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Many popular person-fit statistics belong to the class of standardized person-fit statistics, T , and are
assumed to have a standard normal null distribution. However, in practice, this assumption is incorrect
since T is computed using (a) an estimated ability parameter and (b) a finite number of items. Snijders
(Psychometrika 66(3):331–342, 2001) developed mean and variance corrections for T to account for the
use of an estimated ability parameter. Bedrick (Psychometrika 62(2):191–199, 1997) and Molenaar and
Hoijtink (Psychometrika 55(1):75–106, 1990) developed skewness corrections for T to account for the use
of a finite number of items. In this paper, we combine these two lines of research and propose three new
corrections for T that simultaneously account for the use of an estimated ability parameter and the use
of a finite number of items. The new corrections are efficient in that they only require the analysis of the
original data set and do not require the simulation or analysis of any additional data sets. We conducted a
detailed simulation study and found that the new corrections are able to control the Type I error rate while
also maintaining reasonable levels of power. A real data example is also included.
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Person-fit statistics are used to identify individuals who are displaying aberrant—or unusual—
behavior.Many of themost popular person-fit statistics—including lz (Drasgowet al. 1985), ζ1 and
ζ2 (Tatsuoka 1984)—belong to the class of standardized person-fit statistics, T , and are assumed
to have a standard normal null distribution. However, this distribution only holds when both of
the following conditions are satisfied: (a) the true ability is known and is used to compute T and
(b) an infinite number of items are available and are used to compute T . Numerous researchers
have shown that when one or both of these conditions are not satisfied, the null distribution of
T deviates from the standard normal distribution (e.g., Li & Olejnik 1997; Molenaar & Hoijtink
1990; Noonan et al. 1992; Reise 1995; Sinharay 2016b; Snijders 2001; van Krimpen-Stoop &
Meijer 1999). Thus, in practical settings where both conditions are not satisfied (because the
ability parameter is estimated and only a finite number of items are available), the assumption
of a standard normal null distribution is incorrect and may lead to an inaccurate assessment of
person fit. The person-fit assessment may be too liberal (resulting in an inflated Type I error rate),
too conservative (resulting in an unnecessary sacrifice in power), or some combination of both.

Several corrections have been suggested to improve the accuracy of person-fit assessment
when one or both of the above-mentioned conditions are not satisfied. Researchers such as de
la Torre & Deng (2008), Glas & Meijer (2003), Sinharay (2016a), van Krimpen-Stoop & Mei-
jer (1999) proposed resampling-based methods that simultaneously account for the use of an
estimated ability parameter and the use of a finite number of items. However, resampling-based
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570 PSYCHOMETRIKA

methods require the simulation and analysis of several large data sets and are therefore computa-
tionally intensive. More efficient methods have been proposed by Magis et al. (2014), Sinharay
(2016b), Snijders (2001), who developed mean and variance corrections to account for the use of
an estimated ability parameter, as well as Bedrick (1997) and Molenaar & Hoijtink (1990), who
developed skewness corrections to account for the use of a finite number of items. These methods
are efficient in that they only require the analysis of the original data set and do not require the
simulation or analysis of any additional data sets. Notably, however, no efficient methods have
been developed that simultaneously account for the use of an estimated ability parameter and the
use of a finite number of items. The purpose of this paper is to fill this void in the literature.

In Sect. 1, we review the class of standardized person-fit statistics, T , as well as the existing
corrections for T that account for either the use of an estimated ability parameter or the use of a
finite number of items. In Sect. 2, we introduce three new corrections for T that simultaneously
account for the use of an estimated ability parameter and the use of a finite number of items. All
three corrections are computationally efficient. In Sect. 3, detailed simulations are conducted to
(a) examine the null distributions and (b) compare the Type I error rates and power of the new
and existing statistics. In Sect. 4, a real data example is provided. Finally, in Sect. 5, we conclude
with a brief discussion and suggest directions for future research.

1. Background

Consider a test comprised of n items. Let Xi denote the score on item i , and let pi (θ) =
P(Xi = 1|θ) denote the probability that item i is answered correctly given the ability parameter
θ . For example, for the three-parameter logistic model (3PLM),

pi (θ) = ci + (1 − ci )
exp[ai (θ − bi )]

1 + exp[ai (θ − bi )] , (1)

where ai , bi , and ci are the discrimination, difficulty, and pseudo-guessing parameters, respec-
tively, of item i .

1.1. Standardized Person-Fit Statistics

Consider the class of standardized person-fit statistics that was introduced by Snijders (2001)
and takes the form

T (θ) = W (θ)√
Var(W (θ))

, (2)

where

W (θ) =
n∑

i=1

(Xi − pi (θ))wi (θ) (3)

for some suitable weight functionwi (θ). For the standardized log-likelihood statistic lz (Drasgow
et al. 1985), the weight function is given by

wi (θ) = log
pi (θ)

qi (θ)
, (4)
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where qi (θ) = 1 − pi (θ). For the standardized extended caution indices ζ1 and ζ2 (Tatsuoka
1984), the weight functions are given by

wi (θ) = g − gi and wi (θ) = h(θ) − pi (θ), (5)

respectively, for

gi = 1

N

N∑

v=1

pi (θv),

h(θv) = 1

n

n∑

i=1

pi (θv), and

g = 1

n

n∑

i=1

gi = 1

N × n

N∑

v=1

n∑

i=1

pi (θv) = 1

N

N∑

v=1

h(θv),

where θv is the ability parameter of examinee v, and N is the total number of examinees.
Equation 3 implies that

E(W (θ)) = μ(θ),

Var(W (θ)) = E
[
(W (θ) − μ(θ))2

]
= σ 2(θ),

Skew(W (θ)) = E

[(
W (θ) − μ(θ)

σ (θ)

)3
]

= γ (θ), and

Kurt(W (θ)) = E

[(
W (θ) − μ(θ)

σ (θ)

)4
]

= κ(θ),

where

μ(θ) = 0, (6)

σ 2(θ) =
n∑

i=1

pi (θ)qi (θ)w2
i (θ), (7)

γ (θ) =
∑n

i=1 pi (θ)qi (θ)(qi (θ) − pi (θ))w3
i (θ)

σ 3(θ)
, and (8)

κ(θ) =
∑n

i=1 pi (θ)qi (θ)(1 − 3pi (θ)qi (θ))w4
i (θ)

σ 4(θ)
. (9)

Therefore, the standardized person-fit statistic of Eq.2 can be expressed as

T (θ) = W (θ) − μ(θ)

σ (θ)
. (10)
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Figure 1.
The null distributions of lz .

To classify a score pattern as aberrant, the significance probability p is computed as the
probability that under the null distribution, the value of the test statistic T is equal to or exceeds
the observed value t . That is,

p =
{
P(T ≤ t) if extreme negative values of t indicate misfit,

P(T ≥ t) if extreme positive values of t indicate misfit.
(11)

For the lz statistic, extreme negative values indicate misfit. For the ζ1 and ζ2 statistics, extreme
positive values indicate misfit.

Standardized person-fit statistics are assumed to have a standard normal null distribution.
However, this distribution only holds when both of the following conditions are satisfied: (a) the
true ability is known and is used to compute T and (b) an infinite number of items are available
and are used to compute T . Figure1 shows the null distribution of the lz statistic when both
conditions are (almost) satisfied—that is, when the true ability and 500 items are used to compute
lz . Observe that the null distribution (dashed black line) is very close to the theorized standard
normal distribution (solid black line).

However, when condition (a) is not satisfied—that is, when the true ability is unknown and
an ability estimate is used instead—the null distribution of T has a variance smaller than 1,
as indicated by the dashed gray line in Fig. 1. Thus, the assumption of a standard normal null
distribution (that has a variance of 1) leads to a conservative assessment of person fit. When
condition (b) is not satisfied—that is, when a finite number of items are used to compute T—the
null distribution of T is skewed, as indicated by the dotted black line in Fig. 1, which represents
a 12-item test. The distribution is negatively skewed if extreme negative values of the statistic
indicatemisfit (e.g., lz) or positively skewed if extremepositive values of the statistic indicatemisfit
(e.g., ζ1, ζ2). Thus, the assumption of a standard normal null distribution (that is not skewed) leads
to a liberal assessment of person fit. When both (a) and (b) are not satisfied, the null distribution of
T is skewed, has a variance smaller than 1, and has a mean that differs slightly from 0, as indicated
by the dotted gray line in Fig. 1. Thus, the assumption of a standard normal null distribution leads
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to either a liberal or a conservative assessment of person fit, depending on the chosen significance
level: the use of smaller significance levels leads to a more liberal assessment of person fit, while
the use of larger significance levels leads to a more conservative assessment.

In an effort to obtain a more accurate assessment of person fit, several researchers have
proposed corrections for T . Mean and variance corrections have been suggested to account for
the use of an estimated ability parameter. Skewness corrections have been suggested to account
for the use of a finite number of items. The following subsections contain reviews of each of these
corrections.

1.2. Mean and Variance Corrections

When the true ability is unknownand an ability estimate is used instead, a naïve approximation
of T (θ) can be obtained by inserting θ̂ into Eq.10. That is,

T (θ̂) = W (θ̂) − μ(θ̂)

σ (θ̂)
. (12)

However, Snijders (2001) proved that replacing θ with θ̂ has a non-negligible effect on the variance
of W—and therefore, T—even when an infinite number of items are used. Thus, the assumption
that T (θ̂) has a standard normal null distribution, even asymptotically, is incorrect. Snijders further
showed that if θ̂ satisfies the condition

r0(θ̂) +
n∑

i=1

(Xi − pi (θ̂))ri (θ̂) = 0 (13)

for some functions r0(θ̂) and ri (θ̂), then the mean and variance of W (θ̂) can be approximated
using

E(W (θ̂)) ≈ μ̃(θ̂ ) and

Var(W (θ̂)) ≈ σ̃ 2(θ̂),

respectively, where

μ̃(θ̂ ) = −c(θ̂ )r0(θ̂) (14)

and

σ̃ 2(θ̂) =
n∑

i=1

pi (θ̂)qi (θ̂)w̃2
i (θ̂) (15)

for

c(θ̂) =
∑n

i=1 p
′
i (θ̂)wi (θ̂)

∑n
i=1 p

′
i (θ̂)ri (θ̂)

, (16)
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where p′
i (θ̂) is the first derivative of pi (θ̂) with respect to θ̂ , and the modified weight function is

given by

w̃i (θ̂) = wi (θ̂) − c(θ̂)ri (θ̂). (17)

Therefore, the asymptotically correct statistic T ∗(θ̂) can be derived from T (θ̂) by adjusting both
the mean and variance of the statistic. In other words,

T ∗(θ̂) = W (θ̂) − μ̃(θ̂ )

σ̃ (θ̂ )
(18)

has an asymptotic standard normal null distribution.
The corrected statistic T ∗ can be computed using any ability estimate θ̂ that has functions

r0(θ̂) and ri (θ̂) which satisfy Eq.13. Magis et al. (2012) showed that for the weighted likelihood
(WL) estimate (Warm 1989), maximum likelihood (ML) estimate, and maximum a posteriori
(MAP) estimate, Eq. 13 is satisfied for

ri (θ̂) = p′
i (θ̂)

pi (θ̂)qi (θ̂)

and

r0(θ̂) =

⎧
⎪⎪⎨

⎪⎪⎩

J (θ̂)

2I (θ̂)
if θ̂ is the WL estimate,

0 if θ̂ is the ML estimate,
d log f (θ̂)

d θ̂
if θ̂ is the MAP estimate,

where

J (θ̂) =
n∑

i=1

p′
i (θ̂)p′′

i (θ̂)

pi (θ̂)qi (θ̂)
,

I (θ̂) =
n∑

i=1

[p′
i (θ̂)]2

pi (θ̂)qi (θ̂)
,

and f (·) is the prior distribution on θ .

1.3. Skewness Corrections

Researchers such as Molenaar & Hoijtink (1990), Noonan et al. (1992), and van Krimpen-
Stoop & Meijer (1999) have shown that the null distribution of T becomes more skewed as test
length decreases. Therefore, the standard normal distribution (that is not skewed) provides a poor
approximation for tests with fewer items. To obtain a more accurate approximation of the null
distribution of T , several methods have been developed that take this skewness into account.
These methods use naïve approximations of the mean, variance, and skewness of W (θ̂) that are

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 04:45:10, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


K. GORNEY ET AL. 575

obtained by inserting θ̂ into Eqs. 6, 7, and 8, respectively. For example, the naïve approximation
of skewness is given by

γ (θ̂) =
∑n

i=1 pi (θ̂)qi (θ̂)(qi (θ̂) − pi (θ̂))w3
i (θ̂)

σ 3(θ̂)
. (19)

Molenaar & Hoijtink (1990) suggested two methods to approximate the null distribution of
T . The first method is based on the Cornish–Fisher expansion. The skewness-corrected statistic
is given by

TCF(θ̂) = T (θ̂) − γ (θ̂)[(T (θ̂))2 − 1]
12

, (20)

which is equivalent to approximating the significance probability of Eq.11 as

pCF =
⎧
⎨

⎩
�

(
TCF(θ̂)

)
if extreme negative values of t indicate misfit,

1 − �
(
TCF(θ̂)

)
if extreme positive values of t indicate misfit,

(21)

where�(·)denotes the cumulative distribution function (CDF) of the standard normal distribution.
The second method of Molenaar & Hoijtink (1990) employs a higher-order approximation

of the significance probability that is based on a χ2 distribution with ν(θ̂) = 8
γ 2(θ̂)

degrees of

freedom. Thus, the significance probability is approximated as

pχ2 =
⎧
⎨

⎩
P

(
χ2(ν(θ̂)) ≥ |W (θ̂ )−μ(θ̂)−a(θ̂)|

b(θ̂)

)
if extreme negative values of t indicate misfit,

P
(
χ2(ν(θ̂)) ≥ |W (θ̂ )−μ(θ̂)+a(θ̂)|

b(θ̂)

)
if extreme positive values of t indicate misfit,

(22)

where

a(θ̂) = b(θ̂)ν(θ̂) and

b(θ̂) =
√

σ 2(θ̂)

2ν(θ̂)
.

A third method was suggested by Bedrick (1997), who used the Edgeworth expansion to
approximate the significance probability as

pEW =
⎧
⎨

⎩
�(T (θ̂)) − φ(T (θ̂))γ (θ̂)[(T (θ̂))2−1]

6 if extreme negative values of t indicate misfit,

1 −
(
�(T (θ̂)) − φ(T (θ̂ ))γ (θ̂)[(T (θ̂ ))2−1]

6

)
if extreme positive values of t indicate misfit,

(23)

where φ(·) denotes the probability density function of the standard normal distribution. The
Edgeworth expansion occasionally yields estimates of p that are smaller than 0 or larger than 1.
In this paper, we replace such values with (traditional) estimates of p that are obtained by applying
T (θ̂) under the assumption of a standard normal null distribution.
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Figure 2.
The null distributions of l∗z .

We note that it may be desirable to transform the significance probability approximations
in Eqs. 22 and 23 to person-fit statistics that are approximately standard normally distributed.
If extreme negative values of t indicate misfit, the significance probability approximations can
be transformed using the inverse CDF of the standard normal distribution, �−1(p). If extreme
positive values of t indicatemisfit, the significance probability approximations can be transformed
using �−1(1 − p).

2. Method

In the previous section, we reviewed (a) the class of standardized person-fit statistics T , (b)
mean and variance corrections for T that account for the use of an estimated ability parameter,
and (c) skewness corrections for T that account for the use of a finite number of items. In this
section, we apply mean, variance, and skewness corrections to simultaneously account for the use
of an estimated ability parameter and the use of a finite number of items.

We start by considering the class of mean and variance-corrected statistics T ∗ that is given by
Eq.18. Aswas the case for the uncorrected statistic T , the corrected statistic T ∗ is assumed to have
a standard normal null distribution. However, this distribution only holds asymptotically—that
is, when an infinite number of items are available. Figure2 shows the null distribution of the l∗z
statistic when 500 items are used to compute l∗z . Observe that the null distribution (dashed gray
line) is very close to the theorized standard normal distribution (solid black line). Yet, when a
finite number of items are used to compute T ∗, the null distribution of T ∗ is skewed, as indicated
by the dotted gray line in Fig. 2. Thus, the assumption of a standard normal distribution (that is
not skewed) leads to a liberal assessment of person fit, especially at smaller significance levels
such as α = .01 or α = .02 (e.g., de la Torre & Deng 2008; Sinharay 2016b; Snijders 2001).

In an effort to obtain amore accurate assessment of person fit, we introduce three newmethods
for approximating the null distribution of T ∗ that take this skewness into account. These methods
use asymptotic approximations of the mean, variance, and skewness of W (θ̂ ) that are given by
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Eqs. 14, 15, and

γ̃ (θ̂ ) =
∑n

i=1 pi (θ̂)qi (θ̂)(qi (θ̂) − pi (θ̂))w̃3
i (θ̂)

σ̃ 3(θ̂)
, (24)

respectively.
The three new methods for approximating the null distribution of T ∗ are heuristics that

parallel the methods in Eqs. 21, 22, and 23 for approximating the null distribution of T . R code
to implement the new methods is included in “Appendix A”.

The first of the three new methods is based on the Cornish–Fisher expansion. The skewness-
corrected statistic is given by

T ∗
CF(θ̂) = T ∗(θ̂) − γ̃ (θ̂ )[(T ∗(θ̂))2 − 1]

12
, (25)

which is equivalent to approximating the significance probability of Eq.11 as

p∗
CF =

⎧
⎨

⎩
�

(
T ∗
CF(θ̂)

)
if extreme negative values of t∗ indicate misfit,

1 − �
(
T ∗
CF(θ̂)

)
if extreme positive values of t∗ indicate misfit.

(26)

The second method employs a higher-order approximation of the significance probability
that is based on a χ2 distribution with ν̃(θ̂ ) = 8

γ̃ 2(θ̂)
degrees of freedom. Thus, the significance

probability is approximated as

p∗
χ2 =

⎧
⎨

⎩
P

(
χ2(ν̃(θ̂ )) ≥ |W (θ̂ )−μ̃(θ̂ )−ã(θ̂ )|

b̃(θ̂)

)
if extreme negative values of t∗ indicate misfit,

P
(
χ2(ν̃(θ̂ )) ≥ |W (θ̂ )−μ̃(θ̂ )+ã(θ̂ )|

b̃(θ̂)

)
if extreme positive values of t∗ indicate misfit,

(27)

where

ã(θ̂) = b̃(θ̂)ν̃(θ̂ ) and

b̃(θ̂) =
√

σ̃ 2(θ̂)

2ν̃(θ̂ )
.

The third method uses the Edgeworth expansion to approximate the significance probability
as

p∗
EW =

⎧
⎨

⎩
�(T ∗(θ̂)) − φ(T ∗(θ̂))γ̃ (θ̂ )[(T ∗(θ̂))2−1]

6 if extreme negative values of t∗ indicate misfit,

1 −
(
�(T ∗(θ̂)) − φ(T ∗(θ̂ ))γ̃ (θ̂ )[(T ∗(θ̂))2−1]

6

)
if extreme positive values of t∗ indicate misfit.

(28)

If the Edgeworth expansion yields estimates of p that are smaller than 0 or larger than 1, we
replace such values with estimates of p that are obtained by applying T ∗(θ̂) under the assumption
of a standard normal null distribution.
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The inverseCDFmethod can be used to transform the significance probability approximations
in Eqs. 27 and 28 to person-fit statistics that are approximately standard normally distributed. If
extreme negative values of t∗ indicate misfit, the significance probability approximations can
be transformed using �−1(p∗). If extreme positive values of t∗ indicate misfit, the significance
probability approximations can be transformed using �−1(1 − p∗).

3. Simulation Study

3.1. Design and Analysis

Weconducted a detailed simulation study to (a) examine the null distributions and (b) compare
the Type I error rates and power of the new and existing statistics. The simulationswere designed to
mimic realistic testing conditions—therefore, an estimated ability parameter and a finite number
of items were used to compute the person-fit statistics.

Three test lengths (12, 36, 72) were studied to represent short, medium, and long tests. For
each test length, 1 million (10,000 examinees × 100 replications) score patterns were simulated.
For each replication, new sets of person and item parameters were generated. As in Glas &Meijer
(2003), 90% of the examinees were non-aberrant—that is, they fit the model—and were used
to study the null distributions and Type I error rates of the statistics. The remaining 10% of the
examinees were divided equally into four groups of aberrant examinees and were used to study
power. The four groups of aberrant examinees were characterized by the type of aberrant behavior
(lack of motivation, item disclosure) and by the proportion of contaminated items ( 16 ,

1
3 ).

Uncontaminated item scores were generated using the 3PLM. For each replication, the
item parameters were sampled such that ai ∼ Lognormal(0, 0.252), bi ∼ N (0, 1), and
ci ∼ U(0.05, 0.30), as in Sinharay (2016b), and the person parameters were sampled such that
θv ∼ N (0, 1). Contaminated item scores were generated after manipulating the item success
probabilities. As in Glas & Meijer (2003), lack of motivation was simulated as random guessing
on the easiest items, with a success probability equal to 0.2. Item disclosure was simulated as
preknowledge of the most difficult items, with a success probability equal to 0.9. By simulating
lack of motivation on the easiest items and item disclosure on the most difficult items, we studied
conditions in which ability estimates would be severely impacted and are therefore important to
detect.

After simulating the data, each of the score patterns was analyzed 72 times: once for each
combination of two classes of person-fit statistics (T , T ∗), three weight functions (lz , ζ1, ζ2), four
skewness corrections (none, Cornish–Fisher expansion, χ2 approximation, Edgeworth expan-
sion), and three ability estimates (WL, ML, MAP). In all conditions, the item parameters were
treated as known. This assumption is common in person-fit research, as it prevents the null dis-
tribution of the statistics from being affected by any uncertainty in the item parameter estimates
(e.g., Molenaar & Hoijtink 1990; Snijders 2001; van Krimpen-Stoop & Meijer 1999).

The ML and MAP estimates of ability were bounded between −4 and 4. The standard
normal distribution was used as the prior distribution for the MAP estimates. The standardized
extended caution indiceswere computed after reversing the sign of theweights given in Eq.5; thus,
extreme negative values of the statistics indicated misfit. This adjustment was made to facilitate
comparisons against the standardized log-likelihood statistics, for which extreme negative values
also indicate misfit.

3.2. Results

The choice of ability estimatewas found not to affect the relative performance of the person-fit
statistics. Therefore, we focus on the WL estimates of ability (since they were computed without
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any bounds or prior distributions) and include results for the other ability estimates in “Appendix
B”.

3.2.1. The Null Distributions of the Person-Fit Statistics Figure 3 displays the first four
moments of the null distributions of the person-fit statistics. Each row corresponds to a different
moment (mean, variance, skewness, excess kurtosis), and each column corresponds to a different
test length (12, 36, 72). Note that excess kurtosis is defined as the kurtosis minus 3. Horizontal
dotted lines are used to indicate the values that are expected under the theoretical null distribution.
It is desirable for the moments of the empirical null distributions to be as close to these values as
possible.

Figure 3 reveals that the null distribution of T (i.e., the uncorrected statistic given by Eq.12)
is negatively skewed, has a variance smaller than 1, and has a mean that is slightly larger than
0. Similar results are shown in Table 1 of Li & Olejnik (1997), Table 3 of Reise (1995), and
Table 1 of van Krimpen-Stoop & Meijer (1999). The skewness-corrected statistics TCF, Tχ2 , and
TEW return values of skewness that are closer to 0, but do not offer much improvement in terms
of the mean or variance. Conversely, the mean and variance-corrected statistic T ∗ (that is given
by Eq.18) has a variance that is closer to 1, but does not offer much improvement in terms of
skewness. Interestingly, although l∗z has a mean that is closer to 0, ζ ∗

1 and ζ ∗
2 have means that

are farther from 0. Similar results are shown in Tables 1 and 2 of van Krimpen-Stoop & Meijer
(1999) for l∗z , and in Table 1 of Sinharay (2016b) for ζ ∗

1 and ζ ∗
2 .

The newly proposed statistics T ∗
CF, T

∗
χ2 , and T ∗

EW are the only statistics to incorporate mean,
variance, and skewness corrections. Therefore, it is not surprising to see that these are the only
statistics that improve both the skewness and the variance. Figure3 also reveals that although
these statistics have similar means and variances, T ∗

χ2 is the most effective at reducing skewness,

followed by T ∗
EW and then T ∗

CF. This finding parallels the results for the class of T statistics, as
shown in Fig. 3 and in previous research (Bedrick 1997; Molenaar & Hoijtink 1990; Santos et al.
2020; von Davier & Molenaar 2003).

3.2.2. Type I Error Rates Figure 4 displays the Type I error rates of the person-fit statistics. Each
row corresponds to a different significance level (.01, .02, .05, .10), and each column corresponds
to a different test length (12, 36, 72). Horizontal dotted lines are used to indicate the significance
levels. It is desirable for the Type I error rates to be at or below these lines.

Figure 4 reveals that the Type I error rates of T (i.e., the uncorrected statistic) vary depending
on the weight function that is used. For lz , the Type I error rate is consistently smaller than the
nominal level. This result can largely be attributed to the reduced variance of the statistic (see
Fig. 3). In contrast, for ζ1 and ζ2, the Type I error rates are slightly larger than the nominal level
when α is small and the test is short, but are close to or smaller than the nominal level in all other
instances.

The Type I error rates of the skewness-corrected statistics TCF, Tχ2 , and TEW are always
smaller than the Type I error rates of T . While this result is desirable in instances where the Type
I error rates of T are inflated (e.g., when ζ1 and ζ2 are used with a small α and a short test), it is
undesirable in instances where T is already conservative, which seems to be the more common
case. Therefore, TCF, Tχ2 , and TEW are of limited utility in the present context.

The Type I error rates of the mean and variance-corrected statistic T ∗ are always larger than
the Type I error rates of T . When α = .10, this result is useful, since the Type I error rates of T ∗
are closer to, but still do not exceed, the nominal level. In contrast, when α = .01, .02, or .05, the
Type I error rates of T ∗ often exceed the nominal level, which is undesirable in practice.

The Type I error rates of the newly proposed statistics T ∗
CF, T

∗
χ2 , and T ∗

EW are generally quite
favorable and seem to overcome the limitations of the other corrected statistics. That is, the Type
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Figure 3.
Descriptive statistics of the null distributions of the person-fit statistics. CF Cornish–Fisher expansion, χ2 χ2 approxi-
mation, EW Edgeworth expansion.

I error rates tend to be close to the nominal level (unlike TCF, Tχ2 , and TEW), while still not
exceeding it (unlike T ∗). Of the three new statistics, T ∗

CF produces Type I error rates that are
closest to the nominal level, followed by T ∗

EW when α = .01, or T ∗
χ2 when α = .02, .05, or .10.

These conclusions are the same regardless of test length or the choice of weight function.
Figure 5 displays the Type I error rates by quintile of the lz and l∗z statistics. (The results

for ζ1, ζ ∗
1 , ζ2, and ζ ∗

2 are similar and are available upon request from the first author.) Quintiles
were formed by separating examinees based on θ , such that low-ability examinees were placed in
Quintile 1, high-ability examinees were placed in Quintile 5, and the examinees in between were
sorted accordingly. Notably, the Type I error rates of the newly proposed statistics are similar
across ability levels.

3.2.3. Power Table 1 displays the power of lz and l∗z at the α = .01 significance level. (The
results for ζ1, ζ ∗

1 , ζ2, and ζ ∗
2 are similar and are available upon request.) Each row corresponds to

a different combination of aberrance and test length, and each column corresponds to a different
combination of person-fit statistic and skewness correction. As expected, power increases as test
length increases and as the proportion of contaminated items increases. Furthermore, across all

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 04:45:10, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


K. GORNEY ET AL. 581

Figure 4.
Type I error rates of the person-fit statistics. CF Cornish–Fisher expansion, χ2 χ2 approximation, EW Edgeworth
expansion.

conditions, the l∗z statistic with no skewness correction is the most powerful, followed closely
by the l∗z statistic corrected using the Cornish–Fisher expansion, the l∗z statistic corrected using
the Edgeworth expansion, and then the l∗z statistic corrected using the χ2 approximation. Thus, it
appears that the new statistics can be used without a significant loss in power. Similar results are
shown in Table 2 at the α = .05 significance level.

4. Real Data Example

4.1. Data and Analysis

The data in this example originate from a single form of a licensure examination. The data
have been studied in the context of person-fit assessment by researchers such as Sinharay (2016b),
and in the context of preknowledge detection in several chapters of Cizek &Wollack (2017). Item
scores are available for 1644 examinees on 170 scored items. Following a statistical analysis and
careful investigative process, the testing program flagged 61 items as being compromised, and
48 examinees as likely having engaged in fraudulent behavior. The 48 flagged examinees can be
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Figure 5.
Type I error rates by quintile of lz and l∗z .CF Cornish–Fisher expansion, χ2 χ2 approximation,EW Edgeworth expansion.

considered truly aberrant for purposes of the present analysis. However, it is important to note
that other types of aberrance may be present among some of the non-flagged examinees, as well.

TheRaschmodel parameter estimates provided by the testing programwere treated as the true
itemparameters. Then, using theWLestimates of ability, each score patternwas analyzed24 times:
once for each combination of two classes of person-fit statistics (T , T ∗), three weight functions
(lz , ζ1, ζ2), and four skewness corrections (none, Cornish–Fisher expansion, χ2 approximation,
Edgeworth expansion).

4.2. Results

Tables 3 and 4 display the proportions of examinees classified as aberrant and the agreement
rates for lz and l∗z at the α = .01 and α = .05 significance levels, respectively. (The results for
ζ1, ζ ∗

1 , ζ2, and ζ ∗
2 are similar and are available upon request.) In each table, the proportions of

examinees classified as aberrant are displayed in bold text along the diagonal, and the agreement
rates are displayed in non-bold text in the off-diagonal. Agreement rate is defined as the proportion
of times two statistics make the same classification decision (aberrant or non-aberrant).
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Table 1.
Power of lz and l∗z (α = .01).

lz l∗z
Aberrance Test length None CF χ2 EW None CF χ2 EW

Lack of motivation on 1
6 12 .106 .063 .056 .063 .190 .142 .129 .135

36 .383 .341 .314 .318 .476 .441 .417 .421
72 .644 .625 .608 .609 .704 .687 .672 .674

Lack of motivation on 1
3 12 .177 .133 .120 .126 .250 .201 .183 .190

36 .478 .451 .432 .435 .567 .538 .518 .520
72 .653 .638 .626 .627 .748 .735 .726 .727

Item disclosure on 1
6 12 .041 .022 .017 .019 .093 .053 .043 .048

36 .158 .131 .114 .117 .281 .241 .213 .217
72 .355 .325 .303 .305 .553 .520 .494 .497

Item disclosure on 1
3 12 .108 .069 .058 .064 .229 .156 .135 .145

36 .317 .279 .259 .264 .566 .523 .494 .498
72 .494 .464 .445 .447 .795 .776 .760 .762

CF Cornish–Fisher expansion, χ2 χ2 approximation, EW Edgeworth expansion.

Table 2.
Power of lz and l∗z (α = .05).

lz l∗z
Aberrance Test length None CF χ2 EW None CF χ2 EW

Lack of motivation on 1
6 12 .233 .208 .198 .187 .341 .318 .309 .299

36 .575 .560 .550 .544 .649 .635 .625 .622
72 .772 .766 .761 .760 .823 .818 .814 .813

Lack of motivation on 1
3 12 .314 .294 .284 .274 .401 .379 .370 .362

36 .613 .602 .594 .592 .702 .692 .687 .683
72 .762 .756 .752 .751 .844 .840 .837 .836

Item disclosure on 1
6 12 .128 .109 .102 .093 .237 .211 .199 .187

36 .325 .308 .295 .290 .509 .488 .476 .470
72 .549 .534 .524 .520 .759 .749 .740 .738

Item disclosure on 1
3 12 .239 .212 .203 .190 .436 .401 .386 .372

36 .476 .456 .445 .437 .743 .731 .721 .716
72 .647 .635 .626 .622 .892 .888 .885 .884

CF Cornish–Fisher expansion, χ2 χ2 approximation, EW Edgeworth expansion.

Across all person-fit statistics and skewness corrections, the proportions of flagged examinees
classified as aberrant are much larger than the proportions of non-flagged examinees classified as
aberrant. This result provides favorable evidence regarding the performance of the statistics. In
addition, the proportions of non-flagged examinees classified as aberrant consistently exceed the
significance levels. This result is interesting, as it implies that aberrance is present among some
of the non-flagged examinees, as well. For example, some of the non-flagged examinees may
have engaged in fraudulent behavior, but were mistakenly not flagged by the testing program. It is
also possible that some of the non-flagged examinees had engaged in a different type of aberrant
behavior altogether.

Consistent with the simulation results, the l∗z statistic with no skewness correction classified
the most examinees as aberrant, followed by the l∗z statistic corrected using the Cornish–Fisher
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Table 3.
Proportions of examinees classified as aberrant (diagonal) and agreement rates (off-diagonal) (α = .01).

lz l∗z
Group Class Correction None CF χ2 EW None CF χ2 EW

Non-Flagged lz None .088
CF .994 .082
χ2 .990 .996 .078
EW .991 .996 .999 .078

l∗z None .968 .962 .958 .959 .120
CF .973 .967 .963 .964 .995 .115
χ2 .976 .972 .971 .971 .987 .992 .107
EW .975 .972 .970 .971 .988 .993 .999 .108

Flagged lz None .167
CF 1.000 .167
χ2 1.000 1.000 .167
EW 1.000 1.000 1.000 .167

l∗z None .896 .896 .896 .896 .271
CF .896 .896 .896 .896 1.000 .271
χ2 .896 .896 .896 .896 1.000 1.000 .271
EW .896 .896 .896 .896 1.000 1.000 1.000 .271

CF Cornish–Fisher expansion, χ2 χ2 approximation, EW Edgeworth expansion.

Table 4.
Proportions of examinees classified as aberrant (diagonal) and agreement rates (off-diagonal) (α = .05).

lz l∗z
Group Class Correction None CF χ2 EW None CF χ2 EW

Non-Flagged lz None .147
CF .998 .145
χ2 .997 .999 .145
EW .997 .999 .999 .144

l∗z None .944 .942 .942 .941 .203
CF .950 .948 .947 .947 .994 .197
χ2 .953 .951 .951 .950 .991 .997 .194
EW .954 .952 .951 .951 .991 .996 .999 .194

Flagged lz None .250
CF 1.000 .250
χ2 1.000 1.000 .250
EW .979 .979 .979 .229

l∗z None .896 .896 .896 .875 .354
CF .896 .896 .896 .875 1.000 .354
χ2 .896 .896 .896 .875 1.000 1.000 .354
EW .896 .896 .896 .875 1.000 1.000 1.000 .354

CF Cornish–Fisher expansion, χ2 χ2 approximation, EW Edgeworth expansion.
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expansion. Notably, all four variants of the l∗z statistic classified the same sets of flagged examinees
as aberrant—however, the skewness-corrected statistics classified fewer non-flagged examinees
as aberrant. This result shows that the new statistics may lead to noticeable differences in tests
having as many as 170 items.

5. Discussion

Many popular person-fit statistics—including lz , ζ1, and ζ2—belong to the class of stan-
dardized person-fit statistics, T , and are assumed to have a standard normal null distribution.
However, in practice, this assumption is incorrect since T is computed using (a) an estimated
ability parameter and (b) a finite number of items. In this paper, we proposed three new correc-
tions for T that simultaneously account for the use of an estimated ability parameter and the use
of a finite number of items. The new corrections are efficient in that they only require the analysis
of the original data set and do not require the simulation or analysis of any additional data sets
(as is the case for resampling-based methods). Detailed simulations further revealed that the new
corrections are able to control the Type I error rate while also maintaining reasonable levels of
power. They therefore outperform the existing corrections for T that were suggested by Bedrick
(1997), Molenaar & Hoijtink (1990), and Snijders (2001).

Based on the results of the simulation study, we created the following set of guidelines for
users to follow while selecting an appropriate person-fit statistic:

• When α ≥ .10, it is recommended that users apply the existing T ∗ statistic of Snijders
(2001).

• When α < .10, it is recommended that users apply the newly proposed T ∗
CF statistic.

Note that the recommended statistics are those that were shown to display the largest power while
still controlling the Type I error rate.

We would also like to remind readers that person-fit statistics, by definition, are most appro-
priate when the goal is to detect general misfit at the person level. If the goal is to detect a specific
type of misfit, such as item preknowledge or test speededness, or if the goal is to detect misfit at
the person-by-item level, then alternative methods may be more suitable.

There are several limitations to this work, providing many opportunities for future research.
First, it is possible to study shorter tests, to explore the boundaries of the proposed methods to see
if there is a point at which they fail or break down. It is also possible to study additional simulation
conditions. For example, we simulated lack of motivation on the easiest items and item disclosure
on the most difficult items, thereby considering extreme conditions in which ability estimates are
severely impacted. However, in practice, such behaviors could happen onmore than just the easiest
and most difficult items. Therefore, future researchers could simulate less extreme conditions to
compare the statistics under a more realistic setting. In our simulations, we also assumed that the
item parameters were known. However, researchers such as Cheng & Yuan (2010) have shown
that the error associated with item parameter estimation affects the distribution of the person
parameter estimates. It would be interesting to study the extent to which this error affects the
distributions of the person-fit statistics, as well.

Second, the efficient corrections that are described in this paper could be compared to the
resampling-based methods that are described in Sinharay (2016a). The methods should be com-
pared in terms of the false-positive rate, true-positive rate, and computation time. Third, the new
corrections could be applied to other standardized person-fit statistics, such as the standardized
infit and outfit statistics (Magis et al. 2014). Fourth, the new corrections could be applied using
other ability estimates, such as the biweight estimate and the Huber estimate. Sinharay (2016d)
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found that the use of both estimates with T ∗ produces inflated Type I error rates, suggesting that
the new corrections may be particularly useful in these settings.

Finally, in this study,wedeveloped corrections for the class of standardizedperson-fit statistics
within a very narrow context: non-adaptive, unidimensional tests with only dichotomous items.
Standardized person-fit statistics have been applied in other contexts, including adaptive tests (e.g.,
Nering 1997; van Krimpen-Stoop & Meijer 1999), multidimensional tests with simple structure
(e.g., Albers et al. 2016; Hong et al. 2021), tests with polytomous items (e.g., Gorney &Wollack
2023; Hong et al. 2021; Sinharay 2016c; van Krimpen-Stoop & Meijer 2002; von Davier &
Molenaar 2003), and tests with response times (e.g., Gorney et al. 2024). Standardized person-fit
statistics have also been applied in cognitive diagnosis modeling (e.g., Santos et al. 2020). In each
of these contexts, the assumption of the standard normal null distribution has been shown to be
inappropriate when realistic testing conditions are simulated, suggesting that corrections may be
beneficial.
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Appendix A

R Code to Compute the Person-Fit Statistics
# INPUT
# ‘x‘ is an (N x n) matrix of item scores. The rows correspond to persons and
# the columns correspond to items.
# ‘psi‘ is an (n x 3) matrix of item parameters. The columns correspond to the
# discrimination, difficulty, and pseudo-guessing parameters, respectively.
# ‘theta‘ is a vector of person parameter estimates.
# ‘est‘ is the person parameter estimation method. Options are "WL" for weighted
# likelihood estimation, "ML" for maximum likelihood estimation, and "MAP" for
# maximum a posteriori estimation with a standard normal prior.
# ‘weight‘ is the weight function. Options are "lz", "zeta1", and "zeta2".
#
# OUTPUT
# A matrix of eight standardized person-fit statistics.

personfit <- function(x, psi, theta, est = "ML", weight = "lz") {

# Setup
N <- nrow(x) # number of examinees
n <- ncol(x) # number of items
stat <-
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matrix(nrow = N, ncol = 8,
dimnames = list(

person = 1:N,
method = c("NO", "CF", "CS", "EW", "TS", "TSCF", "TSCS", "TSEW")

))

# IRT probabilities (Eq. 1)
p <- t(psi[, 3] + (1 - psi[, 3]) /

(1 + exp(psi[, 1] * outer(psi[, 2], theta, "-"))))
q <- 1 - p

# Weight functions (Eqs. 4 and 5)
if (weight == "lz") {

w <- log(p / q)
} else if (weight == "zeta1") {

w <- matrix(mean(p) - colMeans(p), nrow = N, ncol = n, byrow = TRUE)
} else if (weight == "zeta2") {

w <- rowMeans(p) - p
}

# (Eq. 3)
W <- rowSums((x - p) * w)

# Mean, standard deviation, and skewness (Eqs. 6, 7, and 8)
mu <- 0
sigma <- sqrt(rowSums(p * q * wˆ2))
gamma <- rowSums(p * q * (q - p) * wˆ3) / sigmaˆ3

# No correction (Eq. 10)
stat[, "NO"] <- NO <- (W - mu) / sigma

# Cornish-Fisher expansion (Eq. 20)
stat[, "CF"] <- NO - gamma * (NOˆ2 - 1) / 12

# Chi-squared approximation (Eq. 22)
nu <- 8 / gammaˆ2
b <- sqrt(sigmaˆ2 / (2 * nu))
a <- b * nu
if (weight == "lz") {

p_CS <- pchisq(abs(W - mu - a) / b, df = nu, lower.tail = FALSE)
stat[, "CS"] <- qnorm(p_CS)

} else {
p_CS <- pchisq(abs(W - mu + a) / b, df = nu, lower.tail = FALSE)
stat[, "CS"] <- qnorm(1 - p_CS)

}

# Edgeworth expansion (Eq. 23)
if (weight == "lz") {

p_EW <- pnorm(NO) - dnorm(NO) * gamma * (NOˆ2 - 1) / 6
p_EW <- ifelse(p_EW <= 0 | p_EW >= 1, pnorm(NO, lower.tail = TRUE), p_EW)
stat[, "EW"] <- qnorm(p_EW)

} else {
p_EW <- 1 - (pnorm(NO) - dnorm(NO) * gamma * (NOˆ2 - 1) / 6)
p_EW <- ifelse(p_EW <= 0 | p_EW >= 1, pnorm(NO, lower.tail = FALSE), p_EW)
stat[, "EW"] <- qnorm(1 - p_EW)

}
# Various quantities
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e <- exp(-psi[, 1] * outer(psi[, 2], theta, "-"))
p1 <- t((1 - psi[, 3]) * psi[, 1] * e / (1 + e)ˆ2)
p2 <- t((1 - psi[, 3]) * psi[, 1]ˆ2 * e * (1 - e) / (1 + e)ˆ3)
r <- p1 / (p * q)
c <- rowSums(p1 * w) / rowSums(p1 * r)
r0 <- if (est == "ML") 0 else if (est == "MAP") -theta else

rowSums(r * p2) / (2 * rowSums(r * p1))

# Modified weight function (Eq. 17)
w_tilde <- w - c * r

# Mean, standard deviation, and skewness (Eqs. 14, 15, and 24)
mu_tilde <- -c * r0
sigma_tilde <- sqrt(rowSums(p * q * w_tildeˆ2))
gamma_tilde <- rowSums(p * q * (q - p) * w_tildeˆ3) / sigma_tildeˆ3

# Taylor series expansion (Eq. 18)
stat[, "TS"] <- TS <- (W - mu_tilde) / sigma_tilde

# Taylor series expansion and Cornish-Fisher expansion (Eq. 25)
stat[, "TSCF"] <- TS - gamma_tilde * (TSˆ2 - 1) / 12

# Taylor series expansion and chi-squared approximation (Eq. 27)
nu_tilde <- 8 / gamma_tildeˆ2
b_tilde <- sqrt(sigma_tildeˆ2 / (2 * nu_tilde))
a_tilde <- b_tilde * nu_tilde
if (weight == "lz") {

p_TSCS <- pchisq(abs(W - mu_tilde - a_tilde) / b_tilde,
df = nu_tilde, lower.tail = FALSE)

stat[, "TSCS"] <- qnorm(p_TSCS)
} else {

p_TSCS <- pchisq(abs(W - mu_tilde + a_tilde) / b_tilde,
df = nu_tilde, lower.tail = FALSE)

stat[, "TSCS"] <- qnorm(1 - p_TSCS)
}

# Taylor series expansion and Edgeworth expansion (Eq. 28)
if (weight == "lz") {

p_TSEW <- pnorm(TS) - dnorm(TS) * gamma_tilde * (TSˆ2 - 1) / 6
p_TSEW <- ifelse(p_TSEW <= 0 | p_TSEW >= 1,

pnorm(TS, lower.tail = TRUE), p_TSEW)
stat[, "TSEW"] <- qnorm(p_TSEW)

} else {
p_TSEW <- 1 - (pnorm(TS) - dnorm(TS) * gamma_tilde * (TSˆ2 - 1) / 6)
p_TSEW <- ifelse(p_TSEW <= 0 | p_TSEW >= 1,

pnorm(TS, lower.tail = FALSE), p_TSEW)
stat[, "TSEW"] <- qnorm(1 - p_TSEW)

}

# Output
return(stat)

}
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Appendix B

Ability Estimates

See Figs. 6 and 7.

Figure 6.
Descriptive statistics of the null distributions of lz and l∗z .
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Figure 7.
Type I error rates of lz and l∗z .
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