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Abstract

The Plancherel formula for various semisimple homogeneous spaces with non-reductive stability group is
derived within the framework of the Bonnet Plancherel formula for the direct integral decomposition of a
quasi-regular representation. These formulas represent a continuation of the author's program to establish
a new paradigm for concrete Plancherel analysis on homogeneous spaces wherein the distinction between
finite and infinite multiplicity is de-emphasized. One interesting feature of the paper is the computation of
the Bonnet nuclear operators corresponding to certain exponential representations (roughly those induced
from infinite-dimensional representations of a subgroup). Another feature is a natural realization of the
direct integral decomposition over a canonical set of concrete irreducible representations, rather than over
the unitary dual.

1991 Mathematics subject classification (Amer. Math. Soc): primary 22E46; secondary 22E45.

1. Introduction

This paper is a direct sequel to [11]. It is also heavily dependent on the ideas and

results in [9,10,12] and [13]. In this paper, as in those, the prime objective is to

construct the Plancherel theory of the quasi-regular representation of a homogeneous

space. More precisely, given a Lie group G and a closed subgroup H, let us assume

that the quasi-regular representation T = XG.H — Ind^ 1 is type I. Then there is a

unique direct integral decomposition

/•©

(1.1) r = / n^
Jd(H)
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[2] The Plancherel formula for the horocycle spaces and generalizations, II 195

Here G(H) denotes the irreducible unitary representation classes of G that are weakly
contained in r , a closed subset of the unitary dual G. The Plancherel theory that is
derived in the previously cited papers includes a specific analytic formula that provides
detailed information not only on the structure of G(H), the multiplicity function nn

and the Plancherel measure /x, but also on an intertwining operator that effects the
direct integral decomposition. This is done in [9] and [10] in various cases that
manifest finite multiplicity (that is, nw < oo, /z-a.e.); it is done in [12] and [13] for
certain infinite multiplicity situations. The fundamental philosophy of [12] is that
these two cases—usually thought of as very different—can be treated in a uniform
manner. Moreover, the Penney-Fujiwara Plancherel formula (PFPF) and the Bonnet
Plancherel formula (BPF), the analytic formulas that express the Plancherel theory
in the two cases, are really the same gadget if interpreted properly (see [12, Remark
2.3]).

Our goal is to demonstrate very concretely the last assertion. We do that by
considering a category of homogeneous space in which the multiplicity is either
uniformly finite or uniformly infinite, depending on some geometric or measure-
theoretic invariant. Then we show how to derive explicitly the Plancherel theory for
both cases by parallel techniques. This program has been carried out for G nilpotent
in Fujiwara's two papers [4,5]; for Strichartz spaces with trivial stabilizer in [12];
and for general Strichartz spaces in [13]. In [13, item (1.3)], I proposed pursuing this
program for these categories of homogeneous spaces:

(1.2i) general Strichartz homogeneous spaces;
(1.2ii) semisimple homogeneous spaces with non-reductive stability group;
(1.2iii) nilpotent homogeneous spaces—a reformulation and simplification of the
work of Fujiwara—and then exponential solvable homogeneous spaces;
(1.2iv) semidirect product homogeneous spaces H\G, where G is the semidirect
product of a subgroup H of the symplectic group with a normal Heisenberg group;
(1.2v) reductive homogeneous spaces.

We realized the goal for (1.2i) in [13]. In this paper we will realize it for (1.2ii).
The spectrum of the quasi-regular representations we consider will always con-

sist of induced representations. Sometimes the inducing representations will be
finite-dimensional, sometimes infinite-dimensional. The resulting representations
will therefore be polynomial sometimes ([10]), at other times exponential ([13]). We
will present our Plancherel formulae in the exact same fashion regardless—namely,
as a so-called Bonnet Plancherel formula. This is usually done only in the case of
infinite multiplicity; but as we explained in [12], the Penney-Fujiwara format (in the
finite multiplicity case) is really no different—if it is interpreted properly.

There is one more important point to be made before we proceed to the details.
For many homogeneous spaces that we encounter—in particular, for those in this
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paper—the Plancherel formula is derived in a form different from formula (1.1).
More seriously, it occurs in a different form from formula (2.2) in Theorem 2.1.
Namely, the parameterization occurs in Irr(G), a concrete set of irreducible unitary
representations of G, rather than in the dual G:

/•e
(1.3) x = / ndv{n).

Jln(G)

To convert (1.3) into the form (1.1), one must factor by unitary equivalence. The
Plancherel measure /x will then be a pseudo-image of v. That is not so troublesome as
the fact that the nuclear operators that appear in the BPF (see Theorem 2.2) can become
considerably more complicated in the factored form. Because of [12, remark 2.3.7],
this means that the intertwining operator that effects the direct integral decomposition
of T also becomes more complicated in the factored form. See Section 3.1 for an
instance of these troubles. We mention here only that the experience leaves one with
the surprising conclusion that it is sometimes better to express a Plancherel formula in
terms of a decomposition over Irr(G), where the multiplicity is not explicitly stated,
than in terms of a decomposition over G.

2. Nuclear operators and the Plancherel formula

In this section we recall from [12] the basic results on canonical nuclear operators
associated to induced representations. We also reestablish the fundamental facts found
in the BPF and the PFPF. The context is always that x = r c w is a type I representation,
resulting in a well-determined Plancherel decomposition (1.1). Finally, we always
assume that G is unimodular.

We begin by fixing a choice of right Haar measures dg, dh on G and H respectively.
We write Aw forthemodularfunctionof H (that is, the derivative of right Haar measure
with respect to left). By assumption, A c = 1. We choose once and for all a smooth
function q = qHG satisfying q{e) = 1, q(hg) = AH(h)q(g), Vh e H, g e G.
Now suppose n is a unitary representation of G acting on a Hilbert space Jf^.
We write JV™ to denote the Frechet space of C°° vectors and Jf~°° for its anti-
dual space of distributions (that is, conjugate linear functionals). As usual we set
(v,a) = a(v), v € Jf™, a e J^'00, a sesquilinear form. n(G) acts on both J^°°
and Jtf-°°, and it is a well-known fact that 7r (^(G))^-°° c ^ ° ° , if S>(G) is the
test space of compactly supported, infinitely differentiable functions on G. Given the
direct integral decomposition (1.1), it is known from [6] and [14] that

= J rix
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We refine the latter of these as follows. Set {J^-°°)H-i~m = {a € Jif'00 : n(h)a =
q~l/2(h)a, Vh € / / } . It is established in [9] that the distribution ar : f -> f(e) lies in
(j£?~°°) ••? ^ gjjj j t s m a t r j x coefficient {r(co)ar, ar), co e &{G), is calculated there
as follows:

r(co)ax(g) =toH(g),

where

(2.1) «„(#) = <T1/2(£) /" W ^ - ' / J - 1 ) ^ - 1 / 2 ^ ) rfA, co e 0(G);

and by a routine change of variable (see [9, Proposition 2.2])

(z(co)aT,ar) =o)H(e)= I co(h-l)q-i/2(h)dh = f co(h)q-l/2(h)dh.
J H J H

THEOREM 2.1 (BPF). [2, Theoreme 4.1] For fi-a.a. n, there exist positive nuclear
operators Un : Jf?K°° ->• J^-°° such that

(2.2) coH(e)= f Tr[7r{co)UAdfi(n), a> e 9(G).
J6(H)

Furthermore, the pair (fj., {Un}K€Q) is unique up to positive scalars c(n); that is, any
other pair (/z', {U^}^^) satisfying formula (2.2) must be related to the original by

' = c(n), Un = U^/C(TT), for some positive Borel function c(n).

We make use of the structure established in [12, Section 2]. In particular, we have

(2.3) n(h)Un = q-{'2(h)Un, Unn{h) = q[/2(h)UK, h e H.

The first of these is proven in [13, Section 2]. The second is not established there, but
the method of proof is exactly the same as the first (using the left translate coh instead
of the right translate coh of a test function co e @(G)). Now in the case that almost all
of the operators Un have finite rank, Theorem 2.1 specializes to

THEOREM 2.2 (PFPF). [4, Theoreme 1] [14, Theorem II.6] Suppose that

nn = rank Ux < oo, fi-a.e.

Then the multiplicity in (1.1) is finite /x-a.e., and for fi-a.a. n, there exist nn linearly
independent distributions ft,..., /?£» € r a n g e d ) C (Jf~°o)Hq ~"2 such that

)«T, ar> = f
JG(H)

(2.4) (r(<w)«T, ar> = f J^(n(co)ft, ft) dn(n), co e @{G).
J
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To see how to construct the fa out of UM, consult [12, Remark 2.3.6]. Now,
as the phrase was coined in [12], by a concrete Plancherel formula for a category of
homogeneous spaces H\G, we mean explicit expressions for: /it, the nuclear operators
Uw —or the distributions fiJ

n, and the summable operators n (co) Un —or smooth vectors
TT((D)PI. These lead to a totally explicit intertwining operator in either case (see
[9,10,12]).

Next, since we are concentrating on the situation wherein the spectrum of r consists
of induced representations, we focus on a single representation from the spectrum.
Suppose that n is an induced representation n = Ind^ o. We shall say that n is
exponential with respect to H if o is infinite-dimensional and the following conditions
are satisfied.

(2.5a) There exists a positive nuclear operator Ua : Jf^ —> <fft~x that is left and
right invariant under H n B.
(2.5b) BH is closed in G.
(2.5c) qHr,B,H qHnB.B = 1 on / / n B.
(2.5d) For any co G C^(B, H n B), the operator

/„, u>(b)a(b)-'Uadb
I HDB\B

is trace class.

See [13, Section 2] for a thorough discussion of the meaning and appropriateness of
each of these conditions.

We take the usual realization and action for the induced representation n, namely
its space Jfn is the Hilbert space completion of

C?{G, B,a) = [f:G-+J%,f is C ° ° , f(bg) = a(b)f(g), beB,geG,

H/ll is compactly supported mod B]

and G acts by the formula

(2.6) n{g) f(x) = fixg)[qB,cixg)/qB.Gix)y/2.

The norm is relative to the unique quasi-invariant measure on B\G determined by
<7BG. (For a review of q functions, see [7].)

Suppose that we are given a positive nuclear operator Ua : J^00 —>• Jfa~
x that is

left and right H n B -invariant. Given that, we now define the positive nuclear operator

VAo):*%°-+^x

by the formula

(fuUA*)f2)= f f (Mhi),Uaf2ih2))
JHnB\H JHr\B\H

(2.7) x ^; / 2
c(/j ,)^.^(/z,)^^1

n B,W(/ j i)^B/ 2
G^2)^2^2)<7^1nB,w(/i2)^, dh2.
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[6] The Plancherel formula for the horocycle spaces and generalizations, II 199

Then we have

THEOREM 2.3. [13, Theorem 2.3]

(i) Uj, (o) is well-defined.
(ii) Un (a) is relatively invariant under the action ofH with modulus q~xl1 = q~H G ,

that is

(2.8) UAcr H"2

(iii) For to e 3>(G), the operator-valued function TT{u>)U^(a) is given by the
formula

7T(co)UAv)f(g)= f f coH(bg)a(b)-lUaf(h)
JHDB\H JHDB\B

(2.9) x q'B]i,\bg)q^2
G{bg)q-H\BB{b)qfG(h)q-H^{h)q-H\BHW dbdh

where coH is defined in (2.1).
(iv) For co e 9+{G), the character Trlnico)^(a)] is

Tr[n(co)UAo-)] = I Tr f coH(bh)a(bylUa
JH(~\B\H JHnB\B

(2.10) x q-Bf(b)qll2
c(h-<bh)qH^B(b)qH^H(h)dbdh.

The trace is a non-negative number, possibly equal to +oo, provided to = a)\ * to\,
cox € 3>{G).

In the next section we pass to the case of non-reductive semisimple homogeneous
spaces. That is, we assume G is a semisimple Lie group and H is a non-reductive
subgroup. Actually, we are more demanding of H—we assume it is a canonical
subgroup of a parabolic containing the nilradical. In that case, the representations
that appear in the spectrum of the quasi-regular representation are always induced
representations—in fact, induced from the parabolic itself. Speaking roughly, we
are looking at semisimple homogeneous spaces whose spectrum avoids any discrete
series. Said another way, we are concentrating on quasi-regular representations whose
spectrum consists of representations whose associated Duflo-Kirillov functionals have
non-totally complex polarizations.

3. Canonical non-reductive semisimple homogeneous spaces

Now let G be a semisimple Lie group. Let P be any parabolic subgroup. Denote
its Langlands decomposition by P = MAN. If we fix Haar measures dm, da, dn
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on the unimodular groups M, A, N, then dmdadn is left Haar measure on P, and
fN / ( " ) dn = e2p(loga) JN f(ana~x)dn, where p is one-half the sum of the positive
roots (on the Lie algebra a with respect to n). In particular, e2p(loga)dmdadn is right
Haar measure on P and AP(man) = e2pa°sa) is the modular function.

Now we consider a subgroup H of G satisfying N c H c P. Moreover we
assume that H is 'canonical', that is, H is one of the groups associated naturally to
the Langlands decomposition. In short, we will consider the four examples:

(I) H = MN;
(II) H = MAN, that is, H = P;

(III) H = AN;
(IV) H = N.

In each case it is known, in principle, how to derive the soft Plancherel formula,
that is the abstract direct integral decomposition of the corresponding quasi-regular
representation into irreducible unitary representations. It is our goal in this paper to
give, in each case, using the theory described in the last section, the more explicit
BPF. The soft decomposition will reveal the Plancherel measure. We have to compute
the Bonnet nuclear operators in each case.

To give the soft Plancherel formulae, we only need to apply induction in stages,
inducing through the parabolic to decompose the quasi-regular representation. We
give the full computation for the first and fourth examples, and essentially the full
computation for the second and third. Before doing so, we establish some notation for
the principal series representations of G that are obtained by inducing from P. For
any character A. e A, and any irreducible unitary representation a e M, we write

(3.1) nx,a = lnd%MAN a x A. x 1.

It is well known that these induced representations are generically irreducible. More
precisely, if we restrict A. to the generic open set A' of regular characters (those
not preserved by any non-trivial element of the finite Weyl group W = WP =
Normc(A)/CentG(i4)), then nKa is irreducible. It is also known that there is some
duplication, namely nx,a = nv,CT' if and only if there is an element of the Weyl group
that conjugates (A,, a) into (A/, a').

Now for the decompositions. Case (I) decomposes:

= I n d ° / 1 x
JA

= /
JA

kxldk
A

1 x A. x 1 dk
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[8] The Plancherel formula for the horocycle spaces and generalizations, II 201

(3.2) = f nXAdk
JA

(3.3) = f #(W)nkAdk,

where dk is the image of Lebesgue measure dk under the canonical projection A —•
A/W. The representations iti,i, k e a cross-section in A' for A'/W, are irreducible
and inequivalent. So we have a decomposition with uniform multiplicity #(W). Next
we examine case (III):

I (dimcr)cr
JM

x 1 x ld/j,M(a)

I c
= I (dimcr) lndp a x 1 x \d/xM(a)

JM
, o

(3.4) = / (dim a) nUa d/xM(a)
JM

(3.5) = / #(W/Wa){dima)n^diiM{G),
JM/W

where Wa is the stability group in W of a e M, /xM is the Plancherel measure of the
reductive group M, and JIM(0) is the image of Plancherel measure /xM(^) under the
canonical projection M —*• M/W.

In general, we can be certain that n\,„, a € M, is irreducible only when Wff

is trivial. Otherwise, although it is often irreducible, the representation nUa may
decompose into a finite direct sum of inequivalent irreducible representations. (See
[11, Section 3a] for a very simple example.) If the parabolic in question is not
minimal, the numbers dim a will be uniformly infinite. If the parabolic is minimal,
the multiplicity will be finite, but it may be bounded or unbounded.

Next we pass to case (II). If P is minimal, then the induced representation rG P is
irreducible (see [8, Section 11]). If P is not minimal, then the decomposition of xGP

is an interesting problem that has been determined in many, but not all, situations. We
shall have more to say on this later.

Finally, we come to case (IV). It is very easy to essentially mimic the computation
for case (I) above to see:

(3.6) = I {Aima) nx,a dixMA{a,k)
JMA
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(3.7) = I #(W)(dima)nk.adCLMA(v,V,
J(MxA')/W

where /u.MA — \xM x dk is the Plancherel measure of the reductive group MA,
and jlMA(a, X) is its image under the canonical projection MA —>• (MA)/W. The
representations nx,a, (A, ex) e M x A', are irreducible. If P is not minimal, the
multiplicity is uniformly infinite. Otherwise, it will be finite; but may be either
bounded or unbounded.

3.1. Generalized horocycle spaces Now we deal with the concrete Plancherel for-
mula for generalized horocycle spaces, that is the homogeneous space G/MN. We
allow P = MAN to be any parabolic subgroup of the semisimple group G. The
soft Plancherel formula is prescribed in the decompositions (3.2), (3.3). In particular,
we see that the multiplicity is finite and uniform. Thus one only needs the PFPF to
describe the concrete Plancherel formula in this case. This is already done in [11].
Here we shall give a BPF (as if the multiplicity were infinite) and relate the description
to the one in [11]. Naturally, we utilize the machinery in Section 2.

First, we specify the q functions. In this case we have H = MN, a unimodular
group. Hence, we choose qHG = qMN,c = 1 on all of G. Here, as in all the cases, the
polarizing group B, from which the representations are induced, is P itself. Therefore,
the intersection of the polarizing group and the stability group H will always be H
(since in all cases H c P). Therefore we must have qHr,B.H = qH.u = 1 on //. Next,
IHHB.B = quN.MAN = 1 on MN. We extend it to P by setting qMN,MAN(man) =
&.~MAN(man) = e-

2P^°%a\ Finally, we have qBG{man) = qP G(man) = AP(man) =
e2P(ioga) o n p -yye e x t e n c i ^ to G as follows. Let A' be a maximal compact subgroup
of G. Then G = PK = MANK. The overlap is M n K. So we can choose
unambiguously qB G{mank) = qP G(mank) = e2p(Xo%a).

The representations in the spectrum are Jtx = nAj. These representations are
induced from the characters X. So, since the inducing representations are not infinite-
dimensional, the representations are not, strictly speaking, exponential. But the four
conditions in (2.5) are satisfied. This is obvious for (b) and (c). As for (a) and (d), we
make the only conceivable choice for the nuclear operator U\, namely the identity on
the one-dimensional space of k. We then invoke formula (2.7) and Theorem 2.3. The
operator U7Ii is defined on the space of Jff^ by

(3.8) {fuUJ

We see immediately from part (iv), formula (2.10), of Theorem 2.3, that

J A
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which is exactly the formula at the end of the computation of [ 11, page 48]. Concluding
as in that case, we replicate the Plancherel formula in [11, Theorem 2.2], namely

THEOREM 3.1. For rMN, we have the concrete Plancherel formula

(3.9) Qiunie) = f Tr[jr(to)/7TJ dk, co e 3>(G).
JA

Formulas (3.8) and (3.9) represent the BPF corresponding to the soft Plancherel
formula (3.2)—as well as corresponding to the PFPF in [11, Theorem 2.5]. We leave
it to the reader to check that the Bonnet nuclear operators UKx and the Penney dis-
tributions fix (see [11, pp. 48-49]) are related as they should be (see [12, Remark
2.3]). Instead, we observe that one may reasonably ask what is the BPF that cor-
responds to the formula (3.3). This question highlights the following general issue.
Often one is able to derive a Plancherel formula (in either soft or hard fashion) in
which the parameter space for the decomposition, say X, maps naturally to G. That
is, corresponding to each x e X, we have an irreducible representation nx, and the
association of the unitary class {rcx } of nx to x is the asserted map. Of course the map
x —> [nx], X —> G will rarely be surjective. The problem is that it also may not be
injective. Thus a Plancherel formula, say in the BPF format, may be derived in the
form

(3.10) o)H(e) = I Tr[nx{oo)UWt}du(x), co e
Jx

Strictly speaking, if x —>• {nx} is not injective, formula (3.10) is not in accordance
with the format of Theorem 2.1. To bring it into the proper format, we must pick a
smooth cross-section, say X, for the equivalence relation x ~ x' -£>• nx = 7r.v-, pick an
appropriate pseudo-image jl of /J. on X — X/ ~ , and, most difficult of all, recompute
the nuclear operators UKt, x e X, as nuclear operators Unx, x e X, so that

= f
Jx

(3.11) coH(e) = f Tr[nAco)U^]dp.(x), co
Jx

The interesting point to note is that the new nuclear operators 0n< may be considerably
more complicated than the original (4 , . In fact, one of the key points of this paper
is that the realization of the Plancherel formula in the 'appropriate' form (3.11) may
be much less natural than in the 'inappropriate' form (3.10). This will be nicely
illustrated by the current example. Let us now compute the BPF for the generalized
horocycle spaces when we factor out unitary equivalence.

We select the usual cross-section A+ in A for A'/ W. Namely, since A is identified to
the real vector space of all real linear functionals on a via X(exp(Y)) = eik{Y\ Yea,
we can choose A+ to be the characters whose corresponding functional takes positive

https://doi.org/10.1017/S1446788700034959 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034959


204 Ronald L. Lipsman [11]

values on the positive Weyl chamber (in a, determined by n). Now let S\ = e,S2, • • •
denote a (finite) set of representatives in NormG(.A) for the elements of the Weyl group
WP. It is classical to specify the intertwining operator corresponding to the equivalent
representations irk and 7tk.s by

Ts • f -»• / f(nssg)dhs,

where Ns = sNs ', No = N D Ns, and dhs is the invariant measure on the
quotient space. The integral plainly converges on the dense space of functions
/ € C™(G, P,\ x X x 1) c J^n, and extends uniquely to a unitary intertwining
operator of nk with nk.s. Then a relatively simple computation gives us

coMN(e) = I
JA

= f Tr[7ii(co)U*Jdk,
JA+

where

sew

It is a simple exercise to expand and obtain the formula for the nuclear operators

(3.12) (fuOxJ2) = y]f f Msn)Msn')dhdn'.
seW J(s~'NsnN)\N J(s-'NsnN)\N

Combined with Theorem 3.1, this yields

THEOREM 3.2. We have the second concrete Plancherel formula

(3.13) % « ( « ) = I Tr[7r,(O>)LUdX, ooe®(G).
JA+

The reader may be the judge. Personally, I prefer the Plancherel formula of Theorem
3.1 (with formula (3.8)) to that of Theorem 3.2 (and formula (3.12)). The parameter
space is very natural, even if not a subspace of G, and the formulation of the nuclear
operators is much clearer. This preference is even stronger when the multiplicity is
infinite—as in two of the remaining three examples in the paper. Incidentally, this
theme repeats itself in many other places in the literature. The BPF of Fujiwara [5] can
be simplified substantially if one does not insist on a parameter space in G for nilpotent
homogeneous spaces. (The author plans to take that up in a future publication.) A
similar theme is apparent in [1].
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3.II. Generalized flag manifolds Once again we have finite multiplicity and so the
results here are based upon [11, Section 2b] exactly as the results of the last subsection
were related to those of [11, Section 2a]. Let P be a minimal parabolic subgroup
of G. Then [8] the quasi-regular representation xc P is known to be irreducible. Let
us be more general for a moment. Suppose we have a quasi-regular representation
r = xG.H that is irreducible. Moreover, suppose it is an irreducible representation of
G whose unitary equivalence class is the same as that of r . Then by Theorem 2.1,
there must exist a unique positive nuclear operator Un (H) : J^°° —• J^°° such that

coH{e) = Tr[n(co)UAH)], a> e 9(G).

In some sense Un(H) measures the interaction between the two realizations of the
point in G determined by r and n. Indeed, it yields the intertwining operator between
them (as in [11, Section 2b]).

Now return to the case xGP with P minimal. Let P2 be any other minimal parabolic
subgroup of G. Then it is well known (from Harish-Chandra's character formulas)
that xc.p and x2 = xGPl are equivalent as well as irreducible. We can read off the
Bonnet nuclear operator UTl(P) from [11, formula (2.9)] and [12, Remark 2.3.3],
namely it is

= f Mn)dn [ h{n')dh\
JNO\N

where N is the nilradical of P and No is the intersection of N with the nilradical of
Pi. The actual intertwining operator may be found in [11, Theorem 2.6]. If P is not
minimal, then xG./> may be irreducible, or it may decompose into a multiplicity-free
direct sum of irreducible representations. If it is irreducible, the same analysis as
above holds. If on the other hand

is a finite direct sum, the ingredients in the BPF may be difficult to describe. As
we know from [12, Remark 2.3.3], there are distinct elements in (Jf?JT~oo)Pq "", from
which we can construct the Bonnet operators Unj. Finding these distributions is
a difficult chore. Incidentally, it is clear from [14], that this chore is the same as
determining either the intertwining space of x or equivalently the projections onto the
irreducible subspaces.

3.III. Rossi-Vergne spaces In this subsection, we come to a situation in which
multiplicities are (usually) infinite, and so much more germane to the fundamental
premise of the paper. We consider T G ^ for an arbitrary parabolic P = MAN. Unless
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the parabolic is minimal, the numbers dim cr in the soft Plancherel formulae (3.4),
(3.5) will be uniformly infinite. We shall make the tacit assumption that P is not
minimal, although of course the BPF we shall derive is applicable even in those cases
(for which the multiplicity is finite).

We start as in Section 3.1 by specifying the q functions. In this case we have
H = AN, a non-unimodular group. In fact we have qH.G — QAN.G = &AN

 o n AN,
so we extend it naturally to G by setting qn.dg) — e2p(]oga) if g = mank. Of course
we still have B — P, so qHnis.H = <JH.H = I on H. Next, qHnB.B = (JAN.MAN =

A/,w/AM/i« = 1 on AN. We extend it to P by setting it equal to 1 everywhere.
Finally, we have qB,G(man) = qPG(man) = AP(man) = e

2p{]°ia). We extend it to
G by qBG{mank) = qPC(mank) = e

2f>(^a>.
The representations in the spectrum are n" = nla. These representations are

induced from the representations a x \ x I on MAN. We are tacitly assuming the
inducing representations a are infinite-dimensional, although what follows holds even
if they are not. The four conditions in (2.5) are satisfied for the following reasons. It
is obvious for (b). Condition (c) holds because of the prior choices of q functions. To
take care of (a) and (d), we again make the only conceivable choice for the nuclear
operator Un, namely the identity operator. Condition (a) is clear, and (d) follows from
the basic result of Harish-Chandra that irreducible unitary representations of reductive
groups are traceable. It says that for a reductive Lie group M (in the Harish-Chandra
class), the operators

r
a)(m)o(m)dm, co e 3>{M),

are trace class. We next invoke formula (2.7) and Theorem 2.3. The operator U^ is
defined on the space of Jifj,* by

(3-14) (fuUa.f2) = (Me),f2(e)).

We apply part (iv), formula (2.10), of Theorem 2.3, as well as the q function choices
above to conclude that

Tr[7ra(aj)tV] = Tr / (oAN{m)a{m)~x dm.
J M

But then an application of the Plancherel formula on M yields immediately

THEOREM 3.3. For rAN, we have the concrete Plancherel formula

(3.15) coAN(e) = I Tr[na(co)U^]dfiM(a), co e

J M
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Formulas (3.14) and (3.15) represent the BPF corresponding to the soft Plancherel
formula (3.4). As in Section 3.1, we can derive the BPF corresponding to the alternate
Plancherel formula (3.5) in which the parameter space is rendered free of Weyl
group duplication, but at the cost of making the description of the nuclear operators
considerably more complicated. In fact the intertwining operators are exactly the
same as in Section 3.1, and we leave the virtually identical details to the reader. We
also reiterate that some of the representations na may decompose finitely.

3.IV. Whittaker spaces The results here are very similar to those in the previous
subsection. We omit some details. We consider XG,N for an arbitrary parabolic
P = MAN. As in Section 3.Ill, unless the parabolic is minimal, the numbers dimcr
in the soft Plancherel formulae (3.6), (3.7) will be uniformly infinite. The BPF we
derive works in either instance, although we presume we are in the infinite multiplicity
case.

We specify the q functions. In this case H = TV, is unimodular, so we set
qH.c = QN.C = 1 on G. AS always qHr>B.H = QH.H = 1 on / / . Next, qHnBB =
qNMAN = &~MAN ° n N- w e extend it to P by setting qHnBB(man) = e-

2pa^a).
Finally, we have as before qB c(mank) = qP c(mank) = e

2P^°za\
The representations in the spectrum are nkM as defined in (3.1). The four conditions

in (2.5) are satisfied for the following reasons. It is obvious for (b). Condition (c)
holds because of the prior choices of q functions, (a) holds once we make the usual
choice for the nuclear operator Ux.a, namely the identity operator. Finally, condition
(d) follows from Harish-Chandra's result, this time applied to the reductive group
MA. We next invoke formula (2.7) and Theorem 2.3. The operator £/„-. n is defined
on the space of 3HCn. „ by

(3.16) (fuUn,J,) = (ft(e),f2(e)).

We apply part (iv), formula (2.10), of Theorem 2.3, as well as the q function choices
above to conclude that

r
-p(loga)coN(ma)o(mylk(a)e~pUoga} dmda.

IMA

4;J = Tr f
J M.

But then an application of the Plancherel formula on MA yields immediately

THEOREM 3.4. For z^, we have the concrete Plancherel formula

(3.17) coN(e) = f Tr[7rk.a(<o)Un,JdfiM(a)dk, co e ®(G).
J MA

Formulas (3.16) and (3.17) represent the BPF corresponding to the soft Plancherel
formula (3.6). As usual, we omit the details for the concrete Plancherel formula
corresponding to (3.7).
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4. Remarks

We make several remarks to conclude the paper.

4.1. Of course the usual Plancherel formula for a locally compact unimodular
type I group is included in the statement of the BPF (Theorem 2.1). However in that
case the Bonnet nuclear operators are just the identity, and so bounded. It would be
interesting to characterize when (almost) all the operators Uw that appear in a BPF are
bounded. Here is a sufficient condition for that to happen.

PROPOSITION 4.1. Let G be unimodular and type I, and let K c G be a compact
subgroup. Let x = TG.K be type I. Then the spectrum ofz is precisely G(K) — {n e
G : nn = dim Jiff > 0}, where J?* = ( § £ / „ : n(k)$ = £, VA: e K}. Let Un be
the projection of Jfn onto Jf^. Then we have the Plancherel formula

, e
coK(e)= I Tr[Tr(co)Ux]dix(n), co e ®{G),

Jd(K)

where fi is the Plancherel measure of G restricted from G to the open subset G(K).

PROOF. This is certainly not a new result, although an exact reference to the lit-
erature is difficult to locate. That G(K) is open in G follows from the observation
that the set {1} is open (and closed) in Rep(/0 and the restriction map G —*• Rep (K)
is continuous. The derivation of the BPF in this context follows from the Plancherel
formula of G. It goes as follows. The Plancherel formula of G gives

-Lo(e) = / Trn(a))dn(jr), co e
Jc

Apply the formula to the test function co right translated by an element k e K to get

co(k) = I Tr[7r(co)n(k)]dfi(n).
Jc

Then integrate over K to obtain

coK(e)= I f Tr[K(co)7T(k))dn(n)dk

JG JK
Tr[n{co)n{k)]dn(n)dk

G J K

~la
This completes the proof. •
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Note of course that the case K = [e] is included; as is the case of a semisimple
Lie group G with a maximal compact subgroup K. These two cases seem to rule out
any connection between the boundedness of the nuclear operators and the multiplicity
function in the direct integral decomposition. The case G compact is also included, so
any connection with all representations being 'intrinsically' induced representations
is also excluded. It may be that the condition of Proposition 4.1 is actually necessary.
In fact, I do not know what the proper characterization might be—but I think it is an
interesting question.

4.2. In all the cases considered in Section 3, we observe the following structure. We
have a unimodular group G and two subgroups H C B c G, where for almost every
irreducible unitary representation a that appears in the direct integral decomposition
of TB.H, the induced representation nn = Indg a is irreducible. In such a situation we
have the following soft representation-theoretic decomposition: suppose TB.H is
I, and that

/ naad/j,(a);
JB{H)

then

r®
naitad\x(a).I

JBB(H)

Since all the irreducibles that appear in the decomposition are induced representations,
it might be that we could use Theorem 2.3 to derive the BPF in this very general
category, and so avoid the separate computations of Section 3. There is, as we shall
soon see, a serious problem. But let us apply Theorem 2.3 and see where we get stuck.
We reason heuristically by ignoring all modular functions and all q functions. The
spaces of the representations na are described by (2.6) and the corresponding nuclear
operators by (2.7). Since H D B = H, we see the latter devolve to

(4.1) (/i,I/, ,/2) = ( / iW, ( / j 2W) .

That is what happened in Section 3, although there, Ua was the identity. Applying
Theorem 2.3, part (iv), and using the fact that Ua is //-invariant, we compute

B(H)

= [ Tr f coH(b)o(b)-lUadbdn(o)
JB(H) JH\B

[ f
JH\B JH

Tr [ f co(b-lh-x)dha(byxUadbdix{o)
B(H) JH\B
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= / Tr I to(b)a(b)Undbdn(a)
JB(H) JB

= f TT[a((o)Ua]dfi(<T).
JB(H)

Now, presuming the operators Ua arose in the BPF for TB / W, we simply apply that

result to conclude that the last expression is precisely coH (e). That would establish the

BPF for XG.H with the nuclear operators UKa arising from the Un by means of formula

(4.1). But there is a problem, namely the group B may not be unimodular. It certainly

is not in any of the examples in Section 3. Therefore the application of Theorem 2.1

is inappropriate, and we must treat each individual situation separately.

4.3. Can we develop a form of Theorem 2.1 for non-unimodular groups? That is,

is there a Bonnet-type Plancherel Theorem for homogeneous spaces G/H in which

no unimodularity assumption is placed on G? It is known that, with appropriate mod-

ifications, the classical Segal-Mautner-Godement Plancherel formula for unimodular

groups was extended to non-unimodular groups [3,7]. I hope to take up a parallel

extension for homogeneous spaces in a future paper.
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