ϕ and in the azimuthal direction at fixed r for κ → ∞, κ = 5 and
κ = 1.5. It can be seen that as κ decreases (but κ > 1), the maximum value of the radial
component of the fluid velocity decreases.

At κ = 1 there is no flow, since in this case the conductivity of the inclusion is equal to
the conductivity of the fluid and the basic temperature profile is not disturbed.

The case of low thermal conductivity (κ → 0) can be formally obtained from the
solution for finite value of κ by setting κ = 0. The results for this case can be seen in
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Figure 8. Distributions of the radial component of velocity in the radial direction at ϕ = 0 (a) and in the
azimuthal direction at r = 5 (b) for Ra = 1, κ → ∞ (i), κ = 5 (ii), κ = 1.5 (iii).
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Figure 9. Streamlines of the stationary flow (a) and isolines of temperature deviation from the linear profile

(b) obtained in the framework of the Oseen approximation at κ = 0, Ra = 10.

figures 9 and 10. For comparison the results for κ = 0.5 are shown in figure 11. It can be
seen that for κ < 1 (then the thermal conductivity of the solid inclusion is less than the
thermal conductivity of the fluid) the direction of circulation changes to the opposite (in
comparison with the case of high thermal conductivity). The remaining results are similar
to those discussed above.

5. Numerical study for finite values of parameters

For finite values of the Rayleigh number and finite size of the container, the problem
(2.5)–(2.6) was solved numerically using the finite difference method. Computations were
carried out for a cylindrical inclusion, surrounded by a porous medium saturated with the
fluid filling the cylindrical container with a radius larger than the inclusion radius (the

1002 A5-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
53

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1153


Convective flow near a solid

Vr

0

–0.4

0.4

0.2

0

–0.8

–0.2

–0.4

–0.6–1.2

0 4 8

r
12 16

10

10

100

100

Ra = 1

Ra = 1

0 1.61.20.8

ϕ
0.4

(b)(a)

Figure 10. Distributions of the radial component of velocity in the radial direction at ϕ = 0 (a) and in the
azimuthal direction at r = 5 (b) for κ = 0, Ra = 1, 10, 100.
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Figure 11. Distributions of the radial component of velocity in the radial direction at ϕ = 0 (a) and in the
azimuthal direction at r = 5 (b) for κ = 0.5, Ra = 1, 10, 100.

ratio of the container radius to the radius of the inclusion was varied in the range 1–30).
The calculations were carried out in the quarter of cylindrical gap using the symmetry
conditions at ϕ = 0 and ϕ = π/2.

Two home-made numerical codes were used in the calculations. The first code was
based on an unsteady approach with the explicit numerical scheme for time integration.
In this case, the calculations were carried out until the stationary values of the integral
characteristics of the stream function and temperature fields were attained with relative
accuracy 10−5. The spatial discretization of the derivatives was made with the second
order. The Poisson equation for the stream function was solved by the iteration method.
Most of the calculations were performed using the grid with 150 nodes in the radial
direction and 150 nodes in the azimuthal direction.
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At large enough values of the Rayleigh number (Ra > 200), thin boundary layers are
formed near the rigid boundaries and near the symmetry axes. In this case, numerical
calculations were performed using a home-made code (Khlybov 2022) which is aimed
at solving steady state and transient problems on two- and three-dimensional rectilinear
grids employing semiautomatic (guided) and automatic discretization of partial differential
equations using finite difference and finite volume methods, which transform original
differential–algebraic equations into corresponding discrete forms. Implemented samplers
perform sampling on Cartesian grid with unit spatial step; the mapping of a physical
computational domain to a computational one is carried out with a user-specified
coordinate transformation, which can either be specified analytically or be a result of the
operation of an external mesh generator. In the present paper the following coordinate
transformations were used:

r = 1 + (Rext − 1)ξ̄, ξ̄ = 1
2

⎧⎪⎪⎨
⎪⎪⎩

1 +
tanh

(
δr

[
ξ − 1

Rext − 1
− 1

2

])

tanh(δr/2)

⎫⎪⎪⎬
⎪⎪⎭
, (5.1)

ϕ = π

2
η̄, η̄ = 1

2

⎧⎪⎪⎨
⎪⎪⎩

1 +
tanh

(
δη

[
2η
π

− 1
2

])

tanh(δη/2)

⎫⎪⎪⎬
⎪⎪⎭
. (5.2)

An arbitrary partition of a discretized system of nonlinear algebraic equations into
subsystems is allowed to obtain various solution schemes ranging from the fully implicit
strategy (where all unknown fields are solved simultaneously) to the segregated one (for
each field a specific solution procedure is generated, there the remaining fields included
in equations are not considered a part of solution). Discretized systems of (non)linear
algebraic equations are solved by Newton’s method using third-party SLAE solvers;
one can choose between sequential and parallel solution methods. In the latter case,
it is possible to use multiprocessor systems with shared memory or parallel systems
(clusters), or even in heterogeneous environments. The partial differential equation system
under discussion was discretized with a second-order finite-difference method with
analytical coordinate transformation mapping of the axisymmetric physical domain with
non-uniform grid into the uniform Cartesian computational grid. The employed coordinate
transformation generates a finer grid near the domain borders at the expense of the bulk of
the domain in order to attain boundary layer resolution. The obtained system of nonlinear
algebraic equations is solved with the fully implicit solution strategy with nonlinearity and
is treated by the Newton’s method, and the underlying linear system solved by the MUMPS
direct sparse SLAE solver. Most of the calculations were performed using the grid with
300 nodes in the radial direction and 300 nodes in the azimuthal direction. Parameters δr
and δη were taken equal to 5. For this mesh at Ra = 1000, κ = 0 there are 27 nodes in the
boundary layer in the radial direction at φ = 0 near the inclusion surface, and 111 nodes
in the boundary layer in the azimuthal direction at r = 5 near symmetry line φ = 0. Test
calculations using the grids 100 × 100, 200 × 200, 400 × 400 and 500 × 500, confirmed
very good accuracy of calculations with grid 300 × 300 (see table 1).

Figure 12 shows how the radial size of the numerical domain affects the accuracy of the
results. It can be seen that increasing the size of the numerical domain has virtually no
effect on the accuracy of the results.
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Number of nodes Maximal value of stream function at Ra = 1000

100 −11.12653
200 −11.13652
300 −11.13692
400 −11.13737
500 −11.13738

Table 1. Dependence of the maximum value of the stream function on the number of nodes.
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Figure 12. Distributions of radial component of velocity in the radial direction at ϕ = 0 (a) and in the
azimuthal direction at r = 5 (b) for κ → ∞, Ra = 1000, rext = 15 for dashed line, rext = 30 for solid line
(grid 500 × 500).

5.1. Case of the inclusion of high thermal conductivity
Let us first consider the case of the inclusion of high thermal conductivity. In this case, at
the container wall, we imposed the temperature distribution corresponding to the uniform
vertical temperature gradient (heating from above).

The calculations show that at low Rayleigh numbers there is a single vortex occupying
the whole computational domain (remember that the computational domain is a quarter of
the whole cylindrical gap) and symmetric about the diagonal (figure 13a).

With the increase in the Rayleigh number, the flow gradually takes the form of
horizontal vortices, in which the fluid moves in the horizontal plane away from the
inclusion (figure 13b). With a further increase in the Rayleigh number, the maximum
value of the stream function grows and the thickness of the horizontal vortices decreases
(figure 13c).

This behaviour is also illustrated in figure 14, where the distributions of the radial
component of velocity in the azimuthal direction at fixed r and in the radial direction
at fixed ϕ are presented.
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Figure 13. Streamlines of the stationary flow calculated numerically using the full nonlinear approach at

Ra = 1 (a), Ra = 100 (b) and Ra = 1000 (c).
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Figure 14. Distributions of the radial component of velocity in the radial direction at ϕ = 0 (a) and in the
azimuthal direction at r = 5 (b) obtained numerically for the case of inclusion of high thermal conductivity.

5.2. Case of the inclusion of low thermal conductivity
Numerical solution was carried out not only for the high thermal conductivity of the
inclusion, but also in the case of the inclusion whose thermal conductivity is much less
than the thermal conductivity of the surrounding liquid. The following thermal boundary
condition at the inclusion surface was used:

∂T
∂r

= 0. (5.3)

It follows from the calculations that in this case the sign of the convective circulation
changes, so that in the horizontal plane passing through the axis of the cylinder the fluid
is leaking to the inclusion (figure 15a–c).

In figure 16, the distributions of the radial component of velocity in the radial direction
at fixed ϕ and in the azimuthal direction at fixed r in the case of low thermal conductivity
of the inclusion are presented.
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Figure 15. Streamlines of the stationary flow obtained numerically using the full nonlinear approach in the

case of inclusion of low thermal conductivity at Ra = 1 (a), Ra = 100 (b) and Ra = 1000 (c).
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Figure 16. Distributions of the radial component of velocity in the radial direction at ϕ = 0 (a) and in the
azimuthal direction at r = 5 (b) obtained numerically for the case of inclusion of low thermal conductivity.

The evolution of the maximal value (in absolute value) of the stream function on the
Rayleigh number for the limit cases of high and low thermal conductivities is presented in
figure 17(a,b). It can be seen that for the case of low conductivity, the sign of the stream
function differs from the sign for the case of high thermal conductivity.

6. Comparison of analytical and numerical results

Figures 18, 19, and figures 20, 21, show the comparison of the velocity profiles in radial
and azimuthal directions obtained at different Rayleigh number values for high and low
thermal conductivities of the inclusion in the framework of the Oseen approximation and
numerically in the framework of the full nonlinear approach. It is seen that there exists not
only qualitative but also good quantitative agreement for Ra = 100.

Thus, the analytical data computed with Oseen quasilinearization describe well the
arising flow within a wide enough range of the Rayleigh number values. At higher
values of the Rayleigh number the difference in analytical and numerical results becomes
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Figure 17. Dependencies of the maximal value (in absolute value) of the stream function on the Rayleigh
number obtained numerically for high (a) and low (b) thermal conductivities.
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Figure 18. Distributions of the radial component of velocity in the radial direction at ϕ = 0, κ → ∞ obtained
analytically in the framework of the Oseen approximation (i) and numerically using full nonlinear approach (ii)
for Ra = 100 (a), Ra = 1000 (b).

more substantial (see figures 18b and 21b). This shows the validity range of the Oseen
approximation.

7. Conclusions

Formation of flows in stably stratified fluid at weak violation of stable stratification has
been studied using the problem on thermal buoyancy convection near a solid inclusion
embedded in a fluid-saturated porous medium heated from above as an example. The
simple form of the equations of thermal buoyancy convection in a fluid-saturated porous
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Figure 19. Distributions of the radial component of velocity in the azimuthal direction at r = 5, κ → ∞
obtained analytically in the framework of the Oseen approximation (i) and numerically using full nonlinear
approach (ii) for Ra = 100 (a), Ra = 1000 (b).
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Figure 20. Distributions of radial component of velocity in the radial direction at ϕ = 0, κ = 0 obtained
analytically in the framework of the Oseen approximation (i) and numerically using full nonlinear approach
(ii) for Ra = 100 (a), Ra = 1000 (b).

medium in the Darcy–Boussinesq approximation allowed for a fairly complete analytical
study of the problem. The equations are written in terms of the stream function and
temperature deviations from a linear vertical distribution and possessed the internal
symmetry, which allowed us to reduce the system of equations to one equation without
increasing the order.

An analytical solution of the problem has been obtained for the limit case of large
thermal conductivity of the inclusion, when the ratio κ = κs/κf tends to infinity, in the
framework of the Oseen-like approximation where, different from the conventional Oseen
approximation, the quasilinearization is applied to the nonlinear terms in the energy
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Figure 21. Distributions of radial component of velocity in the azimuthal direction at r = 5, κ = 0 obtained
analytically in the framework of the Oseen approximation (i) and numerically using full nonlinear approach (ii)
for Ra = 100 (a), Ra = 1000 (b).

equation and not in the momentum equation. This solution satisfies the given boundary
conditions and is uniformly valid at any distance from the inclusion.

Analysis of this solution shows that, even at low values of the Rayleigh number, the
convective flow at a distance from the inclusion greater than the inclusion size has the form
of four horizontal vortices; besides, in a horizontal plane passing through the inclusion axis
the fluid moves away from the inclusion. Thus, the formation of the horizontal structures
in the laminar flow of a stably stratified fluid has been discovered and described for the first
time. The flow velocity in a horizontal plane passing through the inclusion axis decreases
with the distance from the inclusion as x−3/2.

For finite values of the thermal conductivity ratio κ , a semianalytical solution has been
obtained within the framework of Oseen-like approximation with the truncation of a
system of linear equations. Analysis of this solution shows that the convective flow in
the form of horizontal vortices arises at any values of κ except for the case κ = 1 when
the inclusion thermal conductivity is the same as that of the fluid and the conditions of
stable stratification are not violated. However, the directions of the flow at κ > 1 and
κ < 1 are different: in the first case the fluid moves in a horizontal plane passing through
the inclusion axis away from the inclusion and in the second case – towards the inclusion.
The flow velocity magnitude increases with the increase of deviation of κ from unity. The
results for the limit case of low conductivity of the inclusion are directly obtained from
semianalytical solution obtained for finite κ .

Analytical results obtained in the framework of the Oseen-like approximation have been
confirmed by the comparison with the numerical results on the velocity profiles and flow
structure obtained in the framework of full nonlinear approach by finite difference method.

Good qualitative and quantitative agreement for the Rayleigh number values Ra < 100
identifies the range of the validity of the Oseen-like approximation.

The phenomena considered in the present paper have general character. Particularly,
similar phenomena should be observed in the solutal convection. A general feature of these
phenomena is that weak violation of stable stratification in stably stratified fluid leads to
the emergence of laminar convective flows in the form of horizontal structures with the
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horizontal component of the velocity significantly exceeding the vertical one. The reason
for the arising of these flows is that stable stratification prevents vertical flows associated
with the work against gravity, but does not prevent horizontal flows.
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