
FINITE GROUPS THE CENTRALIZERS OF WHOSE 
INVOLUTIONS HAVE NORMAL 2-COMPLEMENTS 

DANIEL GORENSTEIN 

1. Introduction. In this paper we shall classify all finite groups in which 
the centralizer of every involution has a normal 2-complement. For brevity, 
we call such a group an I-group. To state our classification theorem precisely, 
we need a preliminary definition. 

As is wTell-known, the automorphism group G = PTL(2, q) of H = PSL(2, q), 
q = pn, is of the form G = LF, where L = PGL(2, q), L <j G, F is cyclic of 
order n, L r\ F = 1, and the elements of F are induced from semilinear 
transformations of the natural vector space on which GL(2, q) acts; cf. 
(3, Lemma 2.1) or (7, Lemma 3.3). I t follows at once (4, Lemma 2.1; 
8, Lemma 3.1) that the groups H and L are each I-groups. Moreover, when 
q is an odd square, there is another subgroup of G in addition to L that con
tains H as a subgroup of index 2 and which is an I-group. Indeed, in this case 
\F\ is even and \L:H\ = 2. Consequently, there are exactly two subgroups 
of G other than L containing H as a subgroup of index 2, one of which is 
contained in H F and the other which is not. One checks directly that the latter 
group, which we shall denote by PGL*(2, q), is an I-group. As we shall show 
in Lemma 2.3 below, the group PGL*(2, q) has semidihedral Sylow 2-sub-
groups. We remark that the group PGL*(2, 9) is the group M$ in the notation 
of Zassenhaus (14), of order 720, which is the projective group in one variable 
over the near-field with nine elements. 

We shall follow the terminology of (5). In particular, we recall that in any 
group G, 0(G) and S(G) denote the largest normal subgroup of G of odd 
order and the largest solvable normal subgroup of G, respectively. Moreover, 
the normalizer in G of a non-trivial p-subgroup of G, p a prime, is called a 
p-local subgroup of G. 

Our main result is the following. 

THEOREM A. A non-solvable I-group G has one of the following structures: 
(i) G/O (G) contains a normal subgroup of odd index isomorphic to PSL (2, q), 

PGL(2, q), PGL*(2, q), q odd, q > 3, or to A7; 
(ii) G/0(G) is isomorphic to PSL(2, 2n) or Sz(2w), n ^ 3, or to PSL(3, 4); 

(iii) 5(G) = OvAG) D 0(G), and G/S(G) is isomorphic to PSL(2, 2W), 
n ^ 2, or to Sz(2w), n ^ 3. 
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I t is not difficult to show that any group of the form (i) or (ii) is an I-group 
and, moreover, that there exist I-groups of the form (iii). Furthermore, using 
the ideas of Higman (9, Lemma 2.4), Thompson has shown that in an I-group 
of the form (iii), Ov,2(G)/0(G) is necessarily abelian. 

As an immediate corollary to Theorem A, we have the following theorem. 

THEOREM B. A simple I-group of composite order is isomorphic to PSL(2, q), 
q > 3, Sz(2w), w è 3, Alt or PSL(3, 4). 

In the course of the proof of Theorem A we shall also derive some properties 
of solvable I-groups. 

The over-all proof of Theorem A is very similar to that of the classification 
of finite groups with abelian Sylow 2-subgroups in which the centralizer of 
every involution is solvable (4). One first argues by induction that either 
Theorem A holds or else there exists a simple I-group G with the following 
properties: 

(1) SCN3GS) is non-empty, S an S2-subgroup of G; 
(2) Every non-solvable proper subgroup of G satisfies the conclusion of 

Theorem A ; 
(3) S normalizes, but does not centralize, a subgroup of G of odd order. 
We can also show that G has an additional property, the statement of 

which involves the concepts of both a strongly embedded subgroup of G (that 
is, a proper subgroup of G of even order containing the centralizer in G of 
each of its involutions and the normalizer in G of each of its S2-subgroups) 
and a uniqueness subgroup for some odd prime p (that is, a p-local subgroup 
of G which is the unique maximal element of a certain well-specified collection 
of p-local subgroups of G). For definitions and properties of such subgroups, 
see (5, §§8.6, 9.2, and 9.3). 

We can also prove that G must satisfy the following property: 
(4) If ikf is a strongly embedded subgroup of G containing S and if M is 

also a uniqueness subgroup for some odd prime p, then S centralizes 0P(M). 
The reduction to the case of a group G satisfying conditions ( l )-(4) requires, 

in particular, application of three major classification theorems: 

(a) Groups in which SCN3CS) is empty and the centralizer of every involution 
is solvable (Janko and Thompson (10)). 

(b) Groups in which the centralizer of every involution is 2-closed and, in 
particular, is nilpotent (Suzuki (11; 12; 13)). 

(c) l-groups in which two elements of S conjugate in G are conjugate in the 
normalizer of S in G (Glauberman (3)). 

Once this reduction is achieved, our main concern is to show that an I-group 
G satisfying conditions (1), (2), and (3) must possess a subgroup M which 
violates condition (4). The proof of this result is patterned very closely after 
that of the analogous result established in (4), but is considerably simpler. 
This simplification is due, on the one hand, to Glauberman's ZJ-theorem 
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(2; 5) which makes the construction of M in the so-called x4-case extremely 
easy and, on the other hand, to a very strong transitivity theorem that holds 
for the prime 2 in the present situation; cf. Theorem 4.2 below. As a conse
quence, the prime 3 no longer plays the exceptional role that it did in (4). In 
addition, the concept of weak p-constraint, which was introduced in (4), is 
not required inasmuch as the hypotheses of those theorems of (7) which are 
needed for the argument can now be directly verified. 

2. Preliminary lemmas. We shall need a variety of properties of groups 
which satisfy the conclusion of Theorem A. For convenience we call such a 
group an I x-group, an I2-group, or an lz-group according as it is of the form 
(i), (ii), or (iii) of the theorem, respectively. For completeness, we call a 
solvable I-group an I0-group. 

LEMMA 2.1. Let H be an lo-group in which 0(H) = 1. Let X be an S2>-subgroup 
of H and let Y = 02(H). Then 

(i) If X y£ 1, then XY is a Frobenius group with kernel Y; 
(ii) The Sylow subgroups of X are cyclic; 

(iii) XY <\ H, and H/XY is a cyclic 2-group; 
(iv) If XY (Z H, then H contains an involution not in Y; 
(v) J / 3 6 TT(X), then cl(F) ^ 2. 

Proof. We first claim that no element x of X# centralizes any non-trivial 
2-element uoi H. Assume that this is false. CH(u) has a normal 2-complement. 
However u, being a 2-element, centralizes some element y of Z(Y)#. Then 
[y, x] € 0(CH(u)) C\ Y = 1, whence x centralizes y. But then CH(y) contains 
F and also has a normal 2-complement, whence [Y, x] ÇÇ 0(CH(y)) C\ Y = 1. 
Thus x centralizes F. However, since H is a solvable group in which 0(H) = 1, 
we have that CH(Y) C F by a basic result of Hall and Higman 
(5, Theorem 6.3.2), and therefore x £ F, a contradiction. 

In particular, if X ^ 1, our argument shows that XY is a Frobenius group 
with kernel F and complement X. But then as \X\ is odd, (5, Theorem 10.3.1) 
implies that the Sylow subgroups of X are all cyclic. Thus (i) and (ii) hold. 

In proving (iii) and (iv) we may clearly assume that XY £_H. Set 
H = H/ Y and let X be the image of X in H. Then X C H and X is an 
S2'-subgroup of H. In particular, 0(H) Ç X. Moreover, no element x of X # 

can centralize a non-trivial 2-element of H\ otherwise, a representative x of 
x in X would necessarily centralize a non-trivial 2-element of iJ, contrary to 
what we have shown above. Since H has even order, it follows that O(ïî) is 
inverted by an involution of H, and therefore is abelian. On the other hand, 
the Sylow subgroups of X and 0(H) are cyclic by (ii), whence 0(H) is, in 
fact, cyclic. However, Cn(0(H)) C 0(H) by another application of 
(5, Theorem 6.3.2) ; whence, H/O (H) is isomorphic to a subgroup of Aut 0 (H). 
Since the automorphism group of a cyclic group is abelian, we conclude that 
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H/O(H) is abelian. Since X contains 0(B), this yields X <\ B\ whence, 
XY<\ H. 

On the other hand, since H is solvable, any other S2'-subgroup of H is 
conjugate to X, whence H = YNH(X) by the Frattini argument. Let R be 
an S2-subgroup of NH(X). Then R ^ l SLS XY CH. Moreover, Y H R 
centralizes X\ whence, Y C\ R = 1 by (i). In particular, every involution 
of R lies in H — R, proving (iv). Furthermore, by the first paragraph of the 
proof, no element of Rn centralizes an element of X # . Since the Sylow sub
groups of X are cyclic, this forces R to be cyclic; thus (iii) also holds. 

Finally, if 3 € TT(X), then X contains an element of order 3 which acts 
regularly on Y. I t is well known that this forces Y to have class at most 2; 
cf. (5, Exercise 5.21). 

LEMMA 2.2. Let H be an I0-group and let S be an S2-subgroup of H. 
(i) If H has only one class of involutions or if S C [H, H], then H = 

0(H)NH(S). 
(ii) If H = 0(H)NH(S), then two elements of S conjugate in H are conjugate 

inNH(S). 

Proof. The assumptions of (i) clearly carry over to H/0(H). In either case, 
Lemma 2.1 implies that SO (H)/0(H) < H/0(H) ; whence, H = 0(H)NH(S) 
by the Frattini argument. Thus (i) holds. Moreover, if u, v G >S and v = uh, 
h Ç H, then under the assumption of (ii), we have that h = na, where 
w G NH(S) and a Ç 0(H). Setting w = un, we obtain v = wa and wa 6 5, 
whence w~lwa Ç 0(H) C\ S = 1. Thus, w = v, and therefore v = un, proving 
(ii). 

LEMMA 2.3. The following conditions hold in PGL*(2, g), q = pm, p an odd 
prime: 

(i) S 2-subgroup s are semidihedral; 
(ii) a 4-subgroup normalizes no non-trivial psubgroup. 

Proof. By definition of PGL*(2, q), q is odd and q = r2 for some integer r. 
Set G = TL (2, q) and L = GL(2, q). Then, as with PSL(2, q), we have that 
G = LF, where F is cyclic of even order, L C\ F = 1, and the elements of F 
are induced from automorphisms of GF(q). Let K be the normal subgroup 
of G consisting of all scalar matrices and set G = G/K, so that G = PTL(2, q). 
We use bars for images of elements and subgroups of G in G. Thus, 
L = PGL(2, q) and G = LP with F cyclic of even order and disjoint from L. 
Let H be the subgroup of L equal to PSL(2, q). 

Let 2m be the highest power of 2 dividing q — 1 and let a be a primitive 
2wth root of unity in GF(g). Since r2 = 1 (mod 8), we have that m ^ 3. Let 

a = (o Î) and b = \-°i o)' 
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so that \a\ = 2m, \b\ = 2, and a, b £ L. Since 

we have that b~lab = a -1. Thus, R = (â, S) is dihedral of order 2m+1 and 
so is an S2-subgroup of L. Moreover, 

ffl2=(o Î ) = (o « ~ 0 ( o a)m\0 a"1) ( m 0 d X ) ' 

and therefore â2 6 -H". Since b £ H also, we have that R r\ H = (â2, 5) is an 
S2-subgroup of H. 

Finally, let c be the unique element of order 2 in F. Then c centralizes b and 

/</ o\ r c ac = Vo i / = a • 
Thus 

c_1&c = b and c_1âc = âr. 

In particular, c normalizes both R and R C\ H. Now by definition, PGL*(2, q) 
contains H as a normal subgroup of index 2 and is not equal to either L or 
<#, c). Thus, in fact, PGL*(2, g) = ( 5 , âc) and therefore S = {RC\B, âc) = 
(â2, b, âc) is an S2-subgroup of PGL*(2, q) and is of order 2m+1. 

We proceed to determine the structure of S. Consider first the case 
r = 1 (mod 4), in which case r = 1 + 2W_1X for some odd integer X. In 
particular, §(r + 1) is odd. Setting a; = âc, we have that x2 = (âc)2 = 
â{c~1âc) = âr+1. Consequently, (x2) = (â2), and therefore \x\ = 2m. Further
more, b~lxb = â~lc = â~~2âc = â~2x. However, it is immediate from the form 
of r that (r + 1)(2W"2 - 1) = - 2 (mod 2m) ; whence, (.f2)2™-2"1 = 
(ôr+i) 2^-1-1 = ^-2> T h i s y i e l d s g-i^g = ^-2 f = ^ - 1 + 2 ^ - ^ a n d therefore 
/§ = (b, x) is semidihedral when r = 1 (mod 4). 

Now assume that r = — 1 (mod 4). In this case we set x = bac and compute 
that x2 = a7"-1; whence, (x2) = (a2) and \x\ = 2m. Furthermore, b~lxb = 
bâ~1c = â2(bâc) = â2x. This time we have that r = — 1 + 2M-1X, X odd, 
and thus (r - l)(2m"2 - 1) = 2 (mod 2W), whence (z2)2™-2-1 = â2. Thus, 
b~lxb = â2.r = x~1+2m~ , and therefore S = (6, x) is semidihedral in this case 
as well. Thus (i) holds. 

One easily verifies that every involution of S lies in H, the subgroup of 
PGL*(2, q) which is equal to PSL(2, q). Hence, any 4-subgroup f of 
PGL*(2, q) lies in PSL(2, q). Since q = pm, p odd, f normalizes no non-trivial 
p-subgroup of H (8, Lemma 3.1 (vii)), and (ii) follows. 

LEMMA 2.4. Let H be an Ii-group. Then 
(i) The S2-subgroups of H are dihedral or semidihedral; 

(ii) H contains a ^-subgroup T which is normalized, but not centralized, by a 
Z-element of H and such that TH is non-solvable. 

https://doi.org/10.4153/CJM-1969-035-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-035-x


340 DANIEL GORENSTEIN 

Proof. Without loss we may assume that 0(H) = 1, whence H contains a 
normal subgroup of odd index isomorphic to PSL (2, q), PGL (2, q), PGL* (2, q), 
q odd, q > 3, or to AT. But now (i) follows from (8, Lemmas 3.1 (iii) and 
3.2 (i)) and Lemma 2.3 (i) above. Moreover, H contains a normal subgroup K 
isomorphic to either PSL(2, q) or to AT. However, if T is any 4-subgroup of 
K, NK(T) contains an element of order 3 which does not centralize T 
(5, Theorems 7.7.1 and 7.7.3) as K is simple. For the same reason TK is non-
solvable; therefore, both parts of the lemma hold. 

LEMMA 2.5. Let H be an It-group, 2 ^ i S 3, and let S be an ^-subgroup 
of H. Then 

(i) The centralizer of every involution of H/0(H) is a 2-group; 
(ii) NH(S) D CH(S) and SH is non-solvable. 

Proof. In proving (i) we may assume that 0(H) = 1. Suppose that 
R = 02(H) 9* 1. Since H/R is simple, CH(R) ç R. But then by Lemma 2.1 (i), 
any element of odd order in H# acts regularly on R; whence, the centralizer 
of any involution in R is a 2-group. Thus, (i) will hold if it holds in H/R. 
However, the centralizer of every involution of PSL (2, 2n), Sz(2w), and 
PSL(3, 4) is known to be a 2-group; see (11; 12). 

I t clearly suffices to prove (ii) in the case that H is isomorphic to PSL (2, 2n), 
n ^ 2, Sz(2w), n ^ 3, or PSL(3, 4). Since H is simple, obviously SH is non-
solvable. Moreover, NH(S)/S is cyclic of order 2n — 1, 2n — 1, or 3, respec
tively, as can be directly verified. 

LEMMA 2.6. Let H be a simple normal I r sub group of the l-group G, 1 ^ i ^ 3, 
such that CG(H) = 1. Then G is an \rgroup. 

Proof. Since CG(H) = 1, we can identify G with a subgroup of Aut H. 
Without loss we can assume that H C G. If H = AT, then G must be iso
morphic to the symmetric group ST. However, a transposition of ST has a 
non-solvable centralizer, contrary to the fact that G is an I-group. Thus 
H 9^ AT. In the remaining cases (4, Lemma 2.2 (i); 8, Lemma 3.3 (i); 
12, Theorem 11), show that G C LF, where L = PGL (2, q) if H = PSL (2, q) 
and L = H if H = Sz(q), and where F is cyclic, L O F = 1, and the elements 
of F are induced from automorphisms of the underlying field GF(g). If 
H = PSL(3, 4), then, as is well known, we reach the same conclusion with 
L = PGL(3, 4). 

We first consider the case H = PSL (2, 2n) or Sz(2w), n ^ 3, whence L = H 
and G C\ F 9e 1. We can choose F to normalize the S2-subgroup S of H 
consisting of the appropriate lower triangular matrices. Then G C\ F centralizes 
the subgroup So ^ 1 of 5 whose elements have entries in the prime field 
GF(2). But then (G P\ F)S is not a Frobenius group, and consequently 
0(G C\ F) centralizes 5 by Lemma 2.1 (i). However, one checks directly that 
only the identity element of F acts trivially on S. Hence, 0(G C\ F) = 1, and 
therefore G C\ F is a 2-group. Since n is necessarily odd if H = Sz(2^) 
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(12, Theorem 7), this forces H = PSL(2, 2n). However, if x is the involution 
of GC\ F, then CH(x) = PSL(2, 2m), where n = 2m (4,Lemma 2.2 (ii)). Since 
n ^ 3, m ^ 2, and consequently CH(x) is non-solvable, a contradiction. 

Next, suppose that H = PSL(3, 4). In this case, \F\ = 2 and CH(F) = 
PSL(3, 2), which is non-solvable. Thus, G C\ F = 1. Since | L / # | = 3 in this 
case, the only possibility is that G = L. However, the S2-subgroup R of 
GL(3, 4) consisting of the appropriate lower triangular matrices is normalized 
by all diagonal matrices of GL(3, 4), which form an elementary abelian 
group of order 27. I t follows at once that the image S of R in H is normalized 
by an elementary abelian 3-subgroup P of G of order 9 with CP(S) = 1. But 
then Oz(SP) = 1, and we see that Lemma 2.1 (ii) is contradicted. 

We conclude that H = PSL(2, q), q = pn, where either p is an odd prime 
or p — n — 2. We may assume that \G:H\ is even, since otherwise G is clearly 
an Ii-group. If x G F has order k, then (8, Lemma 3.3 (i)) k\n and CH(x) 
contains PSL(2, pn/k). But then, if x is an involution of F P\ G, we see that 
CG(%) does not have a normal 2-complement except in the case that p = n = 2. 
Since PSL(2, 4) and PSL(2, 5) are isomorphic, it is immediate in the latter 
case that G is isomorphic to PGL(2, 5), and therefore is an Ii-group. Thus, 
we may assume that \G P\ F\ is odd and that p is odd. In this case, \L:H\ = 2. 
This forces \G:H\2 ^ 2, since otherwise \F r\ G\ would necessarily be even. 
Thus, \G:H\2 = 2. Since LF/H is abelian, it follows that G possesses a normal 
subgroup K of odd index in G such that \K:H\ = 2. Since K C\ F = 1 and F 
is cyclic, there are exactly two possibilities for K, namely, K = L or 
K = PGL*(2, q). In either case, G is an Ii-group and the lemma is proved. 

LEMMA 2.7. Let T be a 2-subgroup of the lrgroup H, 0 ^ i S 3, and assume 
that T contains a non-cyclic abelian subgroup of order 8. Then we have that 

(i) every T-invariant subgroup of H of odd order lies in 0(H); 
(ii) for any odd prime p, any two maximal T-invariant ^-subgroups of H 

are conjugate by an element of 0(CH(T)). 

Proof. First, (ii) is an immediate consequence of (i). Moreover, in proving 
(i) we can assume without loss that 0(H) = 1. Since an Ii-group has dihedral 
or semidihedral S2-subgroups by Lemma 2.4 (i), our conditions imply that H 
is not an Ii-group. 

Suppose that K is a non-trivial T-invariant subgroup of H of odd order. 
Since T contains a 4-subgroup, CK(x) T^ 1 for some involution x of T. But 
then H is not an I2-group or an I3-group by Lemma 2.5 (i). Thus, H is an 
Io-group. By Lemma 2.1 (iii), T0 = Tr\02(H) 9e 1. Clearly, K centralizes 
r 0 ; wThence, 02(H)K is not a Frobenius group, contrary to Lemma 2.1 (i). 

LEMMA 2.8. Let T be a ^-subgroup of the Ii-group H, 0 ^ i S 3. Then for 
for any odd prime p, any two maximal T-invariant p-subgroups of H are conjugate 
by an element of NH(T). 

Proof. Suppose that H is not an Ii-group. Then the argument of the second 
paragraph of the preceding lemma can be repeated without change to yield 
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that 0(H) contains every P-invariant p-subgroup of H and the lemma follows 
at once. Thus, we may assume that H is an Ii-group. In this case, the lemma 
follows from (8, Lemma 3.6 (i)). We note that the lemma applies even if the 
S2-subgroups of H are semidihedral since, as we have noted in the proof of 
Lemma 2.4 (ii), the image of T in H/0(H) lies in the normal subgroup of 
H/0(H) isomorphic to PSL(2, q). 

LEMMA 2.9. Let H be an li-group having only one class of involutions, 
0 S i è 3. Then 

(i) i 9^ 3; and 
(ii) if S is an S2-subgroup of H, then either tti(S) Q [H, H] or H has a 

normal 2-complement. 

Proof. I t will suffice to prove the lemma for H/0(H) ; therefore, without 
loss, we can assume that 0(H) = 1. Suppose that i = 3, in which case 
02(H) ^ 1, all involutions of H lie in 02(H), and H = H/02(H) is isomorphic 
to PSL(2, 2n), n ^ 2, or Sz(2n), n è 3. In either case, H contains an element 
x 9e Ï of odd order which is inverted by an involution y of H. However, if H0 

is the inverse image of (x, y) in H, we see that Ho is an I0-group, that 
O(H0) = 1, and that O2(H0) = 02(H). Since O2(H0) is thus not an S2-sub-
group of Ho, it follows from Lemma 2.1 (iv) that Ho possesses an involution 
not in O2(H0) = 02(H), a, contradiction. Thus (i) holds. 

Next, suppose that i = 0. Since 0(H) = 1, either H is a 2-group or by 
Lemma 2.1 (iv), i f is a Frobenius group. Clearly, &i(S) Ç [H, H] in the latter 
case, and hence (ii) holds when i = 0. If i = 1, our conditions imply that H 
contains a normal subgroup K of odd index isomorphic to PSL(2, q) or 
PGL*(2, q), q odd, or to AT. Moreover, if K is isomorphic to PGL*(2, q), all 
involutions of S lie in the subgroup of K isomorphic to PSL(2, q). Hence, in 
each case, &i(5) is contained in a simple normal subgroup of H. Furthermore, 
if i = 2, the same conclusion holds since then H itself is simple. Therefore, 
(ii) also holds when i = 1 or 2. 

LEMMA 2.10. Let H be an lt-group, 0 ^ i ^ 3, that is not ^-constrained, 
p an odd prime. Then 0 (H) contains every Sp-subgroup of Ov> ,p (H). 

Proof. By (5, Theorem 6.3.2), H is not p-solvable. In particular, i > 0. 
Since H has exactly one non-solvable composition factor, we must have that 
Ov>(H) CI S(H); otherwise, H would be p-solvable. Hence, 0P',P(H) Ç S(H). 
However, by definition of an I^-group, 1 ^ i' S 3, S(H) has a normal 
2-complement. The lemma follows. 

LEMMA 2.11. Let H be an lrgroup in which SCN3(2) is non-empty, 0 ^ i ^ 3. 
Let S be an S2-subgroup of H and let P be a normal p-subgroup of H, p an odd 
prime. If S does not centralize P , then both CH(P) and Op>fP(H) are contained 
inS(H). 

Proof. Assume the contrary. Since Op>(H) clearly centralizes P , we neces
sarily have that C = CH(P) £ S(H). In particular, i > 0. Since SCN3(5) 
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is non-empty, Lemma 2.4 (i) implies that i ^ 1. I t will suffice to prove that 
H = 0(H)C, for then C will contain every S2-subgroup of H, in which case 
5 centralizes P , contrary to hypothesis. Since C <\ H and C is non-solvable, 
this will indeed be the case if i = 2, inasmuch as H/0(H) is then simple. 

Finally, suppose that i = 3 and let C be the image of C in H = H/0(H). 
It will suffice to prove that C = H. Since H/02(H) is simple and C is a non-
solvable normal subgroup of H, we have that H = 02(H)C. If 02(C) = 02(H), 
then C = H, as required; thus, we may assume that 02(C) C 02(H). However, 
C contains an element v ^ I of odd order and [v, 02(Ï1)] Ç C H 02(H) C 
02(C); whence, £ centralizes 02(H)/02(C). Lemma 2.1 (i), applied to 
(02(H), v), now yields that v centralizes 02(H), contrary to Lemma 2.5 (i). 

LEMMA 2.12. Let H be an lt group, 0 ^ i ^ 3, Ze£ T be a 2-subgroup of H 
which contains a ^-subgroup, and let P be a non-cyclic T-invariant p-subgroup 
of H, p an odd prime. If [T, P] = P, then T does not centralize P C\ 0(H). 

Proof. Let P$ = P C\ 0(H) and suppose, by wray of contradiction, that T 
centralizes Po. Then [P0, 7\ P] = 1 and [P, P0 , T] = 1; therefore, [T, P , P„] = 
[P,P 0 ] = 1 by the 3-subgroup lemma. Thus, P0QZ(P). If P/P0 were 
cyclic, it would follow that P is abelian, whence P = CP(T) X [P, P] 
(5, Theorem 5.2.3). But then CP(T) = l ,whenceP 0 = 1 and P i s cyclic, contrary 
to assumption. I t follows that P/Po is non-cyclic. Since [P, P/Po] = P/Po, 
we see that our conditions carry over to H/0(H). Hence, without loss we 
can assume, to begin with, that 0(H) = 1. 

Since P is non-cyclic, i > 0 by Lemma 2.1 (ii). If i > 1, then CH(x) is a 
2-group for any involution x of T by Lemma 2.5 (i). Since T contains a 
4-subgroup, CP(x) ^ 1 for some involution x, a contradiction. Hence i = 1. 
In this case, H contains a normal subgroup L of odd index isomorphic to 
PSL(2, q), PGL(2, q), PGL*(2, q), q odd, or to At. Then P C P , and thus 
P centralizes P/P C\ L. Since P = [P, P] , it follows that P C P . One checks 
that At does not contain subgroups P, P satisfying the given conditions; 
therefore, H is not isomorphic to At. Since the Sp-subgroups of PSL(2, q) are 
cyclic if q 9^ pm (8, Lemma 3.1 (v)), we must have that q = pm. However, by 
(8, Lemma 3.1 (vii)) and Lemma 2.3 (ii), P normalizes no non-trivial 
p-subgroup of L. This proves the lemma. 

LEMMA 2.13. Let H be an lrgroup, 0 S i S 3, and let A be an abelian 
p-subgroup of H, p an odd prime, with the following properties: 

(a) A € SCN3(£); 
(b) A C\S(H) = 1. 

Then every A-invariant pr-subgroup of H lies in S(H). 

Proof. Let P be an A -invariant Sp-subgroup of S(H). If P ^ 1, then 
P C\ Z(PA) = Po 7̂  1 and A centralizes P0 . However, A is an S^-subgroup 
of CH(A) by (a), whence P 0 C A, and therefore A C\S(H) ^ 1, contrary 
to (b). Thus, P = 1 and S(H) is a p'-group. It follows at once that our con-
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ditions carry over to H/S (H). Hence, without loss we can assume, to begin 
with, that S(H) = 1. 

By (4, Lemma 2.1 (v); 12, Theorem 9), the groups PSL(2, 2n) and Sz(2") 
do not contain subgroups of type (fi, p, p) for any odd p. The same is true 
of A 7 and PSL(3, 4), as is easily verified. Hence, we can identify H with a 
subgroup of G = PTL(2, q), q odd. Moreover, we must have that q = pm, 
since otherwise the S^-subgroups of H would not contain a subgroup of type 
(P, P, P) (8, Lemma 3.3 (v)). As usual, G = LF, where L = PGL(2, q) and 
F is cyclic of order m. By (8, Lemma 3.3 (iii) and (iv)), A is an Sp-subgroup 
of L and Fcan be chosen to normalized. By (8, Lemmas 3.1 (vii) and 3.3 (i)), 
A normalizes no non-trivial p'-subgroup of L and centralizes no element of 
F#. We conclude at once that A normalizes no non-trivial p'-subgroup of H. 

LEMMA 2.14. / / H is an lt-group, 0 ^ i ^ 3, then H is p-stable for any odd 
prime p. 

Proof. Suppose the contrary. Then H possesses a section L/K isomorphic 
to SL(2, p), for some odd prime p (5, Theorem 3.8.3). Now the subgroups of 
PSL(2, q), Sz(q), AT, and PSL(3, 4) are known and as a result, it is not 
difficult to verify that every subgroup of H is not only an I-group, but, in 
fact, an I rgroup for some j , 0 ^ j ^ 3. (Actually, for the applications of this 
lemma, it would suffice to add this assertion to our hypothesis.) Hence, 
without loss we may assume that L = H. Since H/0(H) must also involve 
SL(2, p), we can also assume that 0(H) = 1. Since SL(2, p) is not an I-group, 
we must have that K ^ 1, which implies that i = 0 or 3. Moreover, K C 0 2 (H) 
if i = 3 and the same conclusion follows from Lemma 2.1 if i = 0. Since 
SL(2, p) contains a subgroup isomorphic to SL(2, 3), it follows that H con
tains a subgroup Hi with Hi D K and Hi/K isomorphic to SL(2, 3). But 
then Hi is an Io-group, and thus is a Frobenius group by Lemma 2.1. Therefore, 
an element x of order 3 in Hi acts regularly on 02(Hi), and hence also on every 
homomorphic image of 02(Hi). However, x fixes the central involution of the 
quaternion group 02(Hi)/K. 

LEMMA 2.15. Let H be an li-group, 1 ^ i ^ 3, and let C be a non-solvable 
normal subgroup of H. Then C possesses a 2-group T with the following 
properties: 

(i) Z(T) is non-cyclic; 
(ii) either T is an S2-subgroup of H or T is a 4:-group, and an S2-subgroup 

of H is dihedral or semidihedral; 
(iii) Tc in non-solvable; 
(iv) [u, T] = T for some element u of odd order in NC(T). 

Proof. If C is an Ii-group, then by Lemma 2.4 (ii), C contains a 4-subgroup 
T such that Tc is non-solvable and [u, T] = T for some 3-element u of NC(T). 
If C is an I2-group or an I3-group, then by Lemma 2.5 (ii) an S2-subgroup 
T of C is normalized, but not centralized, by an element u of C and Tc is 
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non-solvable. Lemma 2.1 (i) then implies that [u, T] = T and that Z(T) is 
non-cyclic. Hence, to establish the lemma, it remains only to verify (ii). Since 
CO (H)/0(H) < H/0(H), it suffices to consider the case that 0(H) = 1. 

If i = 1, then an S2-subgroup of H is dihedral or semidihedral by Lemma 2.4 
(i), in which case C is clearly also an Ii-group. But then T is a 4-group and (ii) 
holds. If i = 2 or 3, we shall argue that C = H, whence T will be an S2-sub-
group of H and again (ii) will hold. If i = 2, this is indeed the case, for then H 
is simple as 0(H) = 1. On the other hand, if i = 3, the argument of the final 
paragraph of the proof of Lemma 2.11 yields the desired conclusion C = H, 
inasmuch as C is a non-solvable normal subgroup of H and 0(H) = 1. 

3, Initial reductions. For the balance of the paper, G will denote a 
minimal counterexample to Theorem A. 

LEMMA 3.1. Every proper subgroup of G is an Irgroup, i = 0, 1, 2, or 3. 

Proof. This follows at once from the minimality of G and the fact that the 
property of being an I-group is obviously inherited by subgroups. 

THEOREM 3.2. The centralizer of some involution of G is not a 2-group. 

Proof. Assume the contrary, in which case the results of Suzuki's papers 
(11; 12) are applicable. Since G is non-solvable, S(G) = 02(G) (11, Theorem 4). 
Moreover, the centralizer of every involution in G = G/02(G) is a 2-group. 
Hence, by Suzuki's main results, G is isomorphic to one of the following 
groups: PSL(2, p), p a Fermât or Mersenne prime with p > 5, PSL(2, 9), 
PGL*(2, 9), PSL(3, 4), PSL(2, 2W), n ^ 2, or Sz(2w), n ^ 3. Since G is a 
counterexample to Theorem A, we conclude that 02(G) 9e 1 and that G is 
isomorphic to PSL(2, 9), PGL*(2, 9), PSL(3, 4), or PSL(2,£), p a Fermât 
or Mersenne prime with p > 5. However, in each of the first three cases, an 
S3-subgroup P of G is non-cyclic, as is easily verified. However, H = P02(G) 
is an Io-group and 0(H) = 1 as 0(H) centralizes 02(G), contrary to 
Lemma 2.1 (ii). 

Thus, G is isomorphic to PSL(2, p), p a Fermât or Mersenne prime with 
p > 5. In particular, an S2-subgroup of G is dihedral of order at least 8. 
Hence, if T is an arbitrary 4-subgroup of G, then N = NG(T) is isomorphic 
to the symmetric group 54 (8, Lemma 3.1 (iv)). Hence, if T and N denote 
the inverse images of f and N, respectively, in G, then N/T is dihedral of 
order 6 and an element of order 3 in N acts regularly on T. In particular, 
cl(T) ^ 2 by Lemma 2.1 (v). Since 02(G) C T and CG(02(G)) C 02(G), 
we have, in fact, that c\(T) = 2. 

Now let T\ be a 4-subgroup N distinct from T and let T\ be the inverse 
image of f\ in G. Since f was arbitrary, we also have that cl(Ti) = 2. How
ever, T\ has index 2 in an S2-subgroup of N and is distinct from T. It therefore 
follows (9, Lemma 2.4 (i)) that cl(Ti) > c\(T) = 2, a contradiction. 

THEOREM 3.3. G is simple. 
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Proof. I t is immediate from the definition that G/0(G) is an I-group. 
Hence, if 0(G) ^ 1, G/0(G) satisfies the conclusion of Theorem A by the 
minimality of G. But then so also does G, contrary to our choice of G. Thus 
0(G) = 1. 

Suppose that R = 02(G) 9e 1. By Theorem 3.2, there exists an involution 
x of G which centralizes a non-trivial element y of G of odd order. Then 
(R, x) <] K = (R, x, y) and K is not a Frobenius group. Hence, by Lemma 2.1 
(ii), 0(K) ^ 1. However, 0(K) Q C = CG(R) and C has a normal 2-comple-
ment; whence, 0(C) ^ 1. Since 0(C) char C < G, it follows that 0(C) Ç 
0(G) = 1, a contradiction. Thus, 02(G) = 1, and consequently S(G) — 1. 

Now let H be a minimal normal subgroup of G. Since H is characteristically 
simple and S(G) = 1, H is necessarily the direct product of isomorphic 
non-abelian simple groups. If H itself were not simple, some involution of H 
would have a non-solvable centralizer in H, contrary to the fact that H is an 
I-group. Thus, H is simple. Suppose that H C G, in which case if is an I rgroup, 
1 ^ i ^ 3. Since G is an I-group, CG(H) must have odd order. Since 
CG(H) < G, it follows that CG(H) C 0(G) = 1. But now Lemma 2.6 implies 
that G satisfies the conclusion of Theorem A, which is not the case. Thus 
G = H is simple. 

We next prove the following result. 

THEOREM 3.4. SCN3(2) is non-empty in G. 

Proof. Assume the contrary. Since the centralizer of every involution of G 
is certainly solvable, the results of Janko and Thompson (10) are applicable 
and yield that G is isomorphic to either PSL(2, q), q odd, q > 3, AT, Afn, 
PSL(3, 3), PSU(3, 3), or PSU(3, 4). However, one easily checks that in each 
of the last four groups the centralizer of an involution does not have a normal 
2-complement. Hence, the latter four groups are not I-groups, and conse
quently G is isomorphic to PSL (2, q), q odd, q > 3, or to AT, and therefore 
satisfies the conclusion of Theorem A, which is not the case. 

Throughout the balance of the paper S will denote a fixed S2-subgroup of G. 
We now prove the following result. 

THEOREM 3.5. 5 normalizes, but does not centralize, some subgroup of G of 
odd order. 

Proof. Assume the contrary. We shall argue that the centralizer of every 
involution of G is 2-closed. Observe, first of all, that a 2-local subgroup H of G 
is either an I0-group or an I3-group. Since CH(02(H)) C 0v,2(H) in either 
case, it follows that H is 2-constrained. Hence, by the Thompson transitivity 
theorem and its corollary (5, Theorems 8.5.4 and 8.5.6), if A Ç SCN3(5), 
then for any odd prime p, a maximal A -invariant p-subgroup P of G is 
normalized by an S2-subgroup 5* of G containing A. By our assumption, 5* 
centralizes P, and hence so does A. This implies that A centralizes every 
subgroup of odd order that it normalizes. 
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Now let x be an involution of G and set C — CG(x). Without loss we may 
assume that S C\ C is an S2-subgroup of C. Since A Ç SCN3(.S), CA(x) = 
A Pi C is non-cyclic, and therefore contains a 4-subgroup T. Let tt be the 
involutions of T and set d = CG(ti), 1 S i ^ 3. Since A Q d, A centralizes 
0(d) for each i, 1 ^ i ^ 3. However, C* has a normal 2-complement, and 
therefore A centralizes 0(C) r\ d = C 0 (o(^) , 1 = * = 3, whence A cen
tralizes 0(C). Thus, 0(C) C 0(Co), where Co = CG(A). However, 5normalizes 
Co as A <] 5; whence, 5 centralizes O(C0) by our assumption on 5. I t follows 
that 5 centralizes 0(C). Since C has a normal 2-complement, we conclude that 
C = 0(C) X ( 5 H C), and hence that C is 2-closed. 

We can therefore apply the main results of (13). Since the centralizer of 
some involution of G is not a 2-group by Theorem 3.2, Suzuki's classification 
theorem yields that G is isomorphic to PSL(3, 2n) or to PSU(3, 2n), n > 1. 
However, one can verify directly that neither of these groups is an I-group. 

By the theorem, 5 normalizes, but does not centralize, a p-subgroup of G 
for some odd prime p. We shall denote the set of all such odd primes by a. 

The main results of Glauberman's paper (3) yield the following result. 

THEOREM 3.6. One of the following conditions holds: 
(i) S is elementary abelian and all involutions of S are conjugate in G; or 

(ii) there exist two elements of S conjugate in G that are not conjugate in NG(S). 

Proof. Assume the contrary. Then by Glauberman's results, G is isomorphic 
to a Suzuki group, which is not the case. 

Finally, we prove the following theorem.! 

THEOREM 3.7. If G possesses a strongly embedded subgroup M containing S 
which is a uniqueness subgroup for some odd prime p, then S centralizes 0P(M). 

Proof. We first argue that 12i(5) centralizes 0P(M); thus, assume the 
contrary. Let x be an involution of Z(S), set C = CM(%) = CG(x) and 
H = C0P(M). Since M has only one class of involutions (5, Theorem 9.2.1 (ii)), 
x does not centralize 0P(M), and hence H D C. Since S C C and C has a 
normal 2-complement, 5 normalizes an S^-subgroup Q of H. Moreover, by 
Lemma 2.7 (i), Q C 0(M). Let P be an 5-invariant Sp-subgroup of 0(M). 

Now the argument of (5, Theorem 9.3.1) shows that (5, Theorem 9.2.2 (ii)) 
will be contradicted provided we prove that CP(y) contains a subgroup of 
type (pj p, p) for any y in Q#. To see that this is indeed the case, let B be a 
critical subgroup of P and set D = &i(B). Since fli(S) does not centralize P , 
it does not centralize either B or D, each of which is characteristic in P. 
Moreover, cl(D) S 2 and D has exponent p. If SCN3(£>) is empty, then 
\D/(f)(D)\ ^ p2. Since SCN3(S) is non-empty, some involution of 5 is thus 
forced to centralize D. However, M = 0(M)K, where K = NM(P) by the 
Frattini argument, and therefore K has only one class of involutions. Since K 

fAdded in proof. It follows directly from a recent classification theorem of Bender that G 
does not contain a strongly embedded subgroup. 
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normalizes D, it follows that Qi(5) centralizes D, a contradiction. Thus, 
SCN3(£>) is non-empty. But now the proof of (4, Lemma 4.2) shows that 
either the desired conclusion holds or else D possesses a X-invariant normal 
series 3\ D = D0 D £>i D . . . D Dm = 1 such that |Z?,-i/£<| = p, 1 S i S 
m — 1. However, in the latter case, we see that Kr = [K, K] stabilizes the 
chain Ql. Furthermore, since S has more than one involution and all involutions 
of 5 are conjugate in Ky Lemma 2.2 (ii) implies that K does not have a 
normal 2-complement. I t follows therefore from Lemma 2.9 (ii) that 
®i(S) C K'. We conclude at once that fli(5) centralizes Op(M), as asserted. 

Since SCN3OS) is non-empty and M has only one class of involutions, M is 
either an I0-group or an I2-group by Lemmas 2.4 (i) and 2.9 (i). If M is an 
I2-group, then M/0(M) is simple, and consequently M = 0(M)CM(Op(M)). 
Thus, S centralizes 0P{M) in this case. If M is an I0-group, then all involutions 
of S are conjugate in NG(S) by Lemma 2.2 (ii). We argue that any two 
elements x, y of 5 # that are conjugate in G are conjugate in NG(S). Indeed, 
if y = xa, a G G, then yi = Xia, where x± and yi are involutions that are 
powers of x and y, respectively. But then yi = Xi for some b in NG(S). Thus, 
it suffices to show that x and yh~x are conjugate by an element of NG(S), and 
therefore without loss we may assume that yi = Xi, whence a Ç CG(xi) £ M. 
However, M = 0(M)NG(S) by Lemma 2.2 (i), and therefore it will also suffice 
to consider the case that a G O(M). However, [a, x] G O(M) C\ S = 1, and 
therefore a centralizes x; whence, y = x and the assertion is proved. But 
now 5 is elementary abelian by the preceding theorem, and therefore S — Q\{S) 
centralizes 0V(M) in this case as well. 

4. A transitivity theorem and some consequences. We shall need a 
variation of the Thompson transitivity theorem. We first prove a simple 
lemma. 

LEMMA 4.1. Let A £ SCN3GS) and let T be an elementary abelian subgroup 
of S. Then 

(i) if m(T) = 3 and T ÇË A, then NS(T) contains an elementary abelian 
subgroup To with m(T0) = 3 such that m(T0 O A) > m{T C\ A); 

(ii) T C Ti for some elementary abelian subgroup T\ with m(Ti) è 3. 

Proof. We first prove (i). Now 12i(Z(5)) is contained in both A and CS(T). 
Hence, if iïi(Z(S)) Çt T, it is immediate that CS(T) contains a subgroup T0 

with the required properties. Thus, we may assume that Qi(Z(S)) Q T. 
Likewise, we may assume that m{NA(T)) ^ 2, otherwise we can choose T0 

to be a subgroup of NA(T). Set Ax = fli(4). Since Ai<\ 5, it follows that 
^{NAi{T)) > m(T C\ Ai). Hence, the only case left to consider is that in 
which T r\Ax = Gi(Z(S)) is of order 2 and A0 = ^ ( r ) is a 4-group. 
However, T normalizes A0 as Ai <| S, and consequently some involution x of 
T — 0i(Z(5)) centralizes AQ. Taking T0 = (x, A0), we see that T0 has the 
required properties. Thus (i) holds. 
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As for (ii), we can take T = 7\ if m(T) ^ 3 and can take Z\ = Ax = &i(A) 
if T Ç .4i. Clearly, we need only treat the case that Œi(Z(S)) Ç T. Hence, 
we are reduced to proving (ii) in the case that T is a 4-group and T P\ Ai = 
fii(Z(5)) has order 2. Taking x in T — 12i(Z(5)), we have that m(CAl{x)) ^ 2 
as m (Ax) ^ 3; whence, T1 = (J1, CAl(#)) = TCAl(T) is elementary abelian 
of order at least 8 and contains T. 

We now prove the following theorem. 

THEOREM 4.2. Let T be a subgroup of S in which Z(T) is non-cyclic. Then 
for any odd prime p, we have that 

(i) 0(CG(T)) acts transitively by conjugation on the set of maximal T-
invariant p-subgroups of G; 

(ii) S normalizes some maximal T-invariant p-sub>group of G; 
(iii) if P is a maximal T-invariant p-subgroup of G, then NG(T) = 

0(CG(T))(NG(T)r\NG(P)). 

Proof. We show first that (i) implies (iii). If x 6 N0(T), we have that 
Px = Py for some y in 0(CG(T)) by (i). Since xy~l G N0(P), (iii) follows. 
In particular, it follows, if (i) holds for T, that NS(T) normalizes some 
maximal T-invariant p-subgroup of G. 

We next prove (i) and (ii) when m(Z(T)) ^ 3. The proof of (i) follows a 
now standard argument, in the course of which one must consider subgroups H 
of G with H either the centralizer of an involution of Z{T) or a p-local subgroup 
of G containing T; cf. (5, §8.5). Since m(Z(T)) ^ 3, it follows in the first 
case from the definition of an I-group and in the second from Lemma 2.7 (i) 
that any maximal T-invariant p-subgroup of H lies in 0(H). Hence, and two 
such maximal p-subgroups of H are conjugate by an element of C0(H)(P)-

Since C0{H)(T) C 0(CG(T)), we obtain the transitivity theorem stated in (i). 
Next, let T\ be an elementary abelian subgroup of Z(T) of order 8. Then 

by the first paragraph, Ns(Ti) normalizes a maximal TVinvariant p-subgroup 
Pi of G. Thus, Pi is T-invariant; whence, |Pi| ^ \P\ by (i), where P is a 
maximal T-invariant p-subgroup of G. On the other hand, T\ normalizes P, 
so also \P\ S \Pi\ by (i). Thus, Pi is a maximal T-invariant p-subgroup of G. 
We see then that it suffices to prove (ii) for Ti, and therefore without loss we 
may assume that T itself has order 8. 

Now let A e SCN3(S). If T C A, then A C NS(T) and therefore A 
normalizes some maximal T-invariant p-subgroup P of G by the first para
graph. Since S C NG(Qi(A)), it follows for the same reason that S normalizes 
a conjugate of P by an element of 0(CG(tii(A))). Thus, (ii) holds in this 
case. Suppose then that T Çt A. We can assume (ii) for all elementary abelian 
subgroups To of 5 of order 8 such that w(T0 Pi A) >m(TC\A). By 
Lemma 4.1 (i), NS(T) possesses such a subgroup T0. Then T0 normalizes 
some maximal T-invariant p-subgroup P of G. On the other hand, by (ii) 
applied to T0, 5 normalizes some maximal To-invariant p-subgroup P 0 of G. 
By (i), jPo| = |P|- However, T normalizes P 0 as T C 5; therefore |Po| S \P\ 
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by (i). Thus, Po is a maximal P-invariant p-subgroup of G and (ii) is estab
lished when m(Z(T)) ^ 3. 

Next, suppose that m(Z(T)) = 2 a n d s e t Z = d (Z(T)). By Lemma 4.1 (ii), 
Z C Po for some elementary abelian subgroup P0 of S of order 8. Hence, if 
z 6 Z # , JTO normalizes some S^-subgroup P of CG{z). However, if P is a 
maximal 5-invariant p-subgroup of G, it follows from (i) and (ii), applied to 
To, that Rx Ç P for some x in CG(T0). Thus, P contains an S^-subgroup of 
CQ(Z) for each s in Z t t . We conclude at once from this that P is a maximal 
P-invariant p-subgroup of G, proving (ii) in this case as well. 

We next prove that if T D Z, then (i) holds, and if T = Z, then any two 
maximal P-invariant p-subgroups of G are conjugate by an element of NG(T). 
Suppose the contrary and let Q be a maximal P-invariant p-subgroup of G 
which is not conjugate to P by an element of 0{CG{T)) if P D Z or by an 
element of N G{T) if P = Z and chosen so that D — P C\ Q has maximal 
order. Then Q ^ 1, and therefore CQ{z) ^ 1 for some s in Z # . However, P 
contains an Sp-subgroup of CG(z) by the preceding paragraph. Since P is 
P-invariant, P contains, in fact, a P-invariant S^-subgroup of CG(z). Since 
any two such Sp-subgroups are conjugate by an element of 0(CG(T)), it 
follows from our choice of Q that D ^ 1. Since D C P and D C Q, considera
tion of K = NG(D) leads to a contradiction in the usual way, since by 
Lemmas 2.7 (ii) and 2.8 any two maximal P-invariant p-subgroups of K are 
conjugate by an element of 0(CK(T)) if P D Z and by an element of NK(T) 
if P = Z. This proves the assertion. 

Finally, consider the case T = Z. Then by Lemma 4.1 (ii), T C Po for 
some elementary abelian subgroup P0 of 5 of order 8. Set N = NG(T), let 
R be an S2-subgroup of N containing P0, and set Ro = R r\ Oy,2(N), so that 
Po is an S2-subgroup of Ov^iN) and N = O(N)N0j where NQ = NN(RQ). By 
(ii), Po normalizes some maximal P-invariant p-subgroup of G, which we may 
again denote by P . Now 0(N) centralizes P, and therefore lies in 0{CG{T)). 
Hence, by the preceding paragraph, (i) will hold provided we can show that 
for any x in N0, Px = Pv for some y in 0(CG(T)). To do this, it will suffice 
to show that Po ÇI P0 , for then P0 will normalize Px, which is certainly a 
maximal P0-invariant p-subgroup of G as P C Po. But then Px = Py for 
some y in O(CG(T0)) by (i). Since O(CG(T0)) Q0(Co(T))t the desired 
conclusion will follow. 

Now CG(T) has a normal 2-complement and N/CG(T) is isomorphic to a 
subgroup of the symmetric group S8; whence, N is solvable. If N has a normal 
2-complement, then R = R0, in which case obviously P0 C P0 . In the contrary 
case, it easily follows from Lemma 2.1 that P C Z{Ro) and that CG(T) = 
O(N)R0. Since P0 centralizes P and lies in P , we again have that P0 Q Po-
Thus, (i) holds in this case as well, and the theorem is proved. 

This theorem has an important consequence. We recall that a proper 
subgroup H of a simple group G is said to be weakly embedded in G provided H 
contains an S2-subgroup 5 of G, two elements of 5 conjugate in G are conjugate 
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in H, and for any involution x of S, C0(x) = 0(CG(x))(CG(x) (~\H); cf. 
(5, § 17.2). 

We prove the following theorem. 

THEOREM 4.3. Let P be a maximal S-invariant p- sub group of G, p an odd 
prime, with P ^ l and set H = NG(P). Then 

(i) if is weakly embedded in G; 
(ii) one of the following holds: 

(a) 5 is elementary abelian and all involutions of S are conjugate in H; 
(b) H/0(H) is isomorphic to PSL(3, 4); 
(c) H is an 13-group. 

Proof. Since P ^ 1 and P is S-invariant, if is a proper subgroup of G 
containing S. Let x be an involution of S. By Lemma 4.1 (ii), x G T, where T 
is a non-cyclic elementary abelian subgroup of S. Let R be an S2-subgroup of 
C = CG(x) containing T. By Theorem 4.2, R normalizes some maximal 
T-invariant p-subgroup Q of G and P = Qy for some y in 0(CG(T)). Since 
x G T, y G 0(C), and therefore i ^ is an S2-subgroup of C. However, Rv 

normalizes P , and thus Rv C if, whence C = 0(C) (C Pi if) . 
Next, suppose that there exist two elements of 5 that are conjugate in G, 

but are not conjugate in H. Then by Alperin's fusion theorem (1; 5), there 
exist elements u, v of S with u, v G T, where T = S H Si is a tame intersection 
of the S2-subgroups S, Si of G, such that u and y are conjugate in TV = NG(T), 
but u and z> are not conjugate in H. However, if Z(T) is non-cyclic, 
N = 0(N)(N r\H) by Theorem 4.2 (iii). Hence, if y = < n G iV, we have 
that n = fea, where h £ N C\ H and a G 0(N). Setting w = uh, we have that 
v — wa and w, w G 7", whence w~%a G 0(N) C\ T = 1. Thus, a centralizes w, 
and so v = uh, contrary to our choice of u, v. Hence, Z(T) must be cyclic. 

We have that |Qi(Z(r)) | = 2, and consequently K = iVG(fli(Z(r))) has 
a normal 2-complement. Since N Ç1 Ky N also has a normal 2-complement. 
However, by definition of a tame intersection, 5* Pi N is an S2-subgroup of N, 
whence iV = 0 (N) (S H iV) = 0(N)(Hr\N), as 5 C if. This leads to the 
same contradiction as in the preceding case. We conclude that H is weakly 
embedded in G. 

To prove (ii), observe first that by (i), if u G 5 and u~lug G 5 for some 
g in G, then w - 1 ^ = u~luh for suitable h in H. I t therefore follows from the 
focal subgroup theorem (5, Theorem 7.3.4) that 5 H [G, G] = 5 H [if, ff]. 
However, 5 C [G, G] as G is simple, and hence S C [if, if]. In particular, if 
H is an I0-group, Lemma 2.2 now yields that two elements of S conjugate in 
G are conjugate in NH(S). But then (ii) (a) holds by Theorem 3.6. 

Since SCN3(5) is non-empty, H is not an Ii-group. If i f is an I3-group, 
then (ii) (c) holds. Finally, consider the case that H is an I2-group. If H/0(H) 
is isomorphic to PSL(2, 2n) or to PSL(3, 4), then correspondingly, (ii) (a) or 
(ii) (b) holds. On the other hand, if H/0(H) is isomorphic to Sz(2w), then S 
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is non-abelian; however, two elements of S conjugate in G, and hence in H, 
are conjugate in NH(S), contrary to Theorem 3.6, and (ii) is proved. 

Remark. I t is entirely possible that there exists a character-theoretic 
argument analogous to that given by Glauberman in (3) which will show that 
G does not possess a weakly embedded subgroup H of the form (ii) (b) or 
(ii) (c) in which 0(H) ^ 1. If so, the proof of Theorem A could then be 
completed by invoking the main theorem of (4) to handle the case that H is 
of the form (ii) (a). However, it should be pointed out that Glauberman's 
argument cannot be extended to include this minimal case. Since the main 
results of (4) depend upon the existence of strongly embedded subgroups, it 
thus appears that a proof of Theorem A cannot be given which completely 
avoids the use of strongly embedded subgroups. The argument we shall present, 
which in effect is a repetition in somewhat simplified form of that of (4), will 
treat all the possibilities in (ii) uniformly. On the other hand, the main 
theorem of (4) will not be explicitly quoted. 

We need the following lemma. 

LEMMA 4.4. Let P be a maximal S-invariant p-subgroup of G for any p in a 
and set H = NG(P). Then S possesses an elementary abelian normal subgroup 
Si of order at least 8 with the following properties: 

(i) bs S\] = Si for some element y of NH(Si) of odd order; 
(ii) for some ^-subgroup T of Si, CP(x) contains a subgroup of type (p, p, p) 

for each x in T#. In particular, SCN3(P) is non-empty. 

Proof. H has one of the three forms listed in Theorem 4.3 (ii). If if is of 
type (a), we can take S = Si. If i i is of type (b), then NH(S) contains a 
3-element which normalizes, but does not centralize, an elementary abelian 
normal subgroup Si of S of order 16. If ii" is of type (c), we can take Si = 
12i(Z(5 Pi Or,2(H))). In each case, NH(Si) contains an element y of odd 
order which does not centralize Si. But then [y, Si] = Si by Lemma 2.1 (i), 
proving (i). 

Once we know that (i) holds, the proof of (4, Lemma 4.3) can be repeated 
verbatim to yield the first assertion of (ii). The second assertion of (ii) then 
follows from (5, Theorem 5.4.15). 

This enables us to prove the following result. 

THEOREM 4.5. Suppose that G satisfies the uniqueness condition for some 
prime p in a and let M be a uniqueness subgroup for p. Then M is strongly 
embedded in G. 

Proof. Let P be a maximal 5-invariant p-subgroup of G and let P be an 
Sp-subgroup of G containing P. Without loss we may assume that P C M. 
Since SCN3(P) is non-empty by the preceding lemma, H = NG(P) C M by 
definition of a uniqueness subgroup. We shall argue that M contains C = CG(x) 
for any involution x of S. Since H is weakly embedded in G by Theorem 4.3 (i ), 
C = 0(C){Cr\H). Since H C M, it will thus suffice to show that 0(C) C M. 
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Let T and Si be as in Lemma 4.4 (ii). First suppose that x 6 P # , in which 
case P C\ C contains a subgroup D of type (p,pfp). Since 0P>(C) = 
(Cop'ioWl u e Dn), it follows that 0P>(C) C if. Likewise, if P is a Z>-
invariant Sp-subgroup of 0P>,P(0(C)), then 7V0(C)(P) £ ^ f Since 0(C) = 
Op>(0{C))N0{c)(R) by the Frattini argument, we conclude that 0(C) Çl M 
in this case. Next, suppose that x £ Si. Since Si is abelian, T Çl C, and hence 
0(C) = (Coco (ON € r*>. Since 0 ( C G ( O ) C M for each Hn T#, we conclude 
in this case as well that 0(C) Ç M. Finally, let x be an arbitrary involution 
of S. Since m (Si) è 3 and Si <| S, C^OK) contains a 4-group 7\. However, 
0(CG(ti)) C M for each /i in Pi** as Pi C Si. Since Pi C C, we conclude as 
in the preceding case that 0(C) C Af. 

We next claim that N = iVG(5) C M. By Theorem 4.3 (ii) Z(S) is non-
cyclic, and hence N = 0(CG(S))(N H H) by Theorem 4.2 (iii). Since 
0(CG(S)) £ i f by the preceding paragraph and since H C if, the desired 
conclusion N Çl M follows. 

Since i f is a proper subgroup of G and 0 is simple, not every involution of G 
lies in M. We therefore conclude from the definition that i f is strongly 
embedded in G. 

Remark. In view of Theorems 3.7 and 4.5, to complete the proof of 
Theorem A, it will suffice to show that for some prime p in a, G satisfies the 
uniqueness condition and if i f is a corresponding uniqueness subgroup con
taining 5, then S does not centralize O^(if). This we shall do in the next 
two sections. 

5. The set of tame primes. In order to apply the results of (7), we shall 
now verify that G is o--tame, as this term is defined in (7). We carry this out 
in a sequence of lemmas. 

LEMMA 5.1. If p 6 c, then every p-local subgroup of G is ^-constrained. 

Proof. Assume the contrary and let K = NG(D) be a non-p-constrained 
p-local subgroup of G, where D is a non-trivial p-subgroup of G. Then, if E is 
an Sp-subgroup of 0V\P(K), C = CK(E) $£ 0P>,P(K). By Lemma 2.10, 
E C 0(K). Since CSM(E) C Op>tP(S(K)) Q 0p,,p(K) (5, Theorem 6.3.2), it 
follows at once that C is non-solvable. Moreover, C <] NK(E) and NK(E) 
contains an S2-subgroup of K by the Frattini argument, as E C 0(K). We 
therefore conclude from Lemma 2.15 that C contains a 2-group T with the 
following properties: (a) Z(T) is non-cyclic; (b) either Tis an S2-subgroup of K 
or T is a 4-group and an S2-subgroup of K is dihedral or semidihedral ; (c) Tc 

is non-solvable; and (d) [u, T] = T for some element u of odd order in NC(T). 
Let P be a maximal f-invariant p-subgroup of G containing E and set 

Q = CP(T). First suppose that Q C P> Then T does not centralize P , and 
thus T does not centralize P 0 = CP(Q) (5, Theorem 5.3.4). On the other hand, 
if H = NG(P), it follows from (d) and Theorem 4.2 (iii) that \y, T] = T for 
some element y of odd order in H. Then y normalizes P0 , and consequently 
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P i = [P0, T] is non-cyclic. However, D C £ Ç Ç, whence P i C -K". 
Lemma 2.12 now yields that T does not centralize Pi(~\0(K). However, 
P i C\ 0(K) C E as P i centralizes £ and C0{K)(E) C £ , contrary to the fact 
that P centralizes E. Thus, Q = P, and therefore P centralizes P . In view of 
Theorem 4.2 (i), this implies that T centralizes every p-subgroup of G that 
it normalizes. 

Next, suppose that T is not a 4-group. Let P 0 now denote a P-invariant 
subgroup of P containing P of maximal order such that Tc° is non-solvable, 
where C0 = CG(P0). Set iV0 = No(P0), so that Co Ç NQ. Since P i = iVP(P0) 
is a P-invariant p-subgroup of No, P i Ç O(N0) by Lemma 2.7. Let P be a 
P-invariant Sp-subgroup of O(N0) containing Px . Then P centralizes P . 
Since O(N0)CQ = 0(NO)N0(NQ)CO(R) by the Frattini argument, we conclude at 
once that the normal closure of P in CNo(R) is non-solvable. Since P i Ç P , it 
follows that TC1 is non-solvable, where C\ = CG(Pi). But then P i = P 0 by 
our maximal choice of Po, and therefore P = Po. Thus iV0 = H. However, 
H contains an S2-subgroup of G by Theorem 4.2 (ii). Without loss we may 
assume that P Ç S C H. Since C0 = CG(P) is non-solvable, Lemma 2.11 now 
yields that 5 centralizes P , contrary to the fact that p € a. Thus, T is a 4-group 
and an S2-subgroup of K is dihedral or semidihedral. 

We shall now contradict this last conclusion. Indeed, since T centralizes P 
and 5 does not, it follows from Theorem 4.3 (ii) that H is an I3-group. But 
then Lemma 2.11 implies that So = CS(P) £ 0 2 ' , 2 (# ) . Since H = 
02',2(H)NH(So) by the Frattini argument, 5o must contain a non-cyclic 
abelian subgroup of order 8. However, 50 C K as So centralizes D CI P , 
giving the desired contradiction. 

LEMMA 5.2. For any odd prime p, every proper subgroup of G is p-stable. 

Proof. Since every proper subgroup of G is an I^-group, 0 ^ i ^ 3, the 
lemma follows from Lemma 2.14. 

LEMMA 5.3. G is p-tame for all p in a. 

Proof. We first argue that G is weakly p-tame. By Lemma 4.4, SCN3(£) 
is non-empty. Since G is p-constrained and is p-stable by the preceding two 
lemmas, we need only show that if K is a proper subgroup of G which contains 
an element A of SCN3(^) such that A P\ S(K) = 1, then every p'-subgroup 
of K normalized by A lies in S(K). However, this is the case, by Lemma 2.13. 

Let P be an Sp-subgroup of G and let Q be a non-trivial P-invariant q-sub-
group of G, q a prime, q 9^ p. To prove that G is p-tame, we must show, in 
addition to the preceding results, that P C\ NG(Q) ^ 1. Assume the contrary. 
Then as in the proof of (4, Proposition 6), we reduce to the case that Q is a 
maximal P-invariant subgroup, that N = N0(Q) is an Ii-group of charac
teristic pm, that SCN3(P) consists of a unique element A, and that for any 
subgroup R of P containing A, N contains a conjugate of an S2-subgroup of 
NG(P)- Since an S2-subgroup of N is dihedral or semidihedral, it will therefore 
suffice to show that P can be taken so that NG(R) contains an S2-subgroup of G. 
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Let P be a maximal S-invariant subgroup of G and set H = NG(P). Without 
loss we may assume that P H H is an S^-subgroup of H. By the maximality 
of P, P is an S^-subgroup of 0(H), and hence is an S^-subgroup of 0p>tP(H) by 
Lemma 2.11. Since S does not centralize P , CH(P) C 5(if) by the same 
lemma, and therefore CH(P) C 0P>,P(H). Thus, i7 is p-constrained. Moreover, 
# is p-stable by Lemma 2.14. But then i Ç P (7, Lemma 3.4), and therefore 
we can take P as R. 

We now prove the following theorem. 

THEOREM 5.4. G is a-tame. 

Proof. By the preceding lemma, we need only show that p ~ q for p, q in o\ 
Assume the contrary and, for definiteness, suppose that p > q. Let P be a 
maximal S-invariant p-subgroup of G and set H = NG(P). By Lemma 4.4 
there exists an elementary abelian subgroup Si of S with m (Si) è 3 such that 
\y> Si] = Si for some element^ of NH(Si) of odd order and for some 4-subgroup 
T of Si, CP(t) contains a subgroup of type (p, p, p) for each t in T#. But now 
reasoning exactly as in the proof of (4, Proposition 7), but with Si in place of 
the group S, we reduce to the case that Si does not centralize some Si-invariant 
S rsubgroup Qi of 0(H). But since [y, Si] = Si, Qi must contain a subgroup 
of type (q, q, q). Since Qi normalizes P , we conclude that p <^ q. 

6. Elimination of the tame primes. We recall that a prime p in w(G) 
for which SCN3(^) is non-empty is said to lie in 7r3 or 7r4 according as an 
Sp-subgroup of G normalizes some or no non-trivial p'-subgroup of G. We 
first prove the following theorem. 

T H E O R E M 6.1. <r C 7r3. 

Proof. Assume the contrary. Since SCN3(£) is non-empty for p in a by 
Lemma 5.3, we must have that p G 7r4 for some p in a. By Lemmas 5.1 and 5.2, 
every p-local subgroup of G is p-stable and p-constrained. Moreover, if P is 
an Sp-subgroup of G, then P normalizes no non-trivial p'-subgroups of G. 
The proof of (5, Theorem 8.6.3) now shows that G satisfies the uniqueness 
condition for p and that M = NG(Z(J(P))) is a uniqueness subgroup for p. 

Since P Ç M and p G TT4, we have that 0P>(M) = 1, whence 0P>,P(M) = 
0P(M). But then CM(Op(M)) Ç 0P(M) as M is p-constrained. On the other 
hand, M is strongly embedded in G by Theorem 4.5, and therefore contains 
an S2-subgroup of G, which without loss we may assume to be S. Then S does 
not centralize 0P(M), contrary to Theorem 3.7. 

We now prove the following theorem. 

THEOREM 6.2. For some prime p in a and some Sp-subgroup P of G, P possesses 
a subgroup P* with the following properties: 

(i) SCN3(P*) is non-empty; 
(ii) S normalizes, but does not centralize, P*; 

(iii) P* centralizes every P-invariant $ -subgroup of G. 
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Proof. The proof of the theorem is essentially identical to that of 
(4, Lemmas 7.2 and 7.3), but with some simplifications. We shall give an 
outline of the argument. For the sake of clarity we conform closely to the 
notation of (4). First of all, since G is (r-tame by Theorem 5.4, (7, Theorem A) 
can be applied and yields the existence of a proper subgroup L of G which 
contains an Sp-subgroup of G for each p in a such that if K is an S^-subgroup 
of 0(L)} then K <\ L and p 6 ir(K) for each p in a. We show that the theorem 
holds for some prime in T(F(K)). T O begin with, we let p be an arbitrary 
prime in ir(F(K)). Let P be a maximal S-invariant p-subgroup of G and set 
M\ = NG(P). Let P be an S^-subgroup of G such that P Pi Mi is an Sp-sub-
group of Mi. Without loss we may assume that P is an S^-subgroup of L. 

Let A e SCN 3(P) , set V = V(cclQ(A); P) and Nx = NG(V). As in the 
final paragraph of the proof of Lemma 5.3, A C P , and consequently 
Mi C Ni (7, Lemma 5.4). By Theorem 4.3 (ii) and Lemma 2.5 (ii), NMl(S) 
contains a cyclic subgroup R of odd order which does not centralize S. Then 
[R, S] = S by Lemma 2.1 (i). We now conclude, as in the proof of 
(4, Lemma 7.2), that SR normalizes a non-trivial normal subgroup Z* of P 
with Z* centralizing 0V> (K). 

Setting M* = NG(Z*)y it then follows that 0P>{K) is a Hall subgroup of 
0(M*) and we are able to reduce to the case that PSR normalizes 0P>(K). 
Suppose first that 0P>(K) ^ 1 and set H* = NG(Ov>(K)). By Lemma 2.7 (i), 
P £ 0(K). Since P is a maximal ^-invariant p-subgroup of G, it follows 
that P is an S^-subgroup of 0(H*). However, L Ç H* as 0P'(K) <\ L. Hence, 
by the Frattini argument, 0P'(K)NH*(P) has the same properties as L and, 
in addition, contains SR. Thus, without loss we may assume, to begin with, 
that SR C L if 0V>(K) ^ 1. On the other hand, if 0P>(K) = 1, then L Ç Ni 
(7, Lemmas 5.4 and 5.5). If Ki is an Si^-invariant S^-subgroup of O(iVi), 
then NNl (Ki) has the same properties as L and contains SR. Hence, we may 
assume that SR C L in this case as well. 

Since P C 0(L) by Lemma 2.7 (i), P ^ K. U S centralizes F(K), then so 
does [P, S]. However, CK(F(K)) Ç F(K) by a basic property of the Fitting 
subgroup of a solvable group (5, Theorem 6.1.3). Thus, [P, S] ÇI F(K); 
whence [P, S, S] = 1. But then 5 centralizes P (5, Theorem 5.3.6), which is 
not the case. Thus, 5 does not centralize 0r{K) for some prime r. We can 
therefore also assume, to begin with, that S does not centralize 0P(K). 

We set P* = [S, 0P(K)] and argue that P* centralizes every P-invariant 
p'-subgroup of G. As in (4, Lemma 7.3), P* centralizes every P-invariant 
q-subgroup of G for q in a — {p} ; moreover, if Q is a maximal P-invariant 
q-subgroup of G for q Q <T, some conjugate 5* of 5 with the property P* = 
[5*, P*] normalizes both P* and Q. If g is odd, then S* centralizes Q as q £ a, 
whence P* = [5*, P*] centralizes Ç. On the other hand, if q = 2, then Q C 5* 
as 5* is an S2-subgroup of G; whence, [Ç, P*] Ç Ç P\ P* = 1, thus P* 
centralizes Q m this case as well. We conclude at once that P* centralizes 
every P-invariant p'-subgroup of G. 

https://doi.org/10.4153/CJM-1969-035-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-035-x


FINITE GROUPS 357 

Finally, since P* is 5i?-invariant and 5 does not centralize P*, we have 
that SCN3(P*) is non-empty. Thus, all parts of the theorem hold. 

On the basis of Theorem 6.2 we can now easily complete the proof of 
Theorem A. Let p, P , and P* be as in the theorem and let B be the normal 
closure of P* in P . If K is any P-invariant p'-subgroup of G, then P* centralizes 
K, and hence P* C 0P(KP)^(5, Theorem 6.3.2). But then B Q Op(KP), 
whence [K, B] C K C\ Ov(KP) = 1. Thus, B centralizes every P-invariant 
p'-subgroup of G and B is a non-trivial normal subgroup of P . Since every 
p-local subgroup of G is both p-constrained and p-stable, the hypotheses of 
the Maximal Subgroup Theorem (5, Theorem 8.6.3) are therefore satisfied 
and we conclude that G satisfies the uniqueness condition for p. 

Let M be the corresponding uniqueness subgroup containing P . Since 
SCN3(P*) is non-empty and P* C P , NG(P*) C M. Since S normalizes P*, 
we have that 5 C M. Set Q = [S, P*] and F = F(0{M)). Then [S, Q] = 
Q 5* I and 0P(M) = 0P(F). Furthermore, S must centralize 0P(M) by 
Theorems 3.7 and 4.5, whence also Q = [S, Q] centralizes 0P(M). However, 
Q also centralizes 0P>(F) since 0P>(F) is P-invariant and Q C P*. Thus, Ç 
centralizes F = 0P, (P) X 0P(P). On the other hand, Q C 0(M) by Lemma 2.7 
(i). Since C0(M)(F) ÇZ /̂ , it follows that Q Q F, whence Ç £ (^^(ikr), contrary 
to the fact that S centralizes 0P(M), but does not centralize Q. 
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