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Historically, mathematical models have been essential to understand plant physiology [12]. They pro-
vided rules that could be applied to predict crop growth and yield in the field, made farm management
more efficient and helped to increase productivity. For example, the ‘law of minimum’ proposed by Liebig
in 1840, states that crop yield is limited by the availability of a most deficient nutrient. Farmers would
then simply need to identify requirements for each nutrient in order to obtain optimal yield. Liebig’s law
formalised plant requirements in a simple and quantitative fashion and allowed generations of farmers
to optimise the application of fertilisers. Unfortunately, complex biological functions of plants cannot
be described as a superposition of independent environmental effects in the way Liebig described plant
nutrition. Plants possess complex self-organised molecular machineries and exhibit a wide range of re-
sponses. For example, sensing proteins in root apical meristems are involved in the detection of nutrients
and cascades of signals are triggered to stimulate lateral root proliferation in nutrient patches [13, 21].
Although shoot architectures follow more predictable growth patterns, e.g. phyllotactic arrangement of
leaves, they also arise from multiple interactions and feedbacks between cells, tissues and organs [24].
Flowering time in a plant, for example, results from subtle interactions between circadian clock genes
regulating day-night sensing and the physiology of photosynthesis and carbon allocation [8].

Early computational biologists understood the limitations of classical agronomic and physiological
modelling and initiated alternative approaches. Lindenmayer, a botanist interested in growth patterns of
algae and trees, proposed in 1968 a framework named ‘L-systems’ to formalise rules for the development
of plant architectures [30]. It became possible to model interactions between plant architecture and the
environment, a concept now termed ‘Functional Structural Plant Models’ [14, 16]. In 1969 Korn also
noticed that since plant growth and functions are determined by individual cells, the cellular structures
of a tissue must be incorporated [25]. In his first model, Korn described the development of a plant tissue
from a simple stochastic cell cycle model. The field of plant modelling has grown considerably over the
last decades and the concepts of Korn and Lindenmayer evolved. Architectural models now incorporate
plant physiology explicitly and are combined with models of the environment to account for, e.g. nutrient
transport in soil and light interception [7, 9]. New computational cellular models are able to simulate
thousands of cells [34], and include autonomous genetic regulatory networks, the sensing and response
to hormonal signals as well as turgor pressure driven expansion [10,20]. Modelling languages such as the
‘Systems Biology Markup Language’ have been developed to model metabolic pathways [31].

Because plants are immobile they must be able to sense their environment and adapt to numerous
external cues. Responses to environmental signals are actioned at the cell level, where biological pro-
cesses are broken down into chains and networks of biochemical reactions. Long range signals between
cells are also required to coordinate activities. Signalling molecules, named hormones, are produced and
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transported across tissues to promote different cellular activities, such as proliferation or differentiation.
The work presented by Muraro, Byrne, King & Bennett on “Mathematical modelling of plant sig-
nalling networks” provides an overview of different approaches available to model signalling networks in
plant cells. Popular deterministic models of regulatory processes include Boolean networks and systems
of ordinary differential equations. Gene expression is highly stochastic, and use of stochastic reaction
kinetics and Bayesian network models have become essential to model low concentration reactions and
infer biochemical networks from data. More recent developments include a better representation of the
multicellular nature of signalling and regulatory networks.

Though plant cell expansion and differentiation is genetically regulated, it is constrained physically
by cell walls and membranes. Plant growth may be represented as a balance between forces acting
on cell walls due to turgor pressure and/or external loads, and stresses in cell walls created by the
deformation. The first model of irreversible cell expansion was described by Lockhart in 1965 by relating
the strain rate to the turgor pressure via a cell wall extensibility and a yield threshold [27]. Since then,
many generalisations have been proposed. For example, rates of transpiration and elastic deformation
were introduced into Lockhart’s model to account for these effects [15]. The microstructure of the cell
wall has been considered by distinguishing between the free energies related to either the elasticity of
macromolecules and of hydrogen bonds [36], or to the matrix and microfibril phases of the wall [4]. The
influence of the elastic properties of the wall matrix, the cellulose microfibrils’ orientation and the external
torque on the expansion process has been analysed by modelling the cell wall as a fibre-reinforced viscous
fluid [11]. The widely used ‘decomposition approach’ of a deformation tensor into elastic and growth part
has also been applied to model the growth of cell walls [23], and anisotropic tissue growth [17]. Clearly,
the diversity of models is very high. Ortega & Welch review in “Mathematical models for expansive
growth of cells with walls” a wide spectrum of mechanical models of cell and tissue growth.

The homeostasis and control of growth is an important question in modelling and understanding
plant development. Pollen tubes have been subject of extensive theoretical research, among many others
[5,18,26,32], due to their rich structure and being well accessible to in vitro experiments. It was observed
that the growth of pollen tubes oscillates in time and that the fluxes of some ions, such as calcium,
follow this behaviour [29]. This gives rise to the questions of how growth is exactly regulated, and if
the oscillations are harmonic and describable by well-known physical models of harmonically oscillating
systems. In order to answer this question it is necessary to study changes in the oscillation frequency,
amplitude and phase resetting under permanent or temporary changes of growth conditions, such as
variable extracellular pH, borate and calcium concentration or application of pectin methyl esterase [6].
The studies in “Pollen tubes with more viscous cell walls oscillate at lower frequencies” by Kroeger
& Geitmann investigate further the nature of pollen tube growth oscillations. The authors show that
these are not harmonic, non-isochronous and the period of oscillation depends on their amplitudes. To
analyse the experimentally known reduction of average growth rate of pollen tubes upon application of
extracellular calcium or borate, the well-known Lockhart growth model was generalised by considering
a time-dependent cell wall viscosity. For the dynamics of the cell wall viscosity, it was assumed that the
changes in viscosity are inversely proportional to the cytosolic calcium concentration. Borate is thought
to modify rheological properties of pectin, a major component of the pollen tube cell wall. The influence
of borate on the growth dynamics was addressed by changing the value of the maximal density of bonds
between pectin monomers during the growth cycle, given as a parameter in the equation for the cell wall
viscosity.

In order to understand plant development, it is essential to use the cell as the main modelling unit.
Growth is then represented as a sequence of cell division, expansion and differentiation, of which the
direction and magnitude contribute to the formation of organs [3]. The coupling between elastic defor-
mation of plant cell walls, growth and internal biochemical processes was considered in “Deformable cell
model and its application to growth of plant meristems” by Bessenov, Mironova & Volpert. The
developed elastic model distinguishes between expanding, growing and dividing, as well as only deform-
ing cells. An individual cell at the equilibrium was represented as a regular polygon with a number of
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vertices, connected by springs, and a particle of certain mass in each vertex. Three forces acting on the
vertices and depending on the changes of side length, angle and volume were considered to define the
elastic deformations. It was shown that the direction of cell division is crucial for the properties of growing
cell structures. One of the important features of plants is the formation of self-similar structures which
reproduce the same cell organisation during development. The precise choice of mechanical properties
of cell walls ensures the existence of self-similar solutions of the considered elastic growth model. The
growth hormone auxin is essential for the regulation of growth. To analyse the dynamics of auxin in a
plant organ its diffusion and polar transport were introduced into the model.

Along with biomechanical processes, the uptake of water and nutrients by plant roots and their
transport through plant organs are essential for proper development. Transport proteins are required
for the movement of solutes through membranes, which represent the interface between symplast and
apoplast [19]. A first model of water transport in plants, describing the flow in analogy to an electric
current through a resistor network, was presumably the one proposed by van den Honert [22,35]. Pressure
assumes in that approach the role of the electric potential and the flux of water is given by the product of
the hydraulic conductivity and the pressure gradient. Later, this pressure driven flux was extended to in-
clude osmotically driven fluxes (diffusional fluxes) and the concept of water potential was introduced [28].
Along with models of solute transport around roots and uptake on the root surface [33], the description
of the movement of water and solutes inside a root tissue or organ requires new modelling approaches,
which include a precise description of the interaction of the symplast and apoplast. A multiscale model
for water and solute transport in a plant tissue was developed in “Homogenization approach to water
transport in plant tissues with periodic microstructures” by Chavarŕıa-Krauser & Ptashnyk. The
model considers the microscopic structure of a plant cell comprising continua of symplast and apoplast.
The derived transmission conditions at the cell–membrane–cell wall interface reflect the osmotic nature of
water flow through semipermeable membranes. Transport of the solute was allowed to take place opposite
to the gradient of chemical potential by means of surface reactions. The authors derived a macroscopic
model for fluid flow and transport of osmotically active solutes using multiscale analysis. The macroscopic
flow velocity follows a Darcy law with a force term, where the driving force is given by the local difference
of symplastic and apoplastic solute concentrations.

The development of computational methodological modelling frameworks provides easy implemen-
tation of analytic approaches to study aspects of complex biological systems. The software platform
presented in “Development and Evaluation of Plant Growth Models: Methodology and Implementation in
the PYGMALION platform” by Cournéde, Chen, Wu, Baey & Bayol aims exactly at providing such
a modelling framework. PYGMALION (Plant growth model analysis, identification and optimisation)
purposes at providing an easy implementation of discrete in time Markovian models describing different
compartments of a plant. The platform was developed in C++ and evaluation of a model, sensitivity
analysis and parameter estimation are the main tools incorporated in the software. To account for the
uncertainty and to provide sensitivity analysis for inputs of the models, the regression coefficients method,
Sobolev’s variance-based method and Morris’s method were implemented. Frequentist and Bayesian ap-
proaches were included in the platform for estimation of parameters. Classical models and a new Log
Normal Allocation and Senescence model for sugar beet growth comprising foliage and root compartments
were implemented in PYGMALION and presented in the manuscript.

The world agriculture is now under numerous new pressures. The global population is rising, climate
change will produce more droughts and extreme weather, the fertility of soil is declining, water is becoming
more scarce and the cost of fertilisers is increasing. Reliable plant models are required to address these
challenges. They could assist land management, so that all field inputs are in response to weather and
soil data, and crop yield is maximised based on model predictions [1]. Models could also be used to
identify traits that make crops better adapted to future environmental conditions [2]. Unfortunately,
current models are not able to predict reliably the responses to changes in environmental conditions, as
plants are extremely adaptable organisms. A new generation of plant models must be developed to better
predict plant growth responses. Processes of various types and at different scales, from a single cell to the
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entire organism, will be required to communicate between themselves and interact with the environment.
This special issue demonstrates that numerous modelling concepts exist. It is now the time to unify these
concepts and propose generic frameworks to face the upcoming challenges of agriculture.
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