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A CHARACTERIZATION OF WHITE NOISE
TEST FUNCTIONALS

H.-H. KUO, J. POTTHOFF anp L. STREIT

§1. Introduction and main result

In a recent paper [PS 89], two of the present authors have found a
characterization of a certain space (¥)* of generalized functionals of white
noise, i.e. generalized functionals on Y'(R) equipped with the ¢-algebra
# generated by its cyclinder sets and with the white noise measure p
given by

[ exp (i )dntx) = exp (—12E).

for £e #(R). Here, ||, denotes the norm of LXR), and (-, - dual pair-
ing. Below, we shall shortly recall the construction of the space (¥)*
as the dual of a space (&) of “smooth” functionals on ¥ (R). The char-
acterization mentioned above is of considerable power: it provides an
extremely convenient way to decide whether a certain given functional
is an element in (¥)*. This has been shown in [PS 89] for a number of
examples (especially for certain measures on %'(R)). The purpose of the
present note is to give a similar characterization for the elements (&) of
test functionals. For notation, definitions, more background and refer-
ences, we refer the reader to [PS 89].

Let I'(A) denote the second quantization of the self-adjoint L(R)-
operator A which on #(R) is defined as

A&(u) = —&"(w) + (1 + uh&(w), e MR), ueR.

Let # denote the algebra of smooth polynomials on ¥(R), ie. & is
generated by the random variables X, = (-, &), £§e #(R). For p >0, let
Z(R) denote the completion of F(R) with respect to the norm [&[,, =
| A&, and let (&), denote the completion of & with respect to the norm
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llolle,, = II'(A)?¢|l;, where ||-|,, ¢ = 1, denotes the norm of L(¥'(R), &%, 1)
= (L9). The corresponding dual spaces are denoted by &_,(R) and (¥)_,,
respectively. Then we define the space () of test functionals of white
noise as the projective limit of the family {(¥),, peN,}, and denote by
(&)* its dual. Note that #(R) is the projective limit of the family
{(ZA(R), peNy}, cf. eg. [Si71]. Every element ¢e(L*) admits a chaos
decomposition

1.1) o= i;oIn(F““),

PN
where F® ¢ L¥(R"), ~ denoting symmetrization, and I,(F ™) is the multiple
Wiener integral of F™ of order n. It can be shown that ¢ e (%) implies

P

that for every neN, F™ has a version belonging to &#(R"). Moreover,
¢ € (L*) corresponding to (F™; neN,) belongs to (&) if and only if for
every pe R,

(1.2) gl = 5 nlI(AYE ™},

The norms under the last sum will also be denoted by |F ™|, .
On (L9, ¢ > 1, and for & e #(R), we define the #-transform (cf. also
[KT 80]) of an element ¢ by

Pe) = [ ol + Odptx) .
Note that we have the formula
F0(@) = [ o(@: exp (x, &1 dp(a),
where we have set
texp (x, &) = exp (¢x, & — Lief)
If ¢ € (I*) has a chaos decomposition as in (1.1) then
19 Fpe) = 3 | Fowewd,

as an easy direct computation shows.
Since for all 2 C and ¢e L(R), :exp (-, &) :e(¥), we may extend
the #-transform consistently to (¥)* by setting for @ e (¥)*

(1.4) FOE) = (D, :exp (-, §):) .
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It is not hard to see that for all @ e (¥)*, and ¢&e #(R), the mapping
A~ FO(2&) has an entire analytic extension to C. Clearly, it is given
by

2—> (D, :expz(., &), zeC.

In the following we shall study analytic properties of this function.
To this end we introduce the following notions for mappings

fiCXFR)—> C
(2,8 +—>f(z,9).

For R >0, and & ¢ #(R) set
MR &= suw |fz 8.

Also, we shall use the notation
B = {¢6e S(R); |&].-, < 1},
for real p.

DerFINITION 1.1.
(a) f is called of p-order p, p >0, if and only if

lim sup Inln M(R, §) _

P InR o

uniformly on B}.
(b) Assume that f is of p-order p, p > 0. f is called of p-type ¢, r €
[0, + oo], if and only if

limsupR*In M(R, &) =,
R

uniformly on Bj.

(¢) fis called of p-growth (p, ), if and only if f is of p-order not
exceeding p, and if of p-order p, then f is of p-type not exceeding <.

Assume that F'is a ray entire function on #(R), i.e. for every & pe
F(R), the mapping 1— F(2¢ 4+ 1) has an entire analytic continuation.
The function z— F(z§) is denoted by f(z,&). Then we shall use the
notions p-order, p-type and p-growth also the function F.

In [PS 89] a ray entire F of (— p)-growth (2, z), for some p > 0, and
¢ >0, was named a U-functional. The main result of [PS 89] was the fact
that any element in (¥)* has an &-transform which is a U-functional, and
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conversely, for any U-functional F there is a unique element @ e (¥)*
with LO(&) = F(&).
The main result of the present paper is the following theorem.

THEOREM 1.2. If ¢pe(¥) then F¢ is ray entire and for every p >0
of p-growth (2, 0). Conversely, if F is ray entire on ¥(R), and for every
p >0 F is of p-growth (2, 0), then there is a unique element v € (%) whose
SP-transform is equal to F.

The plan of the paper is as follows. Section 2 contains the proof
of Theorem 1.2. In Section 3 we discuss some of consequences and ex-
amples.

ACKNOWLEDGEMENT. Two of us (J.P. and L.S.) acknowledge gratefully
the warm hospitality of Professor T. Hida and the Department of Math-
ematics at Nagoya University.

§2. Proof of Theorem 1.2

Assume that F is ray entire and of p-order p > 0. If F is of p-type
0, we have by definition

limsup R*InM(R, &) =0

R—

uniformly on B} and consequently

lmR*In M(R,&) =0

R—o
uniformly on Bj. But this implies that for every ¢ > 0 we have
2.1) lim M(R, £)e~*" =0,

R-oo

uniformly on B}. On the other hand, if (2.1) holds uniformly on B}, then

it entails that F is of p-type 0. Thus we have proved the following
result.

LEmMMA 2.1. F is of p-growth (2,0) if and only if for every ¢ > 0 and
e #(R),

lim M(R, §)e~*** =0,

R0
uniformly on B}.

Now we prove the first statement of Theorem 1.2.
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LemMma 2.2. If o e(¥) then F¢ is for every pe N of p-growth (2, 0).

Proof. Let pe(¥) and &eF(R). Denote by z— f(z,£) the entire
extension of 1 — Fp(2¢). The self-adjointness of I'(A) and Schwarz’ ine-
quality provide for every g > 1, and ze C, the following estimation.

11z 9] = (g, : €9 2)]
= (I (A, T(A)* &0 )
= [(I'(A)%gp, 1 e*47% 1)|

@l - €47 2 ;..

The last norm can easily be evaluated:
o p2{, ATAE) . — 1 2 2
e i), = exp (Liatisn )
Therefore we have the bound
£, 1 < 19l exp (F12FIR-0) -
which is valid for all ze C and all g e R. Clearly, this gives the estimate
MR, §) < [19le ex0 (5 BIEE )

for all R >0, and all real q.
Now choose g large enough so that for given pe N, and given ¢ > 0,
22e-0 ¢, Then we find for & e S(R) with |&],_, <1
MR, 9" < ol exp | (s — 547 a-7¢p)R]
<@l o™,

since for ¢ > p we have ||A?-?|| < 27-%. Obviously this tends uniformly on
B} to zero. Thus an application of Lemma 2.1 concludes the proof. [

The proof of the second statement of Theorem 1.2 will be done in a

sequence of lemmas.
From now on assume that F' is a ray entire function on £(R), which

is of p-growth (2, 0). Also denote
f(z, 8 = F(z¢), zeC, teZR).

The power series expansion of f(-, & will be denoted as follows.
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flz, &) = 3 2£.(9).

The next result has been shown in [PS 89].

LemMma 2.3. Let F be ray entire and of p-growth (2,0). Then F is
infinitely often Gdteaux differentiable in every direction of #(R). Moreover,
for all neN, £e #(R)

148 = —-(D:F)(©),
n.

where D, denotes the Gdteaux derivative in direction & In particular,
f™(&) is homogeneous in £ of degree n.

LemMma 2.4. If F is of p-growth (2,0), then for all K > 0 there is
n,e N so that for all n > n,, and for all ¢ e #(R)
(2.2) |fa(6)] < e~ *nnl=2Efr .

Proof. Assume for the moment that |&,_,=1. It follows from
Lemma 2.1 that for every ¢ > 0

lim M(R, &)e % = 0,

R—oo

uniformly on Bj}.
Let K, > 0 and choose ¢ = ¢ ***, Choose R, large enough so that for
all R > R,

M(R, &)e~*" < 1.

Note that R, is independent of £e Bf. Let R = max(R,, n'%*"). Then
for n, large enough we have R = n'%** for all n > n,. Cauchy’s theorem
gives the estimate

£ < (e e,
for all » > n,. Stirling’s theorem shows that
[f(8)] < nl-1e-Kr-Kan

where K, is a certain constant. Choose K, above such that K, — K, = K
and inequality (2.2) is proved for & with |&], _, = 1.

For general £ e ¥(R) inequality (2.2) follows now by homogeneity of
fae a
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Next we construct from f, by polarization an n-linear form F™ on
F(R). For &, - -, &, e R) we set

23)  F®, - 8) = S (=P N flE o &)
n. k=1 1< <1k

If we combine Lemma 2.4 with formula (2.3) we easily obtain the
following estimate (an analogous result is proved in detail in [PS 89]).

LEmma 2.5. For every K > 0 there is n,e N so that for all n > n,,
and all &, -, &, e (R)

(2.4) IFOE, - -, £)] < e-Krpl-i kfi[lleklz,_p .

Let &_,(R") denote the completion of #(R*) under the norm |g},_,
= |(A®")"?g|,. Note that the set of elements {®Q7.,&,; & € L(R)} is total
in &_,(R". Then inequality (2.4) tells us that the n-linear form F®,
which we may consider as a linear form on #(R)®", has a continuous
extension to & _,(R"). We denote this extension by the same symbol.
Therefore, we may now consider F' as an element in #,(R"), the dual
of & _,(R". The next lemma estimates the |:|;,-norm of F™ under a
slightly stronger hypothesis.

LEmMMA 2.6. Assume that F is of (p + g)-growth (2,0) with q > 1/2.
Then for all K > 0 there is n,e N so that n > n, implies

|F®, < nl-ie-kn,

Proof. Note that

lF(n)Ig.p = X i =0[F(")(Apekn ) Apekn)IZ )

Ly kn

where {e,; k€ N} is any CONS of L*R) in the domain of A?. Choose e,
to be the k-th Hermite function and note that Ae, = 2(k + 1)e,, ke N,.
Then we know that for any K, > 0 there exists n, (depending on K, p, q)
so that for all n > n, we have

|[F™(Arey,, - - -, A%e, )| < nl-1e K ﬁ [ A%y, (ps )
1=1

— pl-12g-Kin ﬁ 2k, + 1))-7.
r=1

Therefore,
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51 IFOWey, -, Ao, )l < nlviemngte( (k4 1))
0 k=0

Ki1yeeeykp=

S n!-—le—Z(Kl—Kg)n ,
for some constant K, > 0. Finally, choose K, so that K, — K, = K. [

LemMAa 2.7. If F is of (p + q)-growth (2,0) for some q > 1/2, then
there is a unique element ¢ in (%), so that ¢ = F.

Proof. First of all note that the hypothesis that F is of (p + ¢)-
growth (2, 0) implies that for every ne N, F™ ¢ .&,, (R"), so in particular
F® e (R". Also, by construction F™ is symmetric. Now set

0= > L(F™),
n=0

By construction, ¢ e (%), if and only if (1.2) is finite. But the estimate
of Lemma 2.6 shows that this is true. O

It is clear that the second statement of Theorem 1.2 follows imme-
diately from Lemma 2.7.

§3. Consequences and examples

As a first illustration of our theorem let us investigate the question
whether the composition of foX, of a function f in the Schwartz space
F(R) of test functions with the random variable X, = (-, ), ne€ #(R),
belongs to (¥). As a special case, let us choose f to be the Gauss func-
tion f(u) = exp(—3$u?). It is an easy exercise to compute

Pol6) = L+ )" — exp (— 3 B,

for
o(x) = fo X, = exp <——%—<x, 77>2> .

It is obvious that ¥y is not of type 0. Therefore ¢ does not belong to
(¥), and consequently in general the answer to the above raised question
is negative.

Based on Theorem 1.2 we can very easily establish a result which
has already been proved in [PR 89] by other methods, and which describes
a large class of examples in (&) of the above type.
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THEOREM 3.1. Let pe #(R), and f be a function on R whose Fourier
transform f belongs to L(R) and has compact support. Then foX, e ().

Proof. By Fubini’s theorem, we find that
FFo X, = oy [ f(p)rero@)dp.

It is plain to compute the #-transform under the last integral:
ip(e . 1
Fer(§) = exp (zp(é, 7 — gpzlvlé) ,

where (-, -) is the inner product of L*R). Thus we have the formula
(ze ©O)

BD  feX) = @) | f(p)exp (izp, ») — 5-pl7E)dp -

First of all note that the fact that / has compact support allows us to
differentiate with respect to ze C under the integral sign in (3.1). From
this we obtain immediately that the function z— &fo X, (2§) admits the
Cauchy-Riemann equations and therefore &fo X, is ray entire.

Assume that suppf c [N, N], N> 0. Then we can estimate for
every pe N as follows.

M(R, &) = slli}; |Lf o X,(28)]

< (2”)—1/2‘fllemv|(e,,,),
< @R) | fliemetmsine,

where ||, is the L'(R)-norm. Clearly, this bound shows that &foX, is
for every pe IN of p-order 1 and consequently of p-growth (2, 0). O

ExampLE 3.2. Note that the function f(u) = u'sinu, u e R satisfies
the hypothesis of Theorem 3.1. Therefore ¢ given by

_ sindx,p
p(x) = ——==12,
<%, 7
belongs to (&). Since (&) is an algebra (e.g. [HPS 88]), so ¢*€(¥). ¢
was used in [PR 89] to show that every smooth bounded cyclinder func-
tion can be approximated by sequences in (&) in the topology defined by
certain Dirichlet forms over #(R).

xe ' R), e ZR),

ExampLE 3.3. If f is entire and of growth (2, 0) (cf. e.g. [Bo 54]), and
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we pick 5 e #(R), then for all pe NN,

F(§):=fe (7,8

is of p-growth (2,0). This follows as above from the estimate |(y, §)| <
[}, p|€ls,-p and the finiteness of [g|,, for all p. Therefore any such pair
(f, p) gives rise to an element in (¥). For example, we may choose for

f the functions z > cos 4/ z or z— I'(2)~"

Note added in proof. After this manuscript was submitted, we
learned that Ju. G. Kondrat’ev had obtained similar results in “Nuclear
spaces of entire functions in problems of infinite-dimensional analysis”;
Soviet Math. Dokl., 22 (1980), 588-592.
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