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O N G L E A S O N ' S D E F I N I T I O N O F Q U A D R A T I C F O R M S 

BY 

T. M. K. DAVISON 

§1. Introduction. Suppose R is a commutative ring with identity. Let M be 
an R -module, and suppose / is a function from M to JR. How do we 
characterize the property that / be a quadratic form? One approach is in terms 
of bilinear forms as follows. 

DEFINITION (Jacobson [2, Definition 6.1]). / : M —» R is a quadratic form if, 
and only if, the following conditions are satisfied: 

(i) / is quadratically homogeneous; that is 

(1) VaeRVxeM f(ax) = a2f(x) 

(ii) F(x, y) is bilinear on MxM —»• R, where 

(2) V x , y e M F(x, y) = /(x + y ) - / ( x ) - / ( y ) . 

In [1] Gleason proved: Suppose that 1? is a field, not of characteristic 2, and 
not the field of 3 elements. Let M be a vector space over R. If / : M —» R 
satisfies /(0) = 0, and Vx, y e M, Va e K 

(3) /(ax + y ) - / ( a x - y ) = a[/(x + y ) - / ( x - y ) ] , 

then / is a quadratic form. 
As a routine computation with bilinear forms shows, all quadratic forms / 

satisfy /(0) = 0, and (3). So, at least for the fields delineated in the hypothesis of 
Gleason's theorem, equation (3) characterizes quadratic forms. In this paper 
Gleason's theorem is generalized as follows. 

THEOREM. Suppose R is a commutative ring with identity. In order that every 
function /, with domain an R-module, which satisfies f(0) = 0 and (3), be a 
quadratic form it is necessary and sufficient that 2 be a unit of R and the only 
element keR having the property that (a4-a2)k = 0 for all aeR is k = 0. 

REMARK. If, in addition to 2 being a unit in R, 3 is not a zero divisor in R 
then (a4-a2)k = 0 implies k = 0. (Just take a = 2.) 

It is easy to see that Gleason's theorem is a consequence of the above result. 
The necessity of the condition on JR is proved in §2, and the sufficiency (which 
is more difficult) in §3. 

Received by the editors June 29, 1979 and, in revised form, November 12, 1979. 

233 

https://doi.org/10.4153/CMB-1981-036-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-036-4


234 T. M. K. DAVISON [June 

§2. Proof of the necessity. 

LEMMA I. If 2 is not a unit in R there is an R-module M and a function 
f : M -> R which satisfies /(0) = 0, and (3) which is not a quadratic form. 

Proof. Take M = R3 and define 

J o if ae2R and be2R and ce2R 

(̂ 1 otherwise 

Then / (0,0,0) = 0, and / satisfies (3) since f(ax + y) = f(ax-y) for all azR, 
x, yeR3. However F is not bi-additive and so not bilinear. For, as is easily 
verified, F((l , 1, 0), (0 ,0 ,1) ) -F( (1 ,0 ,0) , (0,0, 1)) -F((0 ,1 ,0) , ( 0 ,0 ,1 ) )=1 , 
not 0 as it would be were F additive in the first variable. 

LEMMA 2. Suppose 2 is a unit in R, and suppose there is a non-zero element 
keR such that (a4-a2)k = 0, for all aeR. Then there is an R-module M, and 
a function f :M —> R which satisfies /(0) = 0, and (3) which is not a quadratic 
form. 

Proof. Let M = R2, and let p, q : M-+R be the canonical projections. Let k 
be as above. Set f(x) = kp(x)2q(x)2. Then /(0) = 0. And 

f(ax + y ) - f(ax - y) = 4akX(a2Y + Z) 

where X = p(x)q(y) + p(y)q(x), Y = p(x)q(x), Z = p(y)q(y). Thus / satisfies (3) 
if, and only if, 4a3kXY = AakXY. But the identity(1) (a - l)[(a + l ) 4 - (a + l)2] -
(a + 3 ) [ a 4 - a2] = 2a3-2a and the definition of fc shows that 2a3k = 2ak for all 
aeR. Thus / satisfies (3). But / is not a quadratic form: it does not satisfy the 
well-known parallelogram law 

(4) / ( * + y) + / ( x - y ) = 2/(x) + 2/(y). 

Just take x = (1, 0), y = (0, 1), in (4). Then the left-hand side is 2fc, and 2k± 0 

since 2 is a unit and k^O whereas the right-hand side is 0. 

§3. Proof of the sufficiency. In this section we assume 2 is a unit in R and 
the only element annihilated by all a4-a2 is 0. As usual M denotes an 
i?-module. 

LEMMA 3. If f : M -» R satisfies /(0) = 0, and equation (3) then f is quadrati-
cally homogeneous. 

Proof. Letting x = 0, and a = 2 in (3) we deduce that /(y) = / ( - y ) , for all 

(1) Supplied by the referee. 
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y G M. Next let y = ax in (3), to deduce that, using f(x — ax) = f(ax — x), 

f(2ax) = a[f(x + ax) - f(x - ax)] 

= a[f(ax + x) - f(ax - x)] 

= a2[f(2x)-f(0)l 

Thus, for all aeR, and for all x e M, we have 

(5) f(2ax) = a2f(2x). 

But 2 is a unit of R. So (5) is equivalent to (1). 

The following auxiliary function is the key to the success of the proof. Let 
f : M -^ R be given. Define 

(6) P(x,y) = /(x + y) + / ( x - y ) - 2 / ( x ) - 2 / ( y ) . 

It is well known that when 2 is not a zero-divisor in the ring (see e.g. Gleason 
[1]) that F is bi-additive if, and only if, P is identically 0, which is, of course, 
the parallelogram law. [See e.g. (3)] 

LEMMA 4. If f : M —> R is quadratically homogeneous then P(ax, ay) = 
a2P(x, y), for all aeR, all x, y G M. 

Proof. Immediate. 

LEMMA 5. Let yeM be fixed. Define <f> : M —» R by <f>(x) = P(x, y), for all 
xeM.Iff:M->R satisfies /(0) = 0 and (3) then (f)(0) = 0 and 4> satisfies (3). 

Proof. That <£(0) = 0 is easy. Let aeR, x,zeM. Then 

<t>(ax + z) - 4>(ax — z) = f(ax + z + y) + f(ax + z - y) - f(ax -z-y) 

- f(ax - z + y) - 2(f(ax + z) - f(ax -z)) 

= /(ax + z + y ) - / ( a x - ( z + y)) 

+ f(ax + z- y) - / ( a x - (z - y)) 

- 2a ( / (x + z ) - / ( x - z ) ) . 

Hence, using the fact that / satisfies (3) again 

4>{ax + z) - (f)(ax -z) = a(f(x + z + y) - / ( x - z - y)) 
-fa(/(x + z - y ) - / ( x - z + y)) 
-2a(/(x + z ) - / (x -z ) ) 

= a(<f)(x + z)- 4>{x - z)); 

which shows that <\> satisfies (3). 

LEMMA 6. If /(0) = 0, and f satisfies (3) then P(ax, y) = a2P(x, y). 

https://doi.org/10.4153/CMB-1981-036-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1981-036-4


236 T. M. K. DAVISON 

Proof. In the notation of Lemma 5 this says <j)(ax) = a2<f>(x); which is a 
consequence of Lemma 3, since <$> satisfies (3). 

LEMMA 7. If /(0) = 0, and f satisfies (3) then P(x, y) = 0, for all x, y e M. 

Proof. Let x , y e M be fixed. Then, for all aeR, a2P(x,y) = P(ax,ay) 
(Lemma 4) = a2P(x, ay) (Lemma 6) = a2P(ay, x) (symmetry of P) = a4P(y, x) = 
a4P(x, y). Hence, for all aeR (a 4-a 2)P(x, y) = 0. So, by our assumption 
about the nature of R, it follows that P(x, y) = 0; as claimed. 

We now have all the pieces available to prove that if /(0) = 0, and / satisfies 
(3), then / is a quadratic form. For as we have shown in Lemma 3, / is 
quadratically homogeneous. Moreover, F is bi-additive since / satisfies the 
parallelogram law P = 0, (see [3]). We show finally that F is bi-homogeneous. 

Define following Gleason, H(x,y) = f(x + y) — f(x — y). Then (3) may be 
restated as H(ax, y) = aH(x, y). Furthermore, H(x, y) + P(x, y) = 2F(x, y), so 
the fact that P = 0 implies that H = 2F, and so 2F(ax, y) = 2aF(x, y). Finally, 
since 2 is a unit of JR we deduce that F is homogeneous in the first variable, 
and so by the symmetry it is bi-homogeneous. This completes the proof that F 
is bilinear, and so / is a quadratic form. 

I would like to thank the referee for his helpful comments and detailed 
suggestions. 
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