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We report the unified constitutive law of vibroconvective turbulence in microgravity, i.e.
Nu ∼ a−1Reβ

os where the Nusselt number Nu measures the global heat transport, a is the
dimensionless vibration amplitude, Reos is the oscillational Reynolds number and β is
the universal exponent. We find that the dynamics of boundary layers plays an essential
role in vibroconvective heat transport and the Nu-scaling exponent β is determined
by the competition between the thermal boundary layer (TBL) and vibration-induced
oscillating boundary layer (OBL). Then a physical model is proposed to explain the
change of scaling exponent from β = 2 in the TBL-dominant regime to β = 4/3 in the
OBL-dominant regime. Our finding elucidates the emergence of universal constitutive
laws in vibroconvective turbulence, and opens up a new avenue for generating a
controllable effective heat transport under microgravity or even microfluidic environment
in which the gravity effect is nearly absent.
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1. Introduction

The emergence of a unified constitutive law is a hallmark of gravity-induced convective
turbulence (Ahlers, Grossmann & Lohse 2009; Sreenivasan 2019; Wang, Mathai & Sun
2019; Chen, Wang & Xi 2020; Jiang et al. 2020; Wang et al. 2021; Li et al. 2022; Zhao
et al. 2022; Ecke & Shishkina 2023), e.g. Nu ∼ Raβ with β ≈ 0.3 in the classical regime
(Ahlers et al. 2009; Huang & Zhou 2013; Xi et al. 2016; Zhang, Zhou & Sun 2017; Plumley
& Julien 2019; Iyer et al. 2020; Ahlers et al. 2022; Xu, Xu & Xi 2023; Li, Chen & Xi 2024)
and β = 1/2 in the ultimate regime for paradigmatic Rayleigh–Bénard (RB) convection
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(Grossmann & Lohse 2011; He et al. 2012; Toppaladoddi, Succi & Wettlaufer 2017; Lepot,
Aumaître & Gallet 2018; Wang, Zhou & Sun 2020; Zou & Yang 2021; Jiang et al. 2022),
where the Nusselt number Nu quantifies the heat transport efficiency and the Rayleigh
number Ra quantifies the strength of buoyancy forcing. However, in microgravity, as the
gravity effect is, however, almost absent, gravity-induced convection becomes too feeble
to transport matter and heat. Vibration, omnipresent in science and technology, has been
shown to be an attractive way to operate fluids, modulate convective patterns and control
heat transport by creating an ‘artificial gravity’ (Beysens et al. 2005; Beysens 2006), e.g.
vibration shapes liquid interfaces in an arbitrary direction (Gaponenko et al. 2015; Sánchez
et al. 2019, 2020; Apffel et al. 2021), vibration levitates a fluid layer upon a gas layer
(Apffel et al. 2020), vibration selects patterns through the parametric response (Rogers
et al. 2000a,b; Pesch et al. 2008; Salgado Sánchez et al. 2019), vibration significantly
enhances or suppresses heat transport depending on the mutual direction of vibration and
temperature gradient (Swaminathan et al. 2018; Wang et al. 2020; Wu et al. 2021, 2022a;
Guo et al. 2022; Wu, Wang & Zhou 2022b). Vibroconvection, resulting directly from
a non-isothermal fluid subjected to the external vibration, is very pronounced under
microgravity conditions and provides a potential mechanism of heat and mass transport
in the absence of gravity-induced convection (Gershuni & Lyubimov 1998; Mialdun et al.
2008; Shevtsova et al. 2010). Elucidating the potential constitutive law of vibroconvective
turbulence and its underlying mechanism is not only of great importance in microgravity
science, but also provides practical guiding significance for space missions (Monti, Savino
& Lappa 2001) and microfluidic technologies (Daniel, Chaudhury & De Gennes 2005;
Brunet, Eggers & Deegan 2007).

In past decades, due to the difficulty of conducting microgravity experiments, the
experimental studies on vibroconvection at low gravity were limited. An experiment
was carried out with the ALICE-2 instrument onboard the Mir space station, which
revealed the vibrational influence on the propagation of a temperature wave from a heat
source in near-critical fluids (Zyuzgin et al. 2001; Garrabos et al. 2007). The other
known experiment was conducted in the parabolic flights during the 46th campaign
organized by the European Space Agency, which reported the first direct experimental
evidence of vibroconvection in low gravity (Mialdun et al. 2008; Shevtsova et al. 2010).
There are extensive theoretical and numerical investigations of vibroconvection under
weightlessness conditions. In the limiting case of high-frequencies and small amplitudes,
the averaging technique was applied to theoretically deduce the dynamical equation of
the mean flows (Gershuni & Lyubimov 1998). Based on the averaged equations, the
onset and bifurcation scenarios of vibroconvection were widely investigated in square,
rectangular and cubic enclosures (Savino, Monti & Piccirillo 1998; Cissé, Bardan &
Mojtabi 2004). The synchronous, subharmonic and non-periodic responses to external
vibration were observed in vibroconvection from a parametric study over a wide range of
frequencies and amplitudes (Hirata, Sasaki & Tanigawa 2001; Crewdson & Lappa 2021).
The parametric and Rayleigh-vibrational instability were examined in vibroconvection
in the absence of gravity (Amiroudine & Beysens 2008; Sharma et al. 2019). The heat
transport enhancement near the onset of vibroconvection were also investigated (Gershuni
& Lyubimov 1998; Shevtsova et al. 2010). However, the basic properties of constitutive
law in vibroconvective turbulence have been rarely addressed.

In this paper, we carried out a series of direct numerical simulations on vibroconvection
in a wide range of vibration amplitudes and frequencies. Then we theoretically and
numerically unveil the emergence of a unified constitutive law and underlying mechanism
of vibroconvective turbulence. In § 2, the governing equations and numerical approach
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of microgravity vibroconvection are described. In § 3, flow structure in vibroconvection
is analysed and the unified scaling law of vibroconvective heat transport is revealed
theoretically and examined numerically. Finally, the conclusion is given in § 4.

2. Direct numerical simulation

We consider the microgravity vibroconvection set-up of the convective flows in an
enclosure heated from below by a hot wall and cooled from above by a cold wall,
and subjected to the harmonic vibration A cos(Ωt) in the horizontal direction. Here, Ω

and A are the angular frequency and pulsating displacement. In the non-inertial frame
associated with the imposed vibration, an inertial acceleration of AΩ2 cos(Ωt)ex is added
to the system, where ex is the unit vector in the x-direction. The governing equations for
vibroconvective turbulence can then be written as

∂tu + (u · ∇)u = −∇p + ν∇2u − αAΩ2 cos(Ωt)Tex, (2.1)

∂tT + (u · ∇)T = κ∇2T, (2.2)

in addition to ∇ · u = 0, where u is the fluid velocity, T the temperature, p the
modified pressure, ν the kinematic viscosity, κ thermal diffusivity and α thermal
expansion coefficient, respectively. Here, the modified pressure is expressed as p =
p̃ − αAΩ2 cos(Ωt)T0x where p̃ is the fluid pressure and T0 is the reference temperature
(Shevtsova et al. 2010). All quantities used in our simulations have been made
dimensionless with respect to the cell’s height H, the temperature difference across
the fluid layer Δ and the viscous diffusion velocity ν/H. Based on these choices, the
relevant control parameters for the vibroconvection system are the dimensionless vibration
amplitude a = α	A/H, the dimensionless vibration frequency ω = ΩH2/ν and the
Prandtl number Pr = ν/κ .

We performed direct numerical simulation of microgravity vibroconvection in a
rectangular enclosure with aspect ratio of W : D : H = 1 : 0.3 : 1 in three-dimensional
(3-D) cases and of W : H = 1 : 1 in two-dimensional (2-D) cases, where W, D, H are,
respectively, the width, depth and height of the convection cell. The governing equations
are numerically solved by a second-order finite difference code, which has been validated
many times in the single-phase turbulent convection (Zhang et al. 2018; Wang et al. 2020;
Guo et al. 2022, 2023; Wu et al. 2022a,b; Huang et al. 2023; Chong et al. 2024; Zhang &
Zhou 2024) and multiphase flow (Meng et al. 2024; Zhao et al. 2024). Furthermore, the
comparison between our simulation results and experimental data reported in Shevtsova
et al. (2010) is given in Appendix A. The agreement on the growth of the heat flux validates
our in-house code. At all solid boundaries, no-slip boundary conditions are applied for
the velocity. At the top and bottom plates, the dimensionless temperature is adopted as
constant Ttop = 0 and Tbot = 1; and at all sidewalls, the adiabatic conditions are adopted.
We performed a series of direct numerical simulations of microgravity vibroconvective
turbulence over the vibration amplitude range 0.001 ≤ a ≤ 0.1 and the frequency range
105 ≤ ω ≤ 107 for 3-D cases, and over the vibration amplitude range 0.001 ≤ a ≤ 0.3 and
the frequency range 103 ≤ ω ≤ 107 for 2-D cases at fixed Prandtl number Pr = 4.38. For
all simulations, the computational mesh size is chosen to adequately resolve the dynamics
both the thermal and oscillating boundary layers (BLs), and the time step is chosen to not
only fulfil the Courant–Friedrichs–Lewy conditions, but also resolve the time scale of 1 %
of the vibration period.
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Figure 1. Flow structure in microgravity vibroconvection. (a) Instantaneous 3-D flow structure visualized by
the volume rendering of the instantaneous temperature field (see supplementary movies available at https://doi.
org/10.1017/jfm.2024.368) under different vibration frequencies ω = 105 (a i), 106 (a ii) and 107 (a iii) at fixed
amplitude a = 0.01 and Prandtl number Pr = 4.38. The subpanels below show the corresponding temperature
contours extracted on the horizontal slice at the edge of TBL. (b) Power spectrum of fluctuating temperature in
bulk zones. (c) The variation of the characteristic wavenumber km as functions of ω. (d) Percentage of BL (solid
symbols) and bulk (hollow symbols) to the global averaged thermal dissipation rate, as functions of vibration
frequency.

3. Results and discussion

Figure 1(a) shows the typical snapshots of flow structures in vibroconvection with different
dimensionless frequencies ω = 105, 106 and 107 at fixed dimensionless amplitude a =
0.01 and fixed Prandtl number Pr = 4.38. It is seen that the shaking by external vibration
strongly destabilizes the conductive state and generates large distortion of the temperature
field in bulk regions by creating an artificial gravity (Beysens et al. 2005; Beysens
2006). With increasing ω, it is vibration-induced artificial gravity that becomes strong
enough to destabilize the TBL and trigger abundant thermal plumes. Those plumes are
transported into bulk regions and self-organized into columnar structures. This indicates
that the feature of the main structures responsible for heat transport in microgravity
vibroconvection are different from those in the gravity-induced RB convection. The
vertical columnar structure in the bulk is very similar to the columnar pattern observed in
experiments on the interface between two miscible liquids under vibration in microgravity
(Gaponenko et al. 2015).

To quantitatively analyse the feature of columnar structures, we extract the instantaneous
temperature field in bulk zones and calculate the power spectrum P(k) of temperature
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fluctuations by applying the Fourier transform in the vibrational direction as shown in
figure 1(b). It is found that there exists a characteristic wavenumber km, at which the
wavenumber distribution function P(k) is maximal. Indeed, km characterizes the number
of columnar structures in vibroconvection. We then plot the variation of km as functions of
ω in figure 1(c). It is shown that km monotonically increases with increasing ω, indicating
that more columnar structures are formed under a stronger vibrational driving force.
Such a kind of relation for the columnar structures was experimentally established while
vibrating two miscible liquids (see figure 5 in the work of Gaponenko et al. (2015)). This is
consistent with the fact that larger heat transport enhancement occurs at larger ω. Further,
to examine the role of the TBL in vibroconvective heat transport processes, we decompose
the globally averaged thermal dissipation rate εT = κ|∇T|2 into their boundary layer (BL)
and bulk contributions, and then plot the variation of relative contributions as functions
of ω in figure 1(d), as suggested by the Grossmann–Lohse theory (Ahlers et al. 2009;
Stevens et al. 2013). It is seen in figure 1(d) that the BL contribution of εT is much larger
than the bulk one, suggesting the BL-dominant thermal dissipation. This reveals that the
dynamics of BLs plays a crucial role on the underlying mechanism of heat transport in
vibroconvective turbulence.

Next, we address the question of how the global heat transport depends on the control
parameters of vibroconvection. First, we examine the dependence of heat transport on the
vibration frequency. Figure 2(a,d) shows the measured Nu as functions of frequency ω in
a log–log plot for different amplitudes a in 3-D and 2-D cases. Here, the Nu number, as
the non-dimensional ratio of the measured heat flux to the conductive one, is calculated by
Nu = 〈wT − κ∂zT〉/(κΔ/H), where w is the vertical velocity and 〈·〉 denotes the time and
space averaging. It is observed that the Nu–ω scaling relation is not unique for a specific
amplitude, namely, there seems to be a transition from Nu ∼ ω to Nu ∼ ω2/3 in both 3-D
and 2-D cases, as shown by the dashed lines or in figure 5 in Appendix B. Note that the
precise values of scaling exponents are obtained from the physical model we proposed
below, not adjusted from the fitting with the numerical data.

Further, we examine the dependency of heat transport on the two important analogous
Rayleigh numbers in vibroconvective turbulence, which are the vibrational Rayleigh
number Ravib and oscillational Rayleigh number Raos. The first one is the vibrational
Rayleigh number Ravib = (αAΩ	H)2/(2νκ), i.e. Ravib = 1

2 a2ω2Pr, which is obtained
from applying the averaged approach on vibroconvective equations in the limit of small
amplitudes and high frequencies, and quantifies the intensity of the external vibrational
source. Figure 2(b,e) depict, respectively, the measured Nu as functions of Ravib in a
log–log plot at different amplitudes for 3-D and 2-D cases. We find that at small Ravib,
numerical data almost collapse together on the same scaling law, i.e. Nu ∼ Ra1/2

vib , as shown
by the dashed lines. However, at large Ravib, a significant departure from this scaling
behaviour is observed for large amplitudes. The other is the oscillational Rayleigh number
Raos = αAΩ2	H3/(νκ), i.e. Raos = aω2Pr, which is analogous to Rayleigh number
in RB convection but replacing the gravitation by the vibration-induced acceleration.
Figure 2(c, f ) shows the variation of Nu as functions of Raos for various amplitudes
in 3-D and 2-D cases. We find that at large Raos, numerical data almost collapse onto
the same scaling relation Nu ∼ Ra1/3

os as shown by the dashed line, but at small Raos,
numerical data points deviate considerably from this scaling for small amplitudes. Both
scaling relations Nu ∼ Ra1/2

vib for small Ravib and Nu ∼ Ra1/3
os for large Raos can be further

confirmed from the compensated plots in figure 6 in Appendix C. From above, using solely
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Figure 2. Heat transport scaling in vibroconvective turbulence. (a–c) The measured Nusselt number Nu as
functions of vibration frequency ω, vibrational Rayleigh number Ravib, oscillational Rayleigh number Raos for
3-D cases. (d–f ) The measured Nusselt number Nu as functions of vibration frequency ω, vibrational Rayleigh
number Ravib, oscillational Rayleigh number Raos for 2-D cases. The dashed lines in the panels are Nu ∼ ω

(lower), Nu ∼ ω2/3 (upper) in (a,d), Nu ∼ Ra1/2
vib in (b,e), Nu ∼ Ra1/3

os in (c, f ). Those precise scaling relations
are theoretically deduced by our proposed physical model in the paper. Note that the vibration amplitude range
in the 3-D cases is from a = 10−3 to a = 10−1 and in the 2-D cases is from a = 10−3 to a = 3 × 10−1.

the common control parameters like ω, Ravib or Raos, unifying the heat transport scaling
in vibroconvective turbulence cannot be achieved.

Now, there are two important questions remaining to be answered in vibroconvective
turbulence: one is why there exists two different heat transport scaling laws, i.e. Nu ∼
Ra1/2

vib and Nu ∼ Ra1/3
os ; the other is whether a unified constitutive law emerges in

vibroconvective turbulence. Hereafter, we propose a physical model to address the first
question. From the analysis above, we know that the BL-contribution to the global
thermal dissipation rate is dominant, implying that the BL dynamics plays a crucial role
in the heat transport mechanism. In vibroconvective turbulence, there are two types of
BL: the thermal boundary layer (TBL) with the thickness of δth, which is estimated
by δth ≈ H/(2Nu); the other is the oscillating boundary layer (OBL) induced by the
external vibration. The modulation depth of OBL referring to δos is defined as the depth,
at which the delaying rate of the intensity of vibration-induced shear effect is equal to
99 %. Considering the intensity of vibrational modulation falling off exponentially from
the surface, one easily obtains δos = − ln(1 − 0.99)δS ≈ 4.605δS where δS = √

2ν/Ω

is the Stokes layer thickness. First, when δth > δos as sketched in figure 3(ai), by
taking into account the balance between the convective and conductive transports within
TBL, the dimensional analysis of the governing equation of the temperature field gives

987 A14-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

36
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.368


Constitutive law in microgravity vibroconvective turbulence

OBL

TBL

TBL-dominant regime

OBL-dominant regime

TBL

OBL

Velocity profile
under vibration

Temperature

profile

3-D 3-D

2-D 2-D
103

102

101

100

10–1

10–2

103

102

101

100

10–1

10–2

10–3

102

101

100

10–1

10–2

10–3

10–3

102

101

100

10–1

10–2

10–3

100 101 102

Reos

103 104100 101 102

Reos

Reos

Reos

103

104102

10–1

100

101

10–1

100

101

100

δ o
s/

δ t
h

δ o
s/

δ t
h

a–
1
δ o

s 
  
a–

1
δ t

h

aN
u

aN
u

a–
1
δ o

s 
  
a–

1
δ t

h

δos

δos

δth

δth

100 101 102 103

104

100 101 102 103100 101 102 103

Nu ∼ a–1Re2
os

Nu ∼ a–1Re2
os

Nu ∼ a–1Reos
4/3

Nu ∼ a–1Reos
4/3

(e)

(b)(a) (c)

(d )

(i)

(ii)

Figure 3. Unified constitutive law in vibroconvective turbulence. (a) Sketch of the (a i) TBL-dominant regime
and the (a ii) OBL-dominant regime. (b,d) The TBL thickness δth (symbols) and the critical modulation depth
δos (solid line) of OBL as a function of the oscillational Reynolds number Reos for 3-D and 2-D cases. The
insets in (b,d) show the ratio δos/δth as a function of the oscillational Reynolds number Reos. The solid
dashed line indicates δos/δth = 1. (d,e) The unified scaling law exhibited between aNu and the oscillational
Reynolds number Reos for 3-D and 2-D cases. The emergence of a universal constitutive law of vibroconvective
turbulence is clearly observed. Here, the TBL-dominated regime is coloured light purple and OBL-dominated
regime light cyan in (b–e). The coloured symbols have the same meaning as those in figure 2.

rise to wΔ/δth ∼ κΔ/δ2
th. And, in the momentum equation, the balance between the

vibration-induced buoyancy and the viscous dissipation leads to αAΩ2Δ ∼ νu/δ2
os with

u the horizontal velocity. Using both above relations, assuming that the magnitude of
velocity components u and w follows a similar scaling behaviour, i.e. the ratio w/u
is approximately constant, together with δos ∼ √

ν/Ω and δth ∼ H/Nu, one obtains the
scaling relation between Nu and Ravib,

Nu ∼ Ra1/2
vib Pr1/2. (3.1)

The scaling relation in (3.1) shows that vibroconvective heat transport is independent of
viscosity ν, but depends on thermal diffusion coefficient κ . This implies that the dynamics
of TBL is dominant to heat transport in cases of δth > δos.

When δth < δos as sketched in figure 3(a ii), the balance between the vibration-induced
buoyancy and the viscous dissipation within TBL allows one to rewrite the momentum
equation using dimensional analysis: αAΩ2Δ ∼ νu/δ2

th. Combining the above equation
and wΔ/δth ∼ κΔ/δ2

th for the temperature equation, together with the above assumption
that the ratio w/u is approximately constant, δos ∼ √

ν/Ω and δth ∼ H/Nu, one deduces
the scaling relation between Nu and Raos,

Nu ∼ Ra1/3
os . (3.2)
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The heat transport scaling in (3.2) is similar to that of RB convection in the classical regime
through replacing the gravitation by vibration-induced acceleration. Both heat transport
scalings predicted in (3.1) and (3.2) agree well with numerical results shown in figure 2.
The competition between TBL and OBL results in the two different heat transport scaling
relations, namely, Nu ∼ Ra1/2

vib and Nu ∼ Ra1/3
os .

Furthermore, we address the second question of whether the universal constitutive law
of vibroconvective turbulence emerges. First, to quantify the dynamics of OBL, we define
the oscillational Reynolds number Reos = α	AΩδos/ν, which is related to the vibrational
velocity with the Boussinesq parameter α	AΩ and the modulation depth δos and obeys
the relation Reos = 4.605a(2ω)1/2. Second, we study the dependency of Nu on Reos. It is
intriguing to find that both Nu ∼ Ra1/2

vib and Nu ∼ Ra1/3
os scaling laws can be rewritten as

Nu ∼ a−1Reβ
os with β = 2 for the TBL-dominant heat transport regime (δth > δos), and

β = 4/3 for the OBL-dominant heat transport regime (δth < δos). Therefore, we conclude
that due to the competition between the dynamics TBL and OBL on heat transport, the
underlying mechanism of heat transport in vibroconvective turbulence can be categorized
into the two following regimes.

(i) The TBL-dominant regime (δth > δos): the OBL is submerged into TBL. Thermal
plumes facilitated by vibration-induced strong shear detach from OBL and move
into TBL. The plume dynamics is then mainly dominant by the molecular diffusion
between OBL and TBL. Those plumes thermally diffuse and then self-organize into
columnar structures in bulk zones, which transport heat from the bottom hot plate to
the top cold one. The heat transport scaling exhibits the scaling Nu ∼ a−1Re2

os.
(ii) The OBL-dominant regime (δos > δth): the TBL is nested into OBL. The OBL

dominates the dynamics of thermal plumes ejected from TBL by vibration-induced
strong shear. Between OBL and TBL, the shear effect mixes those plumes and sweep
away some of them (Scagliarini, Gylfason & Toschi 2014; Blass et al. 2020; Jin
et al. 2022). The remaining plumes then move into bulk zones and self-organize into
columnar structures. In this regime, due to the plume-sweeping mechanism between
OBL and TBL, the heat transport is depleted and obeys the scaling with a smaller
scaling relation exponent Nu ∼ a−1Re4/3

os .

Finally, we use the simulated data to confirm the theoretically deduced unified
constitutive law. First, we plot in figure 3(b,d) the variation of both aδth and aδos as
functions of Reos. It is shown that for all fixed amplitudes, the value of both δth and
δos monotonically decreases as increasing Reos, and δth decreases faster than δos. The
intersection point between the curves of aδth and aδos divides the plane into two regions,
which corresponds to the TBL-dominant regime in the left-hand side (δth > δos) and
OBL-dominant regime in the right-hand side (δth > δos). As depicted in the inset of
figure 3(b,d), the dividing line between TBL-dominant and OBL-dominant regimes is
nearly at the position of δos/δth = 1. This confirms that the underlying mechanism of
vibroconvective heat transport is attributed to the competition between the dynamics of
TBL and OBL. Second, we plot the calculated aNu as functions of Reos as shown in
figure 3(c,e). It is expected that all numerical data collapse together onto the derived
universal constitutive law. Evidently, the numerical data and theoretical model show an
excellent agreement. This confirms the emergence of the universal constitutive law of
vibroconvective turbulence in microgravity. The evidence of this unified heat transport
heat scaling is also shown from the compensated plots in figure 7 in Appendix D.
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4. Conclusions

In summary, we have conducted direct numerical simulations of both 2-D and 3-D
microgravity vibroconvective turbulence over a wide range of dimensionless vibration
amplitude and frequency at fixed Pr = 4.38. It is shown that in the absence of gravitational
acceleration, vibration creates an ‘artificial gravity’ in microgravity to destabilize TBL
and trigger a massive eruption of thermal plumes. We find that those plumes are finally
self-organized into columnar structures in bulk zones to transport heat from the bottom
hot plate to the top cold one. This is different from the gravity-induced convection, like
RB convection, in which large-scale circulation is formed in the bulk and dominates
heat transport. By analysing the basic properties of heat transport, we find the heat
transport exhibits two different power-low relations, i.e. Nu ∼ Ra1/2

vib at small amplitudes
and Nu ∼ Ra1/3

os at large amplitudes. Both Nu-relations show that the global heat flux
is independent of the cell height. We also find that the BL-contribution is dominant to
the global thermal dissipation rate, implying that the dynamics of BL plays an essential
role in vibroconvective heat transport. We then propose a physical model to theoretically
deduce both Nu-scaling-relations, and explain the distinct properties of vibroconvective
heat transport, based on the competition between the TBL and OBL induced by the
external vibration. To look for the universal features, we define the oscillational Reynolds
number Reos quantifying the dynamics of OBL, and study the dependency of heat transport
on Reos. Both theoretical results and numerical data shows the emergence of the universal
constitutive law in vibroconvective turbulence, i.e. Nu ∼ a−1Reβ

os, where β is the universal
scaling exponent. We also find that the exponent β is determined by the relative importance
between the dynamics of TBL and of OBL to heat transport, and identify β = 2 in
TBL-dominant regime and β = 4/3 in OBL-dominant regime. It is concluded that the
type of vibroconvective turbulence in microgravity owns a universal constitutive law with
its underlying heat transport mechanism different from that in gravity-induced convective
turbulence. The emergence of universal constitutive laws in vibroconvective turbulence
provides a powerful basis for generating a controllable heat transport under microgravity
conditions or in a microfluidic environment.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.368.
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Appendix A. Comparison with the experimental results

To further validate our simulation, we compared our simulated Nusselt number with the
experimentally measured data in parabolic flight reported in Shevtsova et al. (2010).
Note that in the validation case, a linear temperature profile is applied on the lateral
boundaries and the residual gravity also remained, which is different from the fact that
lateral boundaries are adiabatic and the gravity vanishes in the main text. The main
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A (m) Ω (Hz) ν (m2 s−1) κ (m2 s−1) Δ (K) α (K−1) gx (m s−2) gy (m s−2) gz (m s−2)

0.045 8π 1.730 × 10−6 0.623 × 10−7 20 1.095 × 10−3 0.001g 0.001g 0.02g
a ω Pr Ravib Raos Reos Rax Ray Raz
1.971 × 10−1 363.005 27.769 7.115 × 105 7.220 × 105 24.456 2491.661 2491.661 4983.322

Table 1. Numerical parameters for the validation case. The dimensional cell size is H = 0.005 m. The
magnitude of gravitation is g = 9.81 m s−2. The Rayleigh numbers corresponding to the residual gravity are
given by Rax = αgx	H3/(νκ), Ray = αgy	H3/(νκ) and Raz = αgz	H3/(νκ). Note that the direction of the
residual gravity is the same as with that in Shevtsova et al. (2010).

0
1.0

1.5

2.0

2.5

3.0

Nu

5 10 15

Time

20

Experiment (Shevtsova et al. 2010)

Present study (2-D)

Present study (3-D)

25

Figure 4. Comparison between the time series of the simulated Nusselt number and experimentally measured
data in the parabolic flight reported in the work of Shevtsova et al. (2010). Here, the horizontal axis is denoted
by the dimensional time.

numerical control parameters are given in table 1. More details of set-up are given in
Melnikov et al. (2008) and Shevtsova et al. (2010). Both the time series of simulated
Nusselt number and the experimentally measured one are shown in figure 4. Here, the
simulated Nusselt number is calculated using the summation of the normal gradient of
the instantaneous temperature over the whole boundaries. The instantaneous temperature
field of thermal vibrational convection is extracted at the time of integer multiples of
the vibration period. It is shown in figure 4 that the general trend in the growth of the
Nusselt number is the same in 2-D/3-D simulations and experiment, although one can
see the difference between the value of experimental and numerical results. This result is
consistent with the comparison reported in Shevtsova et al. (2010). And, Shevtsova et al.
(2010) reported that this difference is attributed to the different heat flux through the lateral
walls between the numerical and experimental set-up.

Appendix B. Transition from Nu ∼ ω to Nu ∼ ω2/3 for fixed a = 0.03

To clearly show the transition of scaling relation from Nu ∼ ω to Nu ∼ ω2/3, we carried
out a series of direct numerical simulations for a fixed amplitude a = 0.03 and plot the
measured Nu number as a function of ω in figure 5(a). A transition from Nu ∼ ω to Nu ∼
ω2/3 is observed. And, the compensated plots shown in figure 5(b,c) further confirm this
transition of scaling relations.
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Figure 5. Transition of the Nu–ω relation from Nu ∼ ω to Nu ∼ ω2/3 for a = 0.03. (a) The measured Nu
number as a function of vibration frequency ω. (b,c) The compensated plots of the scaling relations Nu ∼ ω

and Nu ∼ ω2/3.
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Figure 6. Compensated plots for scaling relations (a) Nu ∼ Ra1/2
vib and (b) Nu ∼ Ra1/3

os for 3-D cases, (c) Nu ∼
Ra1/2

vib and (d) Nu ∼ Ra1/3
os for 2-D cases. Here, the coloured symbols have the same meaning as with those in

figure 2.

Appendix C. Compensated plots for Nu ∼ Ra1/2
vib and Nu ∼ Ra1/3

os

Figure 6 shows the compensated plots of the heat transport scaling relations Nu ∼ Ra1/2
vib

and Nu ∼ Ra1/3
os using numerical data of both 3-D and 2-D cases, which correspond to

figure 2. Those compensated plots shown in figure 6(a–d) further confirm the scaling
relations Nu ∼ Ra1/2

vib and Nu ∼ Ra1/3
os observed in figure 2.
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Figure 7. Compensated plots for unified scaling relation (a) Nu ∼ a−1Re2
os and (b) Nu ∼ a−1Re4/3

os for 3-D
cases, (c) Nu ∼ a−1Re2

os and (d) Nu ∼ a−1Re4/3
os for 2-D cases. Here, the TBL-dominated regime is coloured

light purple and the OBL-dominated regime light cyan in (a–d). The coloured symbols have the same meaning
as those in figure 2.

Appendix D. Compensated plots for the unified scaling Nu ∼ a−1Reβ
os

Figure 7 shows the compensated plots of the unified heat transport scaling law Nu ∼
a−1Reβ

os with β = 2 in the TBL-dominant regime and β = 4/3 in the OBL-dominant
regime using numerical data of both 3-D and 2-D cases, which correspond to figure 3.
Those compensated plots shown in figure 7(a–d) further confirm the unified scaling laws
we have obtained theoretically and numerically in the main text.
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