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Abstract

For classroom teaching and learning, classifying students’ skills into more than two

categories (e.g., no, basic, and advanced masteries) is more instructionally relevant.

Such classifications require polytomous attributes, for which most existing cognitive

diagnosis models (CDMs) are inapplicable. This paper proposes the saturated

polytomous cognitive diagnosis model (sp-CDM), a general model that subsumes

existing CDMs for polytomous attributes as special cases. The generalization is shown

by mathematically illustrating the relationships between the proposed and existing

CDMs. Moreover, algorithms to estimate the proposed model is proposed. A simulation

study is conducted to evaluate the parameter recovery of the sp-CDM using the

proposed estimation algorithms, as well as to illustrate the consequences of improperly

fitting constrained or unnecessarily complex polytomous-attribute CDMs. A real-data

example involving polytomous attributes is presented to demonstrate the practical

utility of the proposed model.

Key words: cognitive diagnosis models, polytomous attributes, G-DINA, parameter

estimation
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1. Introduction

A wide variety of cognitive diagnosis models (CDMs) exist in the literature. Typically, these

models were proposed for dichotomous attributes appropriate for determining, say, skill mastery

or nonmastery. However, in many applications, classifying students into more than two categories

is more instructionally relevant. Such classifications require polytomous attributes, where the

attribute levels can be ordinal categories (e.g., no mastery, basic mastery, and advanced mastery).

For example, the proportional reasoning (PR) assessment developed to measure the PR skills for

middle school (equivalently, secondary) students (Tjoe & de la Torre, 2013, 2014) involves two

three-level polytomous attributes, namely, (a) comparing and ordering of fractions, where level 0

represents nonmastery of the attribute, level 1 the ability to compare two fractions, and level 2

the ability to order three or more fractions; and (b) constructing ratios and proportions, where

level 0 represents nonmastery, level 1 the ability to construct a single ratio, and level 2 the ability

to construct a proportion, which is made up of two ratios. Attribute levels can also be nominal

categories representing different content domains. For example, level 1 represents the prerequisite

skills (e.g., add and subtract) in the attribute hierarchy, whereas level 2 the advanced skills (e.g.,

multiply and divide). In general, any M -level polytomous attribute can be equivalently

represented by M − 1 dichotomous attributes that follow a linear hierarchy (Leighton et al.,

2004). In the example above, the polytomous attribute comparing/ordering fractions can be split

into two dichotomous attributes, where the first deals with two fractions and the second with

three or more fractions, and the mastery of the former is a prerequisite to the mastery the latter.

The prerequisite relationship will constrain the number of possible mastery combinations to three,

namely, 00, 10, and 11, which is equivalent to levels 0, 1, and 2 of the original polytomous

attribute. Finally, it is important to underscore that this paper focuses on the attributes with

more than two categories (i.e., polytomous attributes), rather than responses with more than two

categories (i.e., polytomous responses). This distinction is necessary because both CDMs for

polytomous attributes and those for polytomous responses have been both referred to as

polytomous CDMs in the literature.

To accommodate polytomous attributes, several CDMs have been developed in the literature,
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which are summarized and shown in Table 1 according to several key features such as general or

constrained, link function, and core assumptions. For example, Templin (2004) extended the

reparameterized unified model (RUM; Hartz, 2002) for polytomous attributes (RUM-PA) and

proposed a constrained version (cRUM-PA), Karelitz (2004) proposed the ordered category

attribute coding (OCAC) framework in conjunction with the deterministic input, noisy “and”

gate (DINA) model (Junker & Sijtsma, 2001) to define the mastery levels as multiple ordered

categories. By defining accuracy with fast speed as the highest level of an attribute, accuracy

with slow speed as intermediate level, and nonmastery as the lowest level, Wang and Chen (2020)

extended the DINA model to be the response accuracy model (RAM) model to measure students’

fluency in answering the test items. Recently, Yakar et al. (2021) developed a fully additive model

for polytomous attributes (fA-M) which accounts for the effects of each attribute levels. However,

these models are deemed to be not general enough mainly because the models focused on a

specific and constrained CDM.

The existing general CDMs for polytomous attributes include those proposed within the

log-linear cognitive diagnosis model (LCDM; Henson et al., 2009), that within the general

diagnostic model (GDM; von Davier, 2008), and that within the generalized deterministic input,

noisy “and” gate (G-DINA) model (de la Torre, 2011).

The polytomous diagnostic classification model (PDCM) framework (Bao, 2019) extends the

measurement and structural models of the LCDM to the polytomous attribute setting. Note that

in the PDCM framework, only the attribute patterns (αl) are polytomous, whereas the Q-matrix

entries remain binary. In contrast, both the attribute pattern and Q-matrix entries are

polytomous, for other CDMs in this paper, such as the OCAC framework, GDM, and the

proposed framework. The probabilities between different levels in PDCM can be varied for

greater flexibility or be equal for smaller number of parameters. The PDCM uses the dummy

coding approach in which the M levels of an attribute are coded as (M − 1) dummy variables and

the combinations of the dummy variables - representing different knowledge states - are treated as

the polytomous attribute levels. For example, for three levels of an attribute, they are coded with

two dummy variables and as (0,0), (1,0), and (1,1) to represent nonmastery, intermediate mastery,

and mastery. This coding approach might be workable when the number of levels in attributes
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Table 1.

Summary of existing cognitive diagnosis models for polytomous attributes

Model Framework Link Core Assumptions

RUM-PA constrained log conjunctive

cRUM-PA constrained log conjunctive; equivalent distance between

levels

OCAC-DINA constrained identity conjunctive

fA-M constrained identity additive

PDCM general logit monotonic

cPDCM constrained logit monotonic; main effects of different levels are

the same; interaction effects across levels are

the same

GDM-PA general logit depends on the choice of h(qk, αk)

pG-DINA general identity;

logit; log

monotonic; SALM

RAM constrained identity conjunctive; monotonic

Note. RUM-PA: reparameterized unified model for polytomous attributes; cRUM-PA: constrained RUM-

PA; OCAC-DINA: deterministic input, noisy “and” gate model with ordered category attribute coding;

fA-M: fully additive model for polytomous attributes; PDCM: polytomous diagnostic classification model;

cPDCM: constrained PDCM; GDM-PA: general diagnostic model for polytomous attributes; pG-DINA:

polytomous generalized DINA model; SALM: specific attribute level mastery; RAM: Response accuracy

model.
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and the number of attributes in a test are moderate. It becomes tedious and hard to interpret the

representation of the knowledge states when the number of levels and attributes are large.

With a proper choice of the central component function, as in, the function h(·) that maps

the attribute levels using the Q-matrix entries, the GDM can flexibly accommodate polytomous

attributes. For example, a useful and reasonable choice of h(·) is defined as h = min(qk, αk). As a

result, an attribute level that is higher than h(·) will not increase the probability of solving an

item, whereas that is lower than h(·) results in a lower success probability. In other words, while

there is no distinction between groups who possess the required attribute level and who have an

even higher level, there is distinction between groups whose attribute levels are lower than the

required level. Nonetheless, the GDM for polytomous attributes (GDM-PA) has neither been

examined with simulation studies in enough details nor applied to the real data.

With respect to G-DINA model for polytomous attributes, namely, the pG-DINA model

(J. Chen & de la Torre, 2013), the model relies on a core assumption, which is referred to the

specific attribute level mastery (SALM), where each item is assumed to separates examinees into

two reduced latent groups - those who are on or above a specific attribute level, and those who

are below it. With the SALM assumption, some levels in the pG-DINA do not increase the

success probability. Such a constraint may be too stringent because attribute vectors in the same

reduced latent group are very likely to have varying levels with respect to the required attributes

and thus their probabilities of success may not be identical.

The first and primary aim of this paper is to propose a general CDM framework for

polytomous attributes analogous to the G-DINA model for dichotomous attributes. Specifically,

the proposed model extends the pG-DINA model by relaxing the SALM assumption and allows

for the different attribute levels to contribute differentially to the success probability. This work

also aims to derive the special cases of the sp-CDM under different constraints and show the

mathematical relationships between the sp-CDM and the existing CDMs for polytomous

attributes and its special cases. Third, this work aims to address the estimation of the sp-CDM,

to examine parameter recovery using the proposed estimation algorithms, and the consequences of

fitting constrained and unnecessarily complex models across a range of conditions. Finally, the

study aims to demonstrate the application of the sp-CDM with a real data of PR assessment.
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This paper contributes to the literature by developing a unified framework for polytomous

attributes. The proposed model has three unique features: (1) Compared to the existing CDMs

for polytomous attributes, where some attribute levels share identical success probabilities, the

sp-CDM allows for different attribute levels to have their unique contributions to the success

probability; (2) the sp-CDM is formulated with alternative link functions, thus, making it more

general; and (3) due to the different model formulations, the existing models can be

mathematically shown to be special cases of the various forms of the sp-CDM with appropriate

constraints. Despite the similar structure of this work to that for G-DINA (de la Torre, 2011) or

the pG-DINA (J. Chen & de la Torre, 2013), the fundamental differences are substantial.

Specifically, the formulations, the estimations, and the implications of three models are

substantially different.

2. The Generalized Cognitive Diagnosis Model Framework for Polytomous

Attributes

The generalized CDM framework for polytomous attributes can be expressed as three

saturated models under different link functions. Let J be the number of items, K the number of

attributes, and Mk the number of levels of attribute k. For notational convenience, but without

loss of generality, it can be assumed that Mk = M , indicating the number of levels is identical for

all attributes. Thus, there will be a total of
∏K

k=1Mk = MK attribute patterns or latent classes.

Let K∗
j =

∑K
k=1 I(qjk > 0) be the number of required attributes for the item j, j=1, . . . , J. Again,

for notational convenience, let the first K∗
j attributes be the required attributes for item j. We use

qj = (q1, · · · qK∗
j
,0)1×K to denote the required levels in the K∗

j attributes to answer the item j

correctly, and α∗
l = (α1, · · · , αk, · · · , α∗

K∗
j
)1×K∗

j
the lth reduced attribute pattern or latent group.

As can be seen from above, the entries in both the q and α∗ can have more than two categories.

To illustrate, consider K = 3, M = 3, and q = (1, 2, 0), which indicates that the first level of

α1 and the second level of α2 are required for the item, hence, K∗
j = 2. For this example, there

are MK = 27 latent classes, which will be partitioned into MK∗
j = 9 latent groups. Specifically,

for this item, the latent classes αl and αl′ are classified in the same latent group when αl1 = αl′1

and αl2 = αl′2. For example, the latent classes 000, 001, and 002 all belong to the latent group 00.
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The item response function (IRF) of the proposed model using the identity link function is

given by

Pj(α
∗
l ) = δj0 +

K∗
j∑

k=1

M−1∑
m=1

δjkmI
[
αlk = m

]
+

K∗
j∑

k′>k

K∗
j −1∑
k=1

M−1∑
m=1

M−1∑
m′=1

δjkmk′m′I
[
αlk = m

]
I
[
αlk′ = m′]+ · · ·+

M−1∑
m1=1

M−1∑
m2=1

. . .

M−1∑
mK∗

j
=1

δj1m12m2...K∗
j mK∗

j

K∗
j∏

k=1

I
[
αlk = mk

]
,

(1)

where δj0 is the intercept, δjkm is the main effect of the mth level of attribute k, δjkmk′m′ is the

two-way interaction effect of the mth level of attribute k and the m′th level of attribute k′, and

δj1m12m2...K∗
j mK∗

j
is the K∗

j -way interaction effect of the m1th level of the α1, m2th level of the α2,

up to the mK∗
j
th level of αK∗

j
. It can be further noted that the subscript m of δjkm indicates that

each attribute level in αk contributes differentially to the success probability, as in, the steps

between adjacent levels vary (e.g., the step between “no mastery” and “basic mastery” is different

from that between “basic mastery” and “advanced mastery”). To reduce the number of

parameters and, hence, model complexity, it can be assumed that the steps between levels within

αk are identical, which reduces δjkm to δjk.

In addition to the identity link function, the sp-CDM can also be formulated with the logit

and log links. Despite the similar forms, the models using different link functions are essentially

different in terms of the values and interpretations of the parameters. For this reason, different

notations are used for parameters under formulations with logit and log link functions.

For the logit link,

logit[Pj(α
∗
l )] = λj0 +

K∗
j∑

k=1

M−1∑
m=1

λjkmI
[
αlk = m

]
+

K∗
j∑

k′>k

K∗
j −1∑
k=1

M−1∑
m=1

M−1∑
m′=1

λjkmk′m′I
[
αlk = m

]
I
[
αlk′ = m′]+ · · ·+

M−1∑
m1=1

M−1∑
m2=1

. . .
M−1∑

mK∗
j
=1

λj1m12m2...K∗
j mK∗

j

K∗
j∏

k=1

I
[
αlk = mk

]
.

(2)
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For the log link,

log[Pj(α
∗
l )] = νj0 +

K∗
j∑

k=1

M−1∑
m=1

νjkmI
[
αlk = m

]
+

K∗
j∑

k′>k

K∗
j −1∑
k=1

M−1∑
m=1

M−1∑
m′=1

νjkmk′m′I
[
αlk = m

]
I
[
αlk′ = m′]+ · · ·+

M−1∑
m1=1

M−1∑
m2=1

. . .
M−1∑

mK∗
j
=1

νj1m12m2...K∗
j mK∗

j

K∗
j∏

k=1

I
[
αlk = mk

]
.

(3)

Equations 1, 2, and 3 are referred to as the saturated polytomous cognitive diagnosis model

(sp-CDM) under the identity, logit, and log link functions, respectively. The number of

parameters for item j for the three models is equal to the number of latent groups (i.e., MK∗
j ).

Thus, the models offer much greater generality compared to the existing CDMs for polytomous

attributes. Although flexible, the large number of parameters in these models can make their

estimation challenging. Therefore, simpler and more interpretable models with fewer parameters

are sometimes warranted. Note that the number of parameters for the saturated models does not

take into account the required attribute levels - it is computed as the product of the maximum

levels of the required attributes. Thus, in the example above, in addition to (1, 2, 0), the q-vectors

(1, 1, 0), (2, 1, 0), and (2, 2, 0) will result in the same saturated models.

3. Special Cases

This section introduces several simplified CDMs for polytomous attributes with different

assumptions, namely, the conjunctive, disjunctive, and additive assumptions, and how they can

be derived from the sp-CDM by imposing appropriate constraints.

The Conjunctive version of the sp-CDM

In the conjunctive version of the sp-CDM (conj-sp-CDM), it is assumed that examinees

should possess levels that are equal to or higher than the required levels in all the required

attributes are expected to answer the item correctly. Alternatively, persons who lack at least one

of the required attributes, or possess levels lower than those required in at least one of the
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required attributes are expected to answer the item incorrectly. Hence, the IRF of the

conj-sp-CDM can be expressed as

Pj(α
∗
l ) =

 gj if I[{α∗
l ≥ qj}] ≺ 1K∗

j
,

1− sj otherwise,
(4)

where the symbol {} insides I[·] indicates that the operation be carried out attribute by attribute

and I[·] = 1 if α∗
l ≥ qj and 0 otherwise. 1K∗

j
is a vector of ones and of length K∗

j . The ≺ symbol

indicates with respect to K∗
j required attributes, which is a partially order set of K attributes, at

least one of the elements in the results of I[·] is less than 1. As shown in Equation 4, the

conj-sp-CDM has two parameters for item j.

On the surface, the formulation of the conj-sp-CDM is similar to that of the DINA model.

However, the parameters in Equation 4 require more complicated interpretations. For example,

the gj in the equation is the probability of correctly answering item j for individuals who lack at

least one of the prescribed attributes, or who possess the required attributes, but with levels

lower than required levels in the prescribed attributes; the 1− sj represents the probability of

individuals who have attribute levels that are all at least equal to the required levels answering

the item incorrectly. Thus, in the conj-sp-CDM model, the MK∗
j attribute vectors are classified

into two latent groups– attribute vectors that jointly satisfy the required levels prescribed for item

are classified in one group, and the rest of the attribute vectors in the other group.

The conj-sp-CDM model can be derived from the identity sp-CDM (i.e., Equation 1) by

imposing the following three constraints:

(1) All the (M − 1)K∗
j main effects are equal to zero, as in, δjkm = 0 for k = 1, . . . ,K∗

j and

m = 1, . . . ,M − 1;

(2) All the
∏K∗

j

k=1(M − qk) interaction terms involving attribute levels at least equal to the

required attribute levels are identical, as in, δ
j1m

(+)
1 2m

(+)
2 ···K∗

j m
(+)

K∗
j

= δj1q12q2···K∗
j qK∗

j
, where

m
(+)
k = qk, · · · ,M − 1; and

(3) The remaining MK∗
j − (M − 1)K∗

j −
∏K∗

j

k=1(M − qk)− 1 interaction effects involving at

least one attribute level below the required level are all equal to zero.

With the conjunctive assumptions imposed on the identity sp-CDM, the IRF of the
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conj-sp-CDM can also be expressed as:

Pj(α
∗
l ) = δj0 + δj1q12q2...K∗

j qK∗
j

K∗
j∏

k=1

I
[
αlk ≥ qjk

]
. (5)

The Disjunctive version of the sp-CDM

In the disjunctive version of the sp-CDM (disj-sp-CDM), the IRF is given by

Pj(α
∗
l ) =

1− s′j if I[{α∗
l ≥ qj}] ≻ 0K∗

j
,

g′j otherwise,
(6)

where 1− s′j is the probability of not slipping for persons who posses levels that are equal to or

higher than the required levels in at least one required attribute, and g′j is the success probability

that persons who possess none of required attributes, or possess at least one of the required

attributes, but all of which have the levels that lower than the required levels. As such, the

disj-sp-CDM has two parameters for each item.

The disj-sp-CDM can be derived from the identity sp-CDM with the following constraints:

(1) The main effects δjkm(−) = 0 and δjkm(+) = δjkqk , where m
(−)
k = 1, · · · , qk − 1 represents

levels of attribute k that are lower than the required level qk, and m
(+)
k is as defined as above.

(3) The remaining interaction effects (i.e., those involving at least one m
(−)
k ) are of equal to

zero.

With these assumptions, the identity sp-CDM can be reduced to be the disj-sp-CDM as:

Pj(α
∗
l ) = δj0 +

K∗
j∑

k=1

δjkqkI
[
αlk ≥ qk

]
+

K∗
j∑

k′>k

K∗
j∑

k=1

δjkqkk′qk′ I
[
αlk ≥ qk

]
I
[
αlk′ ≥ qk′

]
+

· · ·+ δj1q12q2···K∗
j qK∗

j
I
[
αl1 ≥ q1

]
I
[
αl2 ≥ q2

]
· · · I

[
αlK∗

j
≥ qK∗

j

]
.

(7)

The Fully Additive Model for Polytomous Attributes

The fully additive model for polytomous attributes (fA-M; Yakar et al., 2021) assumes that

mastering level m of required attribute k increases the success probability on item j by δjkm, and

its contribution is independent of the contributions of the levels of the other other attributes. By
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retaining only the main effects in Equation 1, the fA-M can be obtained, which has the following

IRF:

Pj(α
∗
l ) = δj0 +

K∗
j∑

k=1

M−1∑
m=1

δjkmI
[
αlk = m

]
. (8)

The fA-M has K∗
j (M − 1) + 1 parameters for item j. As with the saturated models, the

number of parameters the fA-M does not depend on the required levels, only the maximum levels

of the required attributes. Using the required level qk as a cutoff value, two simplified and

interpretable models can be obtained from the fA-M. Specifically, in the first simplified fA-M,

mastering an attribute level that is higher than qk will contribute to higher probability of

answering an item correctly, whereas mastering those that are lower than qk will have equal

success probability. Hence, qk serves as a minimum bar and will be denoted as min-fA-M. The

IRF for the min-fA-M can be expressed as:

Pj(α
∗
l ) = δj0 +

K∗
j∑

k=1

(δjk1kI
[
αlk < qjk

]
+ δjkmI

[
αlk ≥ qjk

]
), (9)

where δjk1k represents the main effect of m = 1 in attribute k. The number of parameters for

item j in the min-fA-M reduces to
∑K∗

j

k (M − qk + 1) + 1.

In contrast to the min-fA-M, the second simplified fA-M assumes qk is a maximum

requirement and will be denoted as max-fA-M. The model is similar to the GDM in that the

success probabilities for attribute levels that are higher than qk are equal to each other in both

models, which equal to the probability of level qk. However, those of levels that are lower than qk

are different. The lower the level, the lower the success probability. The IRF for the max-fA-M

can be expressed as:

Pj(α
∗
l ) = δj0 +

K∗
j∑

k=1

(δjkmI
[
αlk < qk

]
+ δjkqkI

[
αlk ≥ qk

]
). (10)

where δjkqk is the main effect of level m = qk in attribute k. The max-fA-M has
∑K∗

j

k qk + 1

parameters for item j.
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4. The Connections between the sp-CDM and the Existing Models

This section shows, both mathematically and graphically, the connections between the

sp-CDM and the existing models. Specifically, the existing CDMs for polytomous attributes can

be formulated as special cases of the sp-CDM using different functions. A diagram (i.e., Figure 1)

and a table (i.e., Table 2) help illustrate the connections between the sp-CDM and the existing

models, and those among the existing models.

4.1 The identity model: pG-DINA and fA-M

The pG-DINA model can be obtained from the sp-CDM by replacing I
[
αl·· = m

]
with

I
[
αl· ≥ qjk

]
. With respect to the fA-M, as shown in Equation 8, it is the identity sp-CDM that

retains the main effects only.

4.2 The logit model: PDCM and GDM-PA

In the PDCM framework (Bao, 2019), the logit of the success probably in answering item j

correctly is given by

log
P (Xj = 1|α̃)

P (Xj = 0|α̃)
= λj0 +

K∑
k=1

M−1∑
m=1

λm
jkα̃

m
k qjk+

K−1∑
k=1

M−1∑
m=1

K∑
k′=k+1

M−1∑
m′=1

λmm′
jkk′ α̃

m
k α̃m′

k′ qjkqjk′ + · · · ,

(11)

where α̃m
k is the dummy variable for level m of attribute k, qjk is equal to 1 if kth attribute is

measured by item j. λm
jk is the main effect of level m for attribute k and λmm′

jkk′ is the two-way

interaction effect for level m of attribute k and level m′ of attribute k′. As mentioned earlier, qjk

in the PDCM are still binary values. Hence, the PDCM is a special case of the logit sp-CDM.

In the GDM (von Davier, 2008), the IRF can be expressed as

logit [P (Xj = 1|β, qk, γ, αk)] = β + γTh(qk, αk). (12)

As mentioned earlier, for polytomous attributes with qk ∈ {0, 1, 2, · · · ,m} and

αk ∈ {0, 1, 2, · · · ,m}, a useful and reasonable choice of h(·) in GDM is defined as

h(qk, αk) =

qk if αk > qk

αk if αk ≤ qk
(13)
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Figure 1.

The generalized cognitive diagnosis model framework for polytomous attributes

Note: sp-CDM: saturated polytomous cognitive diagnosis model; fA-M: fully additive model for polytomous at-

tributes; pG-DINA: generalized deterministic input, noisy “and” gate model for polytomous attributes with the

specific attribute level mastery (SALM) assumption; PDCM: saturated polytomous-attribute diagnostic classifica-

tion model; RUM-PA: reparameterized unified model for polytomous attributes; min-fA-M: fA-M using qk as a

minimum requirement; max-fA-M: fA-M using qk as a maximum requirement; cPDCM: constrained PDCM; GDM-

PA: general diagnostic model for polytomous attributes; cRUM-PA: constrained RUM-PA; pA-CDM: additive model

for polytomous attributes; pDINA: deterministic input, noisy “and” gate model for polytomous attributes; pDINO:

deterministic input, noisy “or” gate model for polytomous attributes; conj-sp-CDM: conjunctive version of sp-CDM;

disj-sp-CDM: disjunctive version of sp-CDM; OCAC: ordered category attribute coding framework. The colors or-

ange, blue and green can be interpreted as the number of steps (i.e., 1, 2 and 3 steps) for the reduced models to be

derived from the saturated model of a particular link function. For example, the pA-CDM can be derived from the

identity sp-CDM through pG-DINA (two steps) or through fA-M then either min-fA-M or max-fA-M (three steps).

The dashed lines indicate that the reduced models can also be shown to be special cases of sp-CDM with logit or log

link functions.
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To this end, Equation 12 is equivalent to

logit [P (Xj = 1|β, qk, γ, αk)] = β +

K∗
j∑

k=1

M∑
m=1

γjk · h(qk, αk), (14)

where γjk is the increase in the logit of the probability of success for every level of αk mastered up

to the required level (i.e., qk).

4.3 The log model: RUM-PA

In the polytomous attribute RUM (Templin, 2004) with qk ∈ {0, 1} and αk ∈ {0, 1, 2, · · · ,m},

the success probability is given by:

P (Xj = 1|qk, αk, π
∗, r∗k) = π∗

K∏
k=1

(r∗k)
fk(qk,αk), (14)

where

f(qk, αk) =

1 if qk = 1, αk = 0

0 if qk = 1 ≤ αk = m
(15)

Like in the PDCM, the Q-matrices in the RUM-PA are assumed to be dichotomous, whereas the

person attributes are assumed to be polytomous. Equation 14 can be written with respect to

different attribute level m as:

P (Xj = 1|qk, αk, π
∗, r∗k) = π∗

K∏
k=1

M∏
m=1

(r∗k)
fkm(qkm,αkm). (16)

Equation 16 can be rewritten using α∗
k with qk = 1 as:

P (Xj = 1|qk, α∗
k, π

∗, r∗k) = π∗
K∏
k=1

M∏
m=1

r∗km ×
K∏
k=1

M∏
m=1

(
1

r∗km
)αkm . (17)

Thus,

log [P (Xj = 1|qk, α∗
k, π

∗, r∗k)] = log(π∗) +

K∑
k=1

M∑
m=1

log(r∗km)−
K∑
k=1

M∑
m=1

log(r∗km)αkm. (18)

By setting log(π∗)+
∑K

k=1

∑M
m=1 log(r

∗
km) = ν0 and −

∑K
k=1

∑M
m=1 log(r

∗
km) = −

∑K
k=1

∑M
m=1 νkm,

Equation 18 is a special case of log sp-CDM without the interaction terms.
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Table 2.

The relationships between sp-CDMs and the existing CDMs for polytomous attributes

Existing CDMs Constraints on the sp-CDM Special Cases

pG-DINA sp-CDM with I [αl· ≥ qjk] OCAC

OCAC pG-DINA without interaction terms —

fA-M identity sp-CDM with main effects of levels —

PDCM logit sp-CDM cPDCM; GDM-PA

GDM-PA logit sp-CDM without interaction terms —

RUM-PA log sp-CDM with log(π∗)+
∑K

k=1

∑M
m=1 log(r

∗
km) = ν0

and −
∑K

k=1

∑M
m=1 log(r

∗
km) = −

∑K
k=1

∑M
m=1 νkm

cRUM-PA

Note. sp-CDM: saturated polytomous cognitive diagnosis models; pG-DINA: generalized deterministic

input, noisy “and” gate model for polytomous attributes with the specific attribute level mastery (SALM)

assumption; OCAC: ordered category attribute coding framework; fA-M: fully additive model for polytomous

attributes; PDCM: saturated polytomous-attribute diagnostic classification models; cPDCM: constrained

PDCM; GDM-PA: general diagnostic model for polytomous attributes; RUM-PA: reparameterized unified

model for polytomous attributes; cRUM-PA: constrained RUM-PA.
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5. Model Estimation

The estimation algorithms for the parameters, the corresponding standard errors (SEs), and

the person attribute patterns in the sp-CDM model are primarily similar to those in estimating

the parameters of the G-DINA model described in de la Torre (2011) and those of the DINA

model in de la Torre (2009). Specifically, parameters for the saturated forms of the sp-CDM can

be estimated via the marginal maximum likelihood estimation method with an

expectation-maximization (MMLE/EM), and those of reduced models can be estimated by

incorporating appropriate design matrix in the MMLE/EM procedure. Details can be found in

Appendix A.

6. Simulation Study

Design

Two research questions were investigated in the simulation study. First, how well can the

parameters of the sp-CDM be recovered with the proposed estimation algorithms? And second,

how does the fit of the sp-CDM compare with those of constrained and simplified models across

different data generation assumptions. Due to time and space constraints, we focus on the

identity sp-CDM and its two special cases, namely, the pG-DINA and fA-M, in this study. The

details of the design are summarized in Table 3. The levels for the manipulated factors followed

previous studies (e.g., de la Torre et al., 2021). In particular, the levels of item quality, defined as

a function of the guessing and slip parameters, were computed as p0 and (1− p1). Specifically,

items with (p0, 1− p1) ∈ U(.05, .15), U(.10, .20), and U(.15, .30) were classified as high, moderate,

and low quality items, respectively. To this end, the generating values for the intercept

parameters were set to be .05, .10, and .15 under the three types of quality items. For the main

effect parameters, the mean of the generating values are .16, .15, and .13, respectively, and for the

interaction effect parameters, they are .1, .08, and .07, respectively. Attribute patterns were

generated from a uniform distribution where all possible attribute patterns were equally likely.

The Q-matrix for K = 3 and K = 5 with 26 items are shown in Tables 4 and B.1, respectively,

and the Q-matrix with 52 items are duplicate of respective Q-matrices. The Q-matrix in the
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simulation study was specified to satisfy the sufficient conditions similar to Theorem 4 in Fang

et al. (2019). The GDINA package (Ma & de la Torre, 2019) and a customized program were used

to generate the data and estimate the models. The monotonic constraints were imposed when

estimating the models. A total of 168 conditions were examined and each condition was

replicated 100 times.

To answer the research questions, the simulation study was carried out in three steps. Step 1

was designed to answer the first research question. In this step, data under different conditions

were generated following the sp-CDM (i.e., Equation 1) and fitted with the true model (i.e., the

sp-CDM). Steps 2 and 3 were designed to answer the second research question. In the second

step, the pG-DINA model and fA-M were also fitted to the generated data in step 1 to

investigate the consequences of fitting reduced models when neither the SALM nor the additive

assumption holds. In step 3, two sets of data were generated following the pG-DINA model and

fA-M, and fitted with sp-CDM, as well as their respective true model to investigate the

consequences of fitting an unnecessarily complicated model (i.e., the sp-CDM) when the SALM or

the additive assumption holds. For the sake of discussion, step 1 is referred to as the parameter

recovery study, whereas steps 2 and 3 as the comparison study.

Evaluation Criteria

The dependent variables in the parameter recovery study were the bias and root mean square

error (RMSE) of the estimated success probabilities of the reduced attribute patterns in item j

(denoted as P̂j(α
∗
l )), and were defined as

Bias
(
P̂j(α

∗
l )
)
=

J∑
j=1

L∗
j∑

l=1

[
¯̂
Pj(α

∗
l )− Pj(α

∗
l )
]
/

J∑
j=1

L∗
j (19)

and

RMSE
(
P̂j(α

∗
l )
)
=

√√√√√ J∑
j=1

L∗
j∑

l=1

R∑
r=1

[
P̂

(r)
j (α∗

l )− Pj(α∗
l )
]2
/
[
R×

J∑
j=1

L∗
j

]
, (20)

respectively, where Pj(α
∗
l ) is the generating probability of α∗

l in item j, P̂
(r)
j (α∗

l ) is the estimate

of P̂j(α
∗
l ) in the rth replication,

¯̂
Pj(α

∗
l ) is the mean of P̂j(α

∗
l ) across R replications, and L∗

j is the
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Table 3.

Summary of the simulation design

Factor Level

M (attribute levels) 3

N (sample size) 1,000, 2,000

K (number of attributes) 3, 5

J (number of items) 26, 52

Item Quality High, Moderate, Low

True/Fitted model sp-CDM/sp-CDM

sp-CDM/pG-DINA, sp-CDM/fA-M

pG-DINA/sp-CDM, pG-DINA/pG-DINA,

fA-M/sp-CDM, fA-M/fA-M

Note. sp-CDM: saturated polytomous cognitive diagnosis models; pG-DINA: generalized deterministic

input, noisy “and” gate model for polytomous attributes with the specific attribute level mastery (SALM)

assumption; fA-M: fully additive model for polytomous attributes.

Table 4.

Q-matrix for conditions of three attributes in simulation study

Item α1 α2 α3 Item α1 α2 α3 Item α1 α2 α3

1 1 0 0 11 1 0 1 21 1 2 1

2 0 1 0 12 1 0 2 22 1 2 2

3 0 0 1 13 2 0 1 23 2 1 1

4 2 0 0 14 2 0 2 24 2 1 2

5 0 2 0 15 0 1 1 25 2 2 1

6 0 0 2 16 0 1 2 26 2 2 2

7 1 1 0 17 0 2 1

8 1 2 0 18 0 2 2

9 2 1 0 19 1 1 1

10 2 2 0 20 1 1 2
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number of attribute patterns in item j.

In the comparison study, the dependent variables were the proportion of correctly classified

attributes (PCA) and vectors (PCV), which were computed as:

PCAr =

∑N
n=1

∑K
k=1

∑M
m=1 I[α̂nkm = αnkm]

N ×K
, (21)

and

PCVr =

∑N
n=1 I[α̂n = αn]

N
, (22)

respectively, where I[α̂nkm = αnkm] was used to evaluate the match between the estimated and

generated attribute in the rth replication, and I[α̂n = αn] to attribute vectors. For both studies,

the results are summarized using the average values of the variables across replications.

Results

For K = 3, the bias and RMSE under different conditions are shown in Figures 2 and 3,

respectively, and PCA and PCV under the high, moderate, and low quality item conditions in

Tables 5, 6, and 7, respectively. In particular, the upper panels of Figures 2 and 3 give the biases

and RMSEs from fitting the sp-CDM to the sp-CDM data under different numbers of attributes,

item qualities, test lengths, and sample sizes. The figures show that the parameters of the

sp-CDM can be well recovered with the proposed estimation algorithms, particularly when high

quality items were involved. For example, the mean biases were between −0.007 and 0.000 and

the mean RMSEs were between 0.000 and 0.009 across all conditions. The upper panels of Tables

5 to 7 reveal that the classification of attributes and vectors are satisfactory under the sp-CDM.

For example, for the high quality item conditions (i.e., Table 5), the PCAs were between 88.2%

and 96.9%, and the PCVs were between 71.9% and 89.3%.

In comparison, a closer inspection of the panels of Figures 2 and 3 and Tables 5 to 7 reveals

that fitting the reduced models, either the fA-M or the pG-DINA, to the sp-CDM data resulted

in larger biases and RMSEs, or lower PCAs and PCVs, particularly when high quality items were

used. Dramatically different results were obtained when the sp-CDM was fitted to the data

generated using the reduced models, the biases, RMSEs, PCAs and PCVs were similar to those
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obtained when the corresponding true models were fitted. These results can have important

practical implications - when it is unclear which is the true model for an item, it is safer to fit the

more general sp-CDM, rather than a particular reduced model.

Due to space constraints, the results for K = 5 are give in Appendix B, where Figures B.1

and B.2 contain the bias and RMSE, respectively, and Tables B.2, B.3, and B.4 the PCA and

PCV under the three item quality conditions, respectively. in general, the findings for K = 5 were

similar to those for K = 3. However, it should be noted that for two conditions in Figure B.2 (i.e.,

K = 5, J = 26, N = 1000, and items are either of low or moderate quality), the sp-CDM

produced larger RMSEs than f -AM even though the data were generated from the sp-CDM. This

could be attributed the instability of estimating the sp-CDM when a large number of parameters

are involved and the data are not sufficiently informative.
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Figure 2.

Bias in parameter recovery with three attributes

Note: sp-CDM: saturated polytomous cognitive diagnosis models; fA-M: fully additive model for polytomous at-

tributes; pG-DINA: generalized deterministic input, noisy “and” gate model for polytomous attributes with the

specific attribute level mastery (SALM) assumption. J : test length; N : sample size
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Figure 3.

Root mean square error (RMSE) in parameter recovery with three attributes

Note: sp-CDM: saturated polytomous cognitive diagnosis models; fA-M: fully additive model for polytomous at-

tributes; pG-DINA: generalized deterministic input, noisy “and” gate model for polytomous attributes with the

specific attribute level mastery (SALM) assumption. J : test length; N : sample size
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Table 5.

Correctly classified attributes (PCA) and vectors (PCV) (in % ) with three attributes and high quality items

Test Length/Sample Size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 90.6 86.3 87.2 91.0 86.2 87.3 96.6 91.7 95.4 96.9 91.6 95.4

PCA2 88.9 84.3 82.9 89.4 84.5 82.7 95.7 90.8 92.4 96.1 91.1 92.8

PCA3 88.2 82.5 82.2 88.8 82.6 82.6 95.4 89.7 92.2 95.7 90.2 92.4

PCV 71.9 58.3 58.9 73.2 58.3 59.2 88.4 73.2 81.4 89.3 73.8 81.9

fA-M PCA1 89.7 90.6 81.3 90.6 90.9 81.6 96.5 96.7 88.2 96.7 96.8 88.3

PCA2 86.0 87.4 77.9 87.2 87.7 77.7 94.1 94.6 79.4 94.5 94.8 79.4

PCA3 84.2 86.3 77.3 85.9 86.5 77.2 93.1 93.8 77.7 93.8 94.1 77.9

PCV 65.4 69.1 47.4 68.5 69.7 47.3 84.8 86.2 51.8 86.0 86.6 52.0

pG-DINA PCA1 96.8 95.1 97.0 97.0 95.2 97.1 99.5 99.0 99.5 99.5 99.1 99.6

PCA2 96.1 94.2 96.3 96.3 94.3 96.4 99.3 98.9 99.4 99.3 98.9 99.4

PCA3 95.5 93.4 95.6 95.6 93.5 95.7 99.1 98.5 99.2 99.1 98.6 99.2

PCV 89.5 83.9 90.0 89.9 84.3 90.2 97.9 96.5 98.2 98.1 96.6 98.2

Note. Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: fA-M; 3: pG-DINA; PCAk : PCA

of attribute k
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Table 6.

Correctly classified attributes (PCA) and vectors (PCV) (in % ) with three attributes and moderate quality items

Test Length/Sample Size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 79.1 78.2 75.9 79.9 78.4 76.2 89.3 87.7 83.2 90.2 87.8 83.2

PCA2 76.5 75.5 73.4 77.4 76.2 74.1 87.1 85.5 79.6 88.3 86.0 80.2

PCA3 75.0 74.7 74.0 76.7 75.0 74.4 86.6 84.9 81.3 87.9 85.0 81.2

PCV 44.9 43.0 40.9 48.5 43.7 41.6 68.0 62.9 52.2 70.9 63.3 52.6

fA-M PCA1 83.7 85.7 79.5 85.2 86.0 79.7 93.6 94.2 87.0 94.1 94.4 87.0

PCA2 79.4 82.1 76.0 81.2 82.6 76.5 90.5 91.6 81.7 91.4 91.9 82.2

PCA3 75.2 78.8 75.3 77.6 79.3 75.4 87.2 88.8 81.0 88.5 89.2 81.2

PCV 50.4 56.4 45.1 54.5 57.2 45.7 74.4 77.3 56.3 76.7 78.0 56.7

pG-DINA PCA1 92.5 90.0 92.9 92.6 89.9 92.8 97.9 96.7 98.1 98.1 96.8 98.1

PCA2 91.5 88.4 92.0 91.8 88.7 92.1 97.6 96.3 97.8 97.8 96.3 97.9

PCA3 90.6 87.1 91.1 91.1 87.7 91.4 97.1 95.6 97.3 97.4 95.8 97.5

PCV 78.4 69.5 79.5 79.1 70.3 79.7 93.2 89.3 93.7 93.8 89.7 94.0

Note. Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: fA-M; 3: pG-DINA; PCAk : PCA

of attribute k

https://doi.org/10.1017/psy.2024.16 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.16


25

Table 7.

Correctly classified attributes (PCA) and vectors (PCV) (in % ) with three attributes and low quality items

Test Length/Sample Size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 73.2 71.8 72.1 74.0 73.9 72.3 84.2 83.6 79.8 85.4 83.9 80.1

PCA2 70.1 69.2 68.8 71.2 70.8 69.9 81.2 80.8 76.1 82.6 81.5 76.7

PCA3 67.1 66.0 66.2 67.9 67.0 67.8 77.3 77.2 74.1 79.2 77.3 74.2

PCV 33.4 33.0 33.1 36.3 34.5 34.2 53.2 51.8 43.7 56.9 52.4 44.3

fA-M PCA1 76.7 79.4 74.6 78.3 79.9 74.8 88.4 89.6 81.0 89.3 89.8 81.2

PCA2 73.3 74.9 71.7 73.4 75.6 72.3 83.7 85.9 78.8 85.2 86.1 78.9

PCA3 69.7 70.5 69.3 68.8 71.6 69.6 77.8 81.3 75.5 80.4 81.8 75.9

PCV 43.0 43.1 37.5 40.2 44.2 37.9 58.2 63.6 47.6 62.0 64.3 48.0

pG-DINA PCA1 80.6 73.8 82.4 82.0 74.3 82.9 90.9 83.7 91.9 91.6 83.9 92.1

PCA2 80.5 75.3 82.2 81.9 76.4 82.8 91.0 86.4 91.8 91.7 86.9 92.1

PCA3 80.6 74.5 82.4 82.1 75.1 83.0 91.1 84.6 91.9 91.6 84.1 92.0

PCV 56.5 39.9 60.0 59.2 41.1 61.0 77.4 60.3 79.4 79.0 60.5 79.9

Note. Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: fA-M; 3: pG-DINA; PCAk : PCA

of attribute k

https://doi.org/10.1017/psy.2024.16 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.16


26

One reviewer noted that the RMSE results from both the K = 3 and K = 5 conditions for

the sp-CDM and fAM tend to yield decreased RMSEs when tests contain more items and use

smaller samples. For example, in the top panel of Figure 3, the RMSE results under the condition

J52/N1000 are smaller than those for the condition J26/N2000. To investigate this phenomena,

an additional simulation was conducted where the dataset was generated from the sp-CDM with

K = 3 and high item quality for the two conditions (i.e., J52/N1000 and J26/N2000). Three

analyses were carried out as follows: In the first analysis, for the condition of J52/N1000, the

true attribute patterns for each person were assigned a posterior probability of 0.950, and the

remaining 26 patterns for the person a probability of (1− 0.950)/26 ≈ 0.002. In contrast, for the

condition of J26/N2000, the true attribute patterns for each person were assigned a posterior

probability of 0.700, and other patterns a probability of (1− 0.700)/26 ≈ 0.011. This analysis

mimics a scenario where the attribute patterns are better estimated in a smaller sample size

condition than in a larger one. In the second analysis, the setting for the patterns’ posterior

probabilities were reversed for the two conditions to mimic a scenario where the attribute

patterns are better estimated in a larger sample size than in a smaller one. Finally, the patterns’

posterior probabilities were set using the results of the original simulation study. Specifically, the

mean of the posterior probabilities for the true patterns across persons was computed for the two

conditions–which are 0.601 and 0.456 for the conditions of J52/N1000 and J26/N2000,

respectively–and are used in the third analysis.

The biases and RMSEs for the additional simulation study are shown in Table 8. It was

found that, for each analysis, the test that was assigned more accurate attribute pattern estimates

resulted in better item parameter estimates (i.e., smaller bias and RMSE), even when the sample

size was supposedly smaller. For example, in the first and third analyses, the biases and RMSEs

under J52/N1000 are smaller than those under J26/N2000. These results demonstrate how more

informative (i.e., longer) tests calibrated with a smaller sample size can produce better item

parameter estimates.
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Table 8.

Additional simulation study: Bias and root mean square error (RMSE)

J52/N1000 J26/N2000

Analysis Bias RMSE Bias RMSE

First 0.003 0.038 0.020 0.101

Second 0.020 0.103 0.003 0.029

Third 0.026 0.134 0.036 0.180

Note. In the first analysis, the posterior probabilities for the true attribute patterns are

set to be 0.95 and 0.70 for the conditions of J52/N1000 and J26/N2000, respectively.

In the second analysis, they are 0.70 and 0.95 for the two conditions, respectively. In

the third analysis, the probabilities are 0.601 and 0.456, respectively.

7. Real Data Example

Data and Analysis

The responses in this example consisted of 1,408 middle school students in Hong Kong to a

PR assessment described earlier. The assessment uses 31 multiple-choice items measuring six PR

attributes, namely, (1) prerequisite skills and concepts required in proportional reasoning, (2)

comparing and ordering fractions, (3) constructing ratios and proportions, (4) identifying a

multiplicative relationship between sets of values, (5) differentiating a proportional relationship

from a non-proportional relationship, and (6) applying algorithms in solving proportional

reasoning problems, among which, the second and third attributes are polytomous with M = 3

and other attributes are dichotomous. The Q-matrix for the empirical example is provided in

Table 9, where each item requires one to four attributes (i.e., 1 ≤ K∗
j ≤ 4). This Q-matrix

satisfies the identifiability conditions by Fang et al. (2019). The sp-CDM, fA-M, and pG-DINA

model were fitted to the data. No monotonicity constraint was imposed in this analysis. The

deviance, Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used

to compare the three fitted models.
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Table 9.

Q-matrix for the proportional reasoning data and the number of parameters under the sp-CDM, fAM, and pG-DINA

model

Item α1 α2 α3 α4 α5 α6 #Par Item α1 α2 α3 α4 α5 α6 #Par

M1 M2 M3 M1 M2 M3

1 1 0 0 0 0 1 4 3 4 17 1 2 0 0 0 0 6 4 4

2 1 1 1 0 0 0 18 6 8 18 1 0 2 0 1 1 24 6 16

3 1 0 2 1 1 0 24 6 16 19 1 0 2 1 1 0 24 6 16

4 1 1 1 0 0 0 18 6 8 20 0 0 2 1 1 0 12 5 8

5 1 1 1 0 0 0 18 6 8 21 1 1 1 0 0 0 18 6 8

6 1 0 2 1 1 0 24 6 16 22 1 2 0 0 0 0 6 4 4

7 1 0 0 0 0 1 4 3 4 23 1 1 1 0 0 0 18 6 8

8 1 2 1 0 0 0 18 6 8 24 1 0 2 0 1 1 24 6 16

9 1 0 0 1 0 0 4 3 4 25 1 1 1 0 0 0 18 6 8

10 0 2 0 0 0 0 3 3 2 26 0 1 1 0 0 0 9 5 4

11 1 0 0 0 0 0 2 2 2 27 1 0 0 1 1 0 8 4 8

12 0 0 0 0 1 0 2 2 2 28 1 0 2 0 1 1 24 6 16

13 1 0 2 1 1 0 24 6 16 29 1 0 2 1 1 0 24 6 16

14 1 1 1 0 0 0 18 6 8 30 1 0 0 1 0 1 8 4 8

15 0 0 2 0 0 0 3 3 2 31 1 2 0 0 0 0 6 4 4

16 0 0 2 0 0 0 3 3 2 sum 416 148 254

Note. #Par = number of parameters; M1 = sp-CDM, saturated generalized deterministic, input, noisy,

“and” gate model for polytomous attributes; M2 = fA-M, fully additive model for polytomous attributes;

M3 = pG-DINA, polytomous generalized DINA model.
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Results

Table 10 shows the number of parameters and the fit statistics (i.e., deviance, AIC, and BIC)

for the sp-CDM, fA-M, and pG-DINA models in the empirical example. All the fit statistics

indicate that the sp-CDM fitted the data the best, and the fA-M the worst.

Table 10.

Fit statistics of the sp-CDM, fA-M, and pG-DINA model for the empirical example

Number of Parameters

Fitted Model Items Population Deviance AIC BIC

sp-CDM 416 143 43360.17 44192.17 46376.13

fA-M 148 143 47983.06 48565.06 50092.79

pG-DINA 254 143 45524.30 46318.30 48402.52

Note. sp-CDM = saturated generalized deterministic, input, noisy, “and” gate

model for polytomous attributes; fA-M = fully additive model for polytomous

attributes; pG-DINA = polytomous generalized DINA model.

To quantify the discrepancies between the parameter estimates of item j, the root mean

squared difference (RMSD) between any model pair is computed as follows:

RMSDj(M1,M2) =

√√√√ Lj∑
l=1

wjl(PjlM1 − PjlM2)
2, (23)

where M1 and M2 are pair of models, wjl and Lj are the posterior probability of latent group l

and the number of latent groups for item j based on the sp-CDM, respectively, and Pjlm is the

success probability of latent group l on item j based on a model m. Given in Table 11 are the

results of RMSD for the 31 items, as well as the average RMSD for the entire test. On the

average, fA-M and pGDINA model had the most similar the item parameter estimates (average

RMSD = 0.17), whereas the sp-CDM and pG-DINA model had the most disparate estimates

(average RMSD = 0.23). These results suggest that, at least for this empirical example, the two

reduced model behaved more similarly to each other than they did to the saturated model.

However, this pattern did not necessarily hold for all items. For example, the discrepancies
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between fA-M and pGDINA model turned out to be the largest for items 13 and 19.

Table 11.

Root mean squared differences between the sp-CDM, fA-M, and pG-DINA model for the empirical example

Item (M1,M2) (M1,M3) (M2,M3) Item (M1,M2) (M1,M3) (M2,M3)

1 0.24 0.14 0.12 17 0.20 0.25 0.10

2 0.12 0.23 0.20 18 0.09 0.20 0.15

3 0.09 0.28 0.27 19 0.33 0.41 0.36

4 0.22 0.23 0.15 20 0.28 0.36 0.14

5 0.15 0.23 0.14 21 0.31 0.28 0.26

6 0.22 0.35 0.28 22 0.22 0.46 0.33

7 0.28 0.32 0.08 23 0.20 0.15 0.17

8 0.20 0.19 0.21 24 0.29 0.29 0.29

9 0.37 0.25 0.15 25 0.18 0.30 0.19

10 0.12 0.05 0.12 26 0.12 0.13 0.06

11 0.04 0.06 0.01 27 0.21 0.26 0.16

12 0.06 0.05 0.01 28 0.17 0.28 0.25

13 0.31 0.30 0.36 29 0.11 0.15 0.09

14 0.19 0.18 0.25 30 0.39 0.24 0.16

15 0.18 0.16 0.10 31 0.18 0.20 0.07

16 0.19 0.17 0.07 Average 0.20 0.23 0.17

Note. M1 = sp-CDM, saturated generalized deterministic, input, noisy, “and” gate model for

polytomous attributes; M2 = fA-M, fully additive model for polytomous attributes; M3 = pG-

DINA, polytomous generalized DINA model.

To better understand how similar and disparate item parameter estimates look like, the

side-by-side success probability bar graphs of two items requiring one dichotomous and one

polytomous attributes are given in Figure 4. Item 17 had estimates that can be considered more

similar, whereas item 22 more disparate. It should be note that because RMSD is computed using

latent group weights, large differences in the success probability estimates can have a limited
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impact on the RMSD, and vice versa. As can be seen from the upper panel, despite having more

similar item parameter estimates, the success probabilities of item 17 for some latent groups (i.e.,

10 and 11) can be quite different. In contrast, the lower panel for shows that item parameter

estimates for item 22 were quite disparate, and huge discrepancies the success probabilities for

latent groups for 01, 02, and 11 can be found, particularly, between sp-CDM and pG-DINA model.

The above comparisons were not meant to establish in general the similarities or differences

between the three polytomous CDMs. Rather, it sought to better understand how the three

models behave for a very particular empirical data set, which may provide insights into how

future studies can be designed for the different models to be compared in a more systematic and

comprehensive way.

The results can have important practical implications for diagnosing the mastery status of

students. As shown in Figure 4, based on the sp-CDM, latent groups 10 and 11 have slightly

higher success probabilities on item 17 than latent groups 00, 01, and 02. This suggests that

mastering the prerequisite skills and concepts increases the probability of getting item 17

correctly; however, the success probability for this item is the highest when, in addition to

mastering the prerequisite skills and concepts, an examinee also masters ordering fractions (level

2 of α2). In comparison, again based on the sp-CDM, the estimated success probability on item

22 is the highest for latent group 12, whereas the success probabilities for other latent groups (i.e.,

00, 01, 02, 10, and 11) are similar to each other, indicating a conjunctive process for the item.

Overall, an examinee should master levels 1 and 2 of the two required attributes, respectively, to

optimize their success probabilities on these two items.

Of the possible 144 latent classes, 25 did not have any student. However, it should be noted

that, although some latent classes had no observations, all the latent groups, from which

estimates were derived, were non-empty, albeit some were small. For example, one of the 24 latent

groups of items 3 had an expected size of 7.12. Of the remaining latent classes, 122111 was the

largest - about 35.5% of the students had this attribute pattern. Finally, the individual attribute

prevalences were as follows: 88.2% mastered α1; 16.2% and 68.5% were in levels 1 and 2 of α2,

respectively; 11.7% and 74.7% were in levels 1 and 2 of α3, respectively; and 75.4% , 70.5%, and

63.5% mastered α4, α5, and α6, respectively.
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Figure 4.

Success probabilities of latent groups in two items in the empirical example

Note: sp-CDM: saturated polytomous cognitive diagnosis models; fA-M: fully additive model for polytomous at-

tributes; pG-DINA: generalized deterministic input, noisy “and” gate model for polytomous attributes with the

specific attribute level mastery (SALM) assumption.
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8. Discussion

Finer grained feedback in the form of polytomous attributes can better inform classroom

instruction and learning. However, the existing CDMs for polytomous attributes are deemed to

be not general enough because most of them focused on a specific and constrained CDM or were

proposed with very stringent assumptions. To this end, a more general framework, referred to as

the sp-CDM, was proposed. The proposed model is a straightforward extension of the pG-DINA

model (J. Chen & de la Torre, 2013), which itself is generalized from the G-DINA model for

polytomous attributes, by relaxing its SALM assumption and can be formulated using the

identity, logit, and log link functions. As such, the sp-CDM includes all the existing CDMs for

polytomous attributes as its special cases. This paper has also illustrated the relationships

between the sp-CDM and the existing CDMs mathematically and graphically.

In addition to the theoretical illustration, the estimation of the proposed model and the

consequences of using constrained polytomous-attribute CDMs were examined via simulation

study. The results showed that the parameter of the proposed model can be well recovered using

the proposed estimation algorithms. On the other hand, improperly fitting a constrained

polytomous-attribute CDM can lead to poor item parameter estimates and misdiagnosis of

students’ true mastery levels while unnecessarily fitting the complex sp-CDM does little harm to

the item and person estimation, particularly when high quality items were used. Moreover, the

PR assessment example demonstrated the applicability of the proposed model to real data and its

advantages over the constrained models.

Despite the promising results, this study is not without its limitations. First, although the

simulation study manipulated several important factors, other relevant factors such as the number

of attribute levels, the distribution of attribute patterns, and the link functions were fixed.

Additional simulation studies are needed in the future to investigate the performance of the

proposed model across a wider range of conditions. For example, the current simulation studies

used the same number of attribute levels (i.e., three) across the items, which might not always the

case in practice. Nevertheless, both the model and estimation algorithms proposed in this work

are sufficiently general to apply to varying and a larger number of attribute levels, as evidenced
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by the empirical example. It would be interesting for future studies to extend the simulation

design to incorporate attributes with more, as well as varying levels. This extension would be

provide useful information on how the increased attribute levels, which will lead to a greater

number of latent classes, affects the sample size and test length required for the parameters of the

proposed model to be estimated accurately. Moreover, this work focused on the uniform

distributed attribute patterns. Future studies can extend the proposed model to other attribute

distributions (e.g., higher-order distribution; de la Torre & Douglas, 2004), to understand the

model performance across a wider variety of conditions.

Second, it has been recognized that failure to satisfy the Q-matrix identifiability conditions

can result in poor parameter estimates. The existing necessary and sufficient conditions for the

identifiability of CDMs in the literature focus on dichotomous attributes. For example, see

Y. Chen et al. (2015), Y.-H. Chen et al. (2018), Chiu et al. (2009), DeCarlo (2011), Gu and Xu

(2019), Liu et al. (2012), and Xu and Zhang (2016) for the conditions for the DINA model, and

Fang et al. (2019), Gu and Xu (2021), Köhn and Chiu (2018), and Xu (2017) for general models.

In contrast, at present only Fang et al. (2019) have discussed the identifiability conditions for the

Q-matrix for polytomous attributes. However, the relevant results (i.e., Theorem 4) were limited

to the sufficient conditions. To optimize the process of developing assessments that involve

polytomous attributes, further research is needed to establish both the necessary and sufficient

conditions specific to the identifiability of the sp-CDM and potentially its special cases.

Third, the current work focuses on polytomous attributes used in conjunction with

dichotomous responses. Future research should extend the sp-CDM to also cover polytomous

responses (e.g., Ma & de la Torre, 2020), as well as develop the associated estimation algorithms

and computer program to implement such a model.

Fourth, although it has been noted that a polytomous attribute can be equivalently

represented as a set of linearly structured dichotomous attributes, it is not clear to what extent

the equivalence extends to methodologies that are specifically developed for each attribute type.

For example, what modifications are needed for the empirical Q-matrix validation procedures

developed for dichotomous attributes (e.g., de la Torre & Chiu, 2016) to be equivalent to

Q-matrix validation procedures developed for polytomous attributes (e.g., de la Torre et al.,
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2021). Incidentally, a more general Q-matrix validation procedure that can be used with proposed

model needs to be considered in future research.

Finally, this work proposes an MMLE/EM algorithm for estimating the sp-CDM and its

special cases. The results of the simulation study demonstrate that the algorithm provides

accurate estimates, and is efficient in estimating the proposed models. However, challenges arise

when the algorithm has to deal with the complexities associated with the sp-CDM in its most

general form. For example, the estimation of standard errors in the saturated models becomes

particularly challenging due to often encountered singular Hessian matrices.

Furthermore, the parameter estimation becomes notably challenging in situations when the

sample size is small relative to the number of attributes and attribute levels. To investigate this,

an additional simulation was conducted with a sample size of 500, maintaining the same settings

as the primary simulation study. The results are given in Figure B.3 and Table B.5 in Appendix

B. It was found that, under K = 3 conditions, item parameter recovery and the PCA and PCV

are satisfactory. However, for K = 5, although item parameter recovery and the PCA are only

marginally acceptable, the PCV exhibits a significant deterioration, particularly when the item

quality was low. The deterioration in the PCV performance may be attributed to the sparse

latent classes - the expected number of individuals are 18 (500/33) and two (500/35) when K = 3

and K = 5, respectively. These findings suggest that the sp-CDM may not be well-suited for

stand-alone small-sample settings (e.g., classroom assessment). Nonetheless, small-sample

applications are still possible provided items can be calibrated a priori using a sufficiently large

pool of individuals. In future research, it would be beneficial to explore the use of alternative

estimation procedures such as nonparametric methods (e.g., Chiu et al., 2018) or Bayesian modal

estimation (Ma & Jiang, 2021) to obtain robust person classification when polytomous attributes

and small sizes are involved. It can be noted that small sample sizes impact not only the quality

of item parameter estimates and attribute classification accuracy, but more so the standard error

estimates. Thus, exploring various estimators of the CDM standard errors (Philipp et al., 2018)

in the context of the proposed model need to be considered, particularly when the sample size is

small.
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Appendix A

Item Parameter Estimation for the Saturated Polytomous Cognitive Diagnosis Model

via Marginal Maximum Likelihood with an Expectation-Maximization Algorithm

This appendix provides details of item parameter estimation in the sp-CDM. Due to space

constraints, it focuses on the identity sp-CDM in particular and the algorithms are ready to be

implemented to the sp-CDM with the logit and log link functions.

Based on the IRF of the saturated identity sp-CDM (i.e., Equation 1) and assuming local

independence, the marginalized likelihood of the data, denoted as L(X), is given by

L(X) =
N∏

n=1

L(Xn) =
N∏

n=1

L∑
l=1

L(Xn|αl, δ)p(αl), (A1)

where L(Xn) is the marginalized likelihood of the response vector of examinee n, L(Xn|αl, δ) is

the joint probability of the examinee’s response vector Xn conditional on attribute vectors αl and

the item parameters δ, and p(αl) is the prior probability of the attribute vectors αl.

The logarithm of L(X) is

LL(X) = logL(X) = log
N∏

n=1

L(Xn) =
N∏

n=1

log
L∑
l=1

L(Xn|αl, δ)p(αl). (A2)

To find the marginal likelihood equation for δ of item j, take

∂

∂δj
LL(X) = 0. (A3)

Then,

∂

∂δj
LL(X) =

N∑
n=1

∂

∂δj
(logL(Xn))

=

N∑
n=1

[L(Xn)]
−1 ∂

∂δj
L(Xn)

=

N∑
n=1

[L(Xn)]
−1

L∑
l=1

p(αl)
∂

∂δj
L(Xn|αl, δ).

(A4)

Assuming local independence, the term L(Xn|αl, δ) in equation A4 is given by

L(Xn|αl, δ) =

J∏
j=1

Pj(α
∗
l )

XjQj(α
∗
l )

1−Xj , (A5)
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where Pj(α
∗
l ) is defined in Equation 1, Qj(α

∗
l ) = 1− Pj(α

∗
l ), Xj = 1 for correct answer of

examinee n in item j and 0 otherwise.

Hence, the derivative of L(Xn|αl, δ) becomes

∂

∂δj
L(Xn|αl, δ) =

∂

∂δj

[
P1(α

∗
l )

X1Q1(α
∗
l )

1−X1 · · ·Pj(α
∗
l )

XjQj(α
∗
l )

1−Xj · · ·PJ(α
∗
l )

XJQJ(α
∗
l )

1−XJ
]

=

 J∏
j′ ̸=j

Pj′(α
∗
l )

Xj′Qj′(α
∗
l )

1−Xj′

× ∂

∂δj

[
Pj(α

∗
l )

XjQj(α
∗
l )

1−Xj
]
,

(A6)

where the product is over j′ ̸= j rather than j because the derivation is with respect to δj .

The second term in the right hand side of Equation of A6 is

∂Pj(α
∗
l )

Xj

∂δj
×Qj(α

∗
l )

1−Xj + Pj(α
∗
l )

Xj ×
∂Qj(α

∗
l )

1−Xj

∂δj

= XjPj(α
∗
l )

Xj−1Qj(α
∗
l )

1−Xj
∂Pj(α

∗
l )

∂δj
+ (1−Xj)Pj(α

∗
l )

XjQj(α
∗
l )

1−Xj−1∂Qj(α
∗
l )

∂δj

= Pj(α
∗
l )

XjQj(α
∗
l )

1−Xj
∂Pj(α

∗
l )

∂δj

[
Xj − Pj(α

∗
l )

Pj(α∗
l )Qj(α∗

l )

]
.

(A7)

By substituting Equation A7 to the right hand side of Equation A6 and rearranging yields

∂

∂δj
L(Xn|αl, δ) =

 J∏
j′ ̸=j

Pj′(α
∗
l )

Xj′Qj′(α
∗
l )

1−Xj′

× Pj(α
∗
l )

XjQj(α
∗
l )

1−Xj
∂Pj(α

∗
l )

∂δj

[
Xj − Pj(α

∗
l )

Pj(α∗
l )Qj(α∗

l )

]

=
J∏

j=1

Pj(α
∗
l )

XjQj(α
∗
l )

1−Xj
∂Pj(α

∗
l )

∂δj

[
Xj − Pj(α

∗
l )

Pj(α∗
l )Qj(α∗

l )

]

= L(Xn|αl, δ)
∂Pj(α

∗
l )

∂δj

[
Xj − Pj(α

∗
l )

Pj(α∗
l )Qj(α∗

l )

]
.

(A8)
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Substituting Equation A8 to Equation A4 yields

∂

∂δj
LL(X) =

N∑
n=1

[L(Xn)]
−1

L∑
l=1

p(αl)L(Xn|αl, δ)
∂Pj(α

∗
l )

∂δj

[
Xj − Pj(α

∗
l )

Pj(α∗
l )Qj(α∗

l )

]

=

L∑
l=1

∂Pj(α
∗
l )

∂δj

[
1

Pj(α∗
l )Qj(α∗

l )

] N∑
n=1

L(Xn|αl, δ)p(αl)

L(Xn)
[Xj − Pj(α

∗
l )]

=
L∑
l=1

∂Pj(α
∗
l )

∂δj

[
1

Pj(α∗
l )Qj(α∗

l )

] N∑
n=1

p(α∗
l |Xn) [Xj − Pj(α

∗
l )]

=

L∑
l=1

∂Pj(α
∗
l )

∂δj

[
1

Pj(α∗
l )Qj(α∗

l )

][ N∑
n=1

p(α∗
l |Xn)Xj − Pj(α

∗
l )

N∑
n=1

p(α∗
l |Xn)

]

=
L∑
l=1

∂Pj(α
∗
l )

∂δj

[
1

Pj(α∗
l )Qj(α∗

l )

]
[Rjl − Pj(α

∗
l )Tl] ,

(A9)

where p(α∗
l |Xn) =

L(Xn|αl,δ)p(αl)
L(Xn)

is the posterior probability that examinee n is in the latent

group α∗
l , Rjl =

∑N
n=1 p(α

∗
l |Xn)Xj is the number of examinees in the latent group α∗

l expected

to answer the item j correctly, and Tl =
∑N

n=1 p(α
∗
l |Xn) is the number of examinees expected to

be in the latent group α∗
l .

Therefore, the marginal likelihood Equation A3 can be written as follows:

L∑
l=1

∂Pj(α
∗
l )

∂δj

[
1

Pj(α∗
l )Qj(α∗

l )

]
[Rjl − Pj(α

∗
l )Tl] = 0. (A10)

Solving Equation A10 yields the MML estimation of P (α∗
lj), which can be expressed as

P̂ (α∗
lj) =

Rα∗
lj

Tα∗
lj

, (A11)

To convert the estimates of P̂ (α∗
lj) into the item parameters δ, the design matrix Mj is

needed. With M , the estimates of δj = {δj0, δjkm, · · · , δjkmk′m′ , · · · , δj1m12m2...K∗
j mK∗

j
}′ can be

computed as

δ̂j = (M
′
jMj)

−1M
′
jP̂j , (A12)

where P̂j = {P̂ (α∗
lj)}. This is identical to the design matrix used with G-DINA model (de la

Torre, 2011). Due to the important role the design matrix M plays in the estimation of the

sp-CDM, the following shows how M can be constructed.
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Under the sp-CDM, the dimension size of design matrix is MK∗
j × Pj , where Pj is the

number of the parameters of the model of interest, which is MK∗
j when converting P̂j to δ̂j . To

illustrate, let K∗
j = 2 and M = 3 for item j. This item has one intercept parameter, four main

effect parameters for each level of the two nonzero levels of the required attributes, and four

two-way interaction parameters between the levels of the required attributes, leading to a total of

nine parameters. Hence, Pj = 9 in this example. The corresponding saturated design matrix is

M9×9 =



1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0

1 0 0 1 0 0 0 0 0

1 0 0 1 1 0 0 0 0

1 1 0 1 0 1 0 0 0

1 1 1 1 0 1 1 0 0

1 1 0 1 1 1 0 1 0

1 1 1 1 1 1 1 1 1



, (A13)

where rows 1 through 9 of M correspond to the latent groups 00, 10, 20, 01, 02, 11, 21, 12, and

22, respectively; columns 1 through 9 represent the intercept followed by the four main effects,

and then by the four two-way interaction effect. For example, the success probability of the latent

group 11 (i.e., row 6) δj0 + δj1m1 + δj2m1 + δj1m12m1 , whereas that of the latent group 22 (i.e., row

9) is δj0 + δj1m1 + δj1m2 + δj2m1 + δj2m2 + δj1m12m1+ δj1m22m1 + δj1m12m2 + δj1m22m2 .

The implementation of the MMLE/EM algorithm is as follows:

Step 1: The expectation (E) step

(1) Use the Equation A5 and provisional item parameter estimates to compute the likelihood

of each examinee’s response vector at each of the L attribute patterns.

(2) Use the Equation A1 to compute the likelihood of the whole data. For convenience, the

uniform distribution is usually chosen to initialize the prior distribution, as in, p(αl) = 1/L in the

first iteration. In subsequent iterations, the prior distribution is updated by replacing it with the

posterior distribution, which itself is updated at the end of each iteration.
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It is not uncommon that many examinees can have the same response vectors to the J items

in a data set and the computations of L(Xn|αl, δ) are often replicated. To increase the

computational efficiency, an alternative way to compute the likelihood of data starts from

grouping the N examinees’ response vectors into 2J possible response patterns. Let the item

response patterns are denoted as Us (s = 1, · · · , 2J) and the number of examinees possessing

response pattern s is given by fs. The likelihood of data can be calculated as

L(X) =
[∑L

l=1 L(Us|α, δ)p(αl

]fs
.

(3) Count the number of examinees expected to be in the latent group α∗
l among 2K

∗
j latent

groups and the number of examinees in the latent group α∗
l expected to answer the item j

correctly and use them as the values of Tjl and Rjl in Equation A9, respectively.

Step 2: The maximization (M) step

Solve the likelihood equation A3 using the values of Tjl and Rjl. Because these values depend

on L(Xn|αl, δ), which in turn, depends on the unknown item parameters, the likelihood equations

are implicit and must be solved with an iterative procedure(e.g., Newton-Raphson procedure).

The E step and M step will be repeated unless certain criteria are met (e.g., the change of

likelihood between two successive cycles is less than 0.001, the maximum number of iterations,

say, 100 is reached).
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Appendix B

Q-matrix with Five Attributes and Additional Results in Simulation Study

Table B.1.

Q-matrix for conditions of five attributes in simulation study

Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5 Item α1 α2 α3 α4 α5

1 1 0 0 0 0 11 1 1 0 0 0 21 0 0 1 2 1

2 0 1 0 0 0 12 1 2 0 0 0 22 0 0 1 2 2

3 0 0 1 0 0 13 2 1 0 0 0 23 0 0 2 1 1

4 0 0 0 1 0 14 2 2 0 0 0 24 0 0 2 1 2

5 0 0 0 0 1 15 1 0 1 0 0 25 0 0 2 2 1

6 2 0 0 0 0 16 1 0 2 0 0 26 0 0 2 2 2

7 0 2 0 0 0 17 2 0 1 0 0

8 0 0 2 0 0 18 2 0 2 0 0

9 0 0 0 2 0 19 0 0 1 1 1

10 0 0 0 0 2 20 0 0 1 1 2
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Figure B.1.

Bias in parameter recovery with five attributes

Note: sp-CDM: saturated polytomous cognitive diagnosis models; fA-M: fully additive model for polytomous at-

tributes; pG-DINA: generalized deterministic input, noisy “and” gate model for polytomous attributes with the

specific attribute level mastery (SALM) assumption. J : test length; N : sample size
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Figure B.2.

Room mean square error (RMSE) in parameter recovery with five attributes

Note: sp-CDM: saturated polytomous cognitive diagnosis models; fA-M: fully additive model for polytomous at-

tributes; pG-DINA: generalized deterministic input, noisy “and” gate model for polytomous attributes with the

specific attribute level mastery (SALM) assumption. J : test length; N : sample size

https://doi.org/10.1017/psy.2024.16 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.16


48

Table B.2.

Correctly classified attributes (PCA) and vectors (PCV) (in % ) with five attributes and high quality items

Test Length/Sample Size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 86.8 84.1 79.6 87.3 84.4 79.7 94.7 92.2 86.2 94.8 92.0 86.4

PCA2 80.3 79.1 76.8 81.1 79.9 76.7 90.0 88.2 80.6 90.4 88.1 80.4

PCA3 87.6 84.8 84.3 88.5 84.9 84.1 95.4 92.8 92.9 95.7 92.7 93.0

PCA4 78.8 75.6 77.8 80.2 75.6 78.1 88.6 84.4 82.0 89.5 84.0 81.5

PCA5 77.8 73.2 77.5 79.3 72.8 77.6 87.5 81.3 80.9 88.6 81.4 80.5

PCV 38.1 30.0 30.7 40.7 30.4 30.8 63.6 50.8 41.6 65.6 50.1 41.1

fA-M PCA1 87.6 88.0 79.8 88.2 88.3 79.2 94.9 95.0 82.2 95.2 95.3 82.4

PCA2 80.9 81.1 79.0 81.4 81.8 78.9 89.6 89.8 79.9 90.0 90.0 80.0

PCA3 84.4 86.1 79.9 85.6 86.7 80.0 93.1 94.0 84.4 93.8 94.1 84.4

PCA4 77.4 79.9 78.7 78.1 80.3 78.3 85.9 88.8 78.1 87.9 89.0 77.9

PCA5 78.2 80.8 77.7 79.8 81.5 77.7 87.4 89.8 78.5 89.1 89.9 78.3

PCV 36.1 39.8 30.0 38.5 41.3 29.8 59.3 64.3 32.3 63.2 65.0 32.4

pG-DINA PCA1 95.8 95.1 95.9 95.8 95.2 96.0 99.3 99.1 99.3 99.3 99.2 99.4

PCA2 92.5 92.3 92.9 92.8 92.6 93.1 97.7 97.6 97.8 97.7 97.7 97.8

PCA3 94.5 93.3 94.9 94.7 93.2 95.0 98.7 98.0 98.8 98.7 98.0 98.9

PCA4 92.8 84.6 93.3 93.2 83.9 93.5 97.0 96.2 97.2 97.0 96.2 97.2

PCA5 92.8 79.6 93.3 93.1 77.4 93.5 96.9 95.9 97.1 97.1 96.3 97.3

PCV 73.1 54.7 74.6 73.9 52.8 75.0 90.1 87.5 90.7 90.3 88.0 91.0

Note. Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: fA-M; 3: pG-DINA; PCAk : PCA

of attribute k
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Table B.3.

Correctly classified attributes (PCA) and vectors (PCV) (in % ) with five attributes and moderate quality items

Test Length/Sample Size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 75.1 75.0 73.4 76.3 76.0 73.3 86.2 85.8 79.5 86.8 85.9 79.2

PCA2 69.5 67.3 70.0 70.4 67.2 70.1 79.1 77.9 75.2 80.5 78.2 75.3

PCA3 72.9 74.3 73.4 74.5 75.0 73.5 84.6 84.7 81.1 86.1 84.9 81.0

PCA4 68.1 69.5 70.1 69.1 69.3 70.3 80.6 79.8 76.4 80.3 79.9 76.6

PCA5 67.4 67.3 69.6 68.5 67.3 70.1 76.7 76.5 75.5 78.4 76.7 75.3

PCV 18.5 17.1 17.5 19.2 17.3 18.8 35.1 33.9 27.1 38.5 34.2 27.0

fA-M PCA1 78.8 80.0 75.1 80.2 80.8 75.2 89.0 89.5 78.5 89.7 89.9 78.5

PCA2 73.0 73.3 73.2 73.8 74.0 73.5 83.0 83.7 77.8 83.9 84.2 77.7

PCA3 76.2 79.5 75.7 78.2 80.3 75.8 87.2 89.6 82.2 88.7 89.7 82.3

PCA4 68.5 71.5 72.3 69.7 72.5 72.4 76.9 81.2 74.9 79.2 82.2 74.8

PCA5 69.0 71.5 72.4 69.4 72.3 72.4 76.5 80.6 74.4 78.5 81.6 74.2

PCV 20.7 24.2 21.6 22.4 25.5 21.9 37.8 44.3 27.0 41.6 45.9 27.1

pG-DINA PCA1 91.1 90.2 91.3 91.4 90.5 91.5 97.6 96.9 97.7 97.7 96.8 97.7

PCA2 85.8 85.3 86.2 86.1 85.5 86.5 94.3 94.0 94.4 94.4 94.0 94.5

PCA3 88.0 85.5 88.8 88.5 85.5 89.0 95.9 94.2 96.2 96.1 94.4 96.3

PCA4 84.5 74.6 85.8 86.0 73.8 86.5 92.0 90.8 92.5 92.4 91.0 92.7

PCA5 85.0 73.3 86.1 86.3 71.6 86.9 92.0 88.5 92.5 92.3 87.9 92.6

PCV 51.3 35.8 53.7 53.7 34.7 55.0 75.5 69.2 76.7 76.4 68.9 77.0

Note. Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: fA-M; 3: pG-DINA; PCAk : PCA

of attribute k
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Table B.4.

Correctly classified attributes (PCA) and vectors (PCV) (in % ) with five attributes and low quality items

Test Length/Sample Size

26/1000 26/2000 52/1000 52/2000

Gen EC 1 2 3 1 2 3 1 2 3 1 2 3

sp-CDM PCA1 72.8 72.7 71.7 74.1 73.7 71.8 84.2 83.6 78.5 84.7 83.8 78.3

PCA2 67.9 65.0 68.2 68.9 65.2 68.2 76.9 75.5 73.5 77.9 75.9 73.5

PCA3 70.4 71.6 71.2 71.8 72.3 71.5 82.0 82.3 79.0 83.4 82.6 79.1

PCA4 65.5 66.8 67.9 66.8 67.4 68.2 78.6 77.0 74.6 77.1 77.5 74.5

PCA5 65.2 65.5 67.3 66.1 65.5 67.9 75.7 75.6 73.8 76.1 76.2 74.0

PCV 16.1 14.5 16.0 16.6 15.0 16.4 31.0 30.1 24.6 32.9 30.7 24.6

fA-M PCA1 74.2 75.7 72.5 75.5 76.4 72.6 85.4 86.1 78.9 86.1 86.4 79.0

PCA2 66.9 69.5 68.1 68.0 68.0 68.3 75.9 76.7 73.8 77.2 77.7 74.0

PCA3 69.3 73.0 70.4 71.0 73.8 70.9 80.5 83.7 77.7 82.3 84.0 77.8

PCA4 64.3 67.4 67.3 65.7 68.2 67.6 72.6 76.3 72.8 74.4 77.1 72.9

PCA5 62.1 68.6 66.5 64.0 67.1 67.1 69.7 73.7 70.7 71.3 74.3 70.8

PCV 13.8 16.8 15.8 15.4 17.9 16.1 26.4 31.6 23.2 29.3 32.8 23.2

pG-DINA PCA1 80.2 77.2 80.8 80.7 77.4 81.0 90.2 87.2 90.5 90.7 87.5 90.8

PCA2 76.5 70.5 77.0 76.8 70.0 77.2 85.5 82.6 85.8 85.8 82.7 85.9

PCA3 77.7 75.4 79.3 79.0 75.4 79.9 88.8 85.6 89.6 89.4 85.7 89.8

PCA4 72.5 69.7 74.9 74.2 69.2 75.7 83.0 81.4 84.0 83.7 81.7 84.4

PCA5 73.0 68.2 75.2 74.5 67.5 75.8 83.0 78.2 84.0 83.8 76.8 84.3

PCV 27.9 19.1 30.6 30.0 18.6 31.7 49.6 39.4 51.6 51.3 39.0 52.4

Note. Gen: Generating model; EC: Evaluation criteria; 1: sp-CDM; 2: fA-M; 3: pG-DINA; PCAk : PCA

of attribute k
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Figure B.3.

Results of parameter recovery for the sp-CDM with N = 500

Note: sp-CDM: saturated polytomous cognitive diagnosis models; J : test length; N : sample size
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Table B.5.

Correctly classified attributes (PCA) and vectors (PCV) (in % ) for the sp-CDM with N = 500

K=3 K=5

26/500 52/500 26/500 52/500

EC H M L H M L H M L H M L

PCA1 89.3 76.0 70.1 96.1 87.8 82.0 85.7 73.5 71.2 94.2 84.8 82.7

PCA2 87.6 73.2 66.9 95.3 84.0 77.7 79.1 68.6 67.1 89.4 78.0 75.8

PCA3 86.8 72.5 64.2 94.9 84.6 74.4 86.6 70.7 69.2 94.7 82.0 79.8

PCA4 – – – – – – 77.8 66.9 63.5 87.2 76.7 73.7

PCA5 – – – – – – 76.6 66.2 63.2 86.2 75.5 72.6

PCV 68.5 40.6 30.1 87.2 62.8 47.5 35.2 15.7 13.4 60.1 31.4 26.7

Note. sp-CDM: saturated polytomous cognitive diagnosis models; EC: Evaluation criteria; H: High quality

items; M: Moderate quality items; L: Low quality items; PCAk : PCA of attribute k
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