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Measurements of the levels of biogenic amine metabolites in
cerebrospinal fluid (CSF) have been carried out in patients with
various degenerative disorders. In Friedreich’s ataxia (FA) and
olivopontocerebellar atrophies (OPCA), most studies have
involved only a few patients (less than 10).1,2 Furthermore, the
groups of patients studied were often heterogenous and included
various cerebellar pathologies.1,3

The relationships between brain amines and motor and non-
motor behaviours involved in the clinical picture of heredo-

ABSTRACT: Background: The aims of the present study were: i) to measure levels of the dopamine metabolite homovanillic acid
(HVA), the serotonin metabolite 5-hydroxindoleacetic acid (5HIAA) and precursor tryptophan, as well as the noradrenaline metabolite
3-methoxy-4-hydroxyphenylethylene glycol (MHPG) and thiamine in the cerebrospinal fluid (CSF) of patients with Friedreich’s ataxia
(FA), olivopontocerebellar atrophy (OPCA), and the autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSAC), as compared
with sex- and age-matched control subjects. Patients and methods: CSF amine related compound levels and thiamine results were
compared in 40 FA, 44 OPCAand nine ARSAC patients with those of 94 sex- and age-matched subjects. Neuroimaging (CT scans and
single photon emission computed tomographies i.e. SPECT) were carried out in all patients and controls. Genetic studies were
conducted on OPCApatients. CSF amine related compounds were measured by high performance liquid chromatography, whereas CSF
thiamine levels were measured by a microbiological method. Results: FA patients had significantly lower CSF HVA, 5HIAA and
thiamine values than control patients and a trend for lower MHPG levels. In OPCA patients, CSF HVA, MHPG and thiamine values
were markedly lower whereas CSF 5HIAA values showed only a trend towards lower levels; in ARSAC patients only thiamine and
HVA CSF values were lower than those in control subjects. Conclusion: After presenting the relationships between neurochemical
findings on one side, the degree of ataxia, the degree of cerebellar atrophy and the SPECT findings on the other, the authors concluded
that replacement and neuroprotective clinical trials in these patients would have to include two or three drugs because the
neurotransmitter deficiencies are multiple.

RÉSUMÉ: Métabolites d’amines biogènes et thiamine du liquide céphalorachidien dans les ataxies hérédo-dégénératives. Introduction: Les buts
de cette étude étaient de mesurer les niveaux d’acide homovanillique (HVA), un métabolite de la dopamine, d’acide 5-hydroxindoleacétique (5HIAA)
, un métabolite de la sérotonine, et de son précurseur, le tryptophane, ainsi que du 3-méthoxy-4-hydroxyphényléthylène glycol (MHPG), un métabolite
de la noradrénaline et de la thiamine dans le liquide céphalorachidien (LCR) de patients atteints d’ataxie de Friedreich (AF), d’atrophie
olivopontocérébelleuse (OPCA) et d’ataxie spastique autosomale récessive de Charlevoix-Saguenay (ARSAC) et de les comparer à ceux de sujets
contrôles appariés pour le sexe et l’âge. Patients et méthodes: Les niveaux de composés reliés aux amines du LCR et les résultats de thiamine ont été
comparés chez 40 patients atteints d’AF, 44 d’OPCAet neuf d’ARSAC à ceux de 94 sujets contrôles appariés pour le sexe et l’âge. Des examens de
neuroimagerie (CT scan et tomographie à émetteur gamma i.e. SPECT) ont été effectués chez tous les patients et les contrôles. Les patients atteints
d’OPCA ont également subi des tests génétiques. Les composés reliés aux amines du LCR ont été mesurés par chromatographie à haute pression en
phase liquide et les niveaux de thiamine ont été mesurés par une méthode microbiologique. Résultats: Les patients atteints d’AF avaient des valeurs de
HVA, de 5HIAAet de thiamine du LCR significativement plus basses que les sujets contrôles et une tendance à des niveaux plus bas de MHPG. Chez
les patients atteints d’OPCA, les valeurs de HVA, de MHPG et de thiamine du LCR étaient beaucoup plus basses, alors que les valeurs de 5HIAAdu
LCR avaient seulement une tendance à être plus basses; chez les patients atteints d’ARSAC, seulement les valeurs de thiamine et de HVA du LCR
étaient plus basses que celles des sujets contrôles. Conclusions: Les auteurs présentent les relations entre les observations neurochimiques d’une part
et le degré d’ataxie et d’atrophie cérébelleuse et les observations de neuroimagerie d’autre part et ils concluent que les essais thérapeutiques de
remplacement et de neuroprotection chez ces patients devraient inclure deux ou trois médicaments à cause des déficits multiples en neurotransmetteurs.
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ORIGINAL ARTICLE

degenerative ataxias have been investigated in both experimental
animals4-8 and humans.9-11 The data from these studies have lead

https://doi.org/10.1017/S0317167100052811 Published online by Cambridge University Press

https://doi.org/10.1017/S0317167100052811


LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES

Volume 28, No. 2 – May 2001 135

to small clinical trials of a number of different compounds in
cerebellar degenerative diseases but no marked clinical
improvement has been demonstrated. 12

In a previous study, we found low levels of thiamine in the
CSF of patients with heredo-degenerative ataxias.13 This is
relevant to possible alterations of biogenic amines because of
e x p e r i m e n t a l1 4 , 1 5 and clinical9 , 1 6 , 1 7 data linking thiamine
deficiency with a lowering of both serotonin and noradrenaline,
particularly in the cerebellum.

The aims of the present study were: i) to measure levels of the
dopamine metabolite homovanillic acid (HVA), the serotonin
metabolite 5-hydroxindoleacetic acid (5HIAA) and precursor
tryptophan, as well as the noradrenaline metabolite 3-methoxy-
4-hydroxyphenylethylene glycol (MHPG) in the CSF of patients
with three well-defined heredo-degenerative ataxias, i.e. FA,
OPCAand the autosomal recessive spastic ataxia of Charlevoix-
Saguenay (ARSAC), as compared with sex- and age-matched
control subjects; ii) to look at the relationship between CSF
amine metabolite levels and thiamine concentration, and; iii) to
investigate whether there is a relationship between the levels of
thiamine and amine metabolites in CSF and the degree of ataxia
and of cerebellar atrophy, as measured by computed tomography
(CT) scans and magnetic resonance imaging (MRI), and blood
flow, as measured by the single-photon emission computed
tomography (SPECT).

METHODS

Patients and controls
Ninety-three patients suffering from heredo-degenerative

ataxia (40 FA, 44 OPCAand nine ARSAC) were compared with
94 sex- and age-matched subjects who underwent spinal tap
either for lumbar disc herniation or negative clinical
investigation for other neurological disease.

Some patients were enrolled from the Ataxia Clinic of Hôpital
Hôtel-Dieu de Montréal, in order of presentation at the outpatient
clinic. Others were referred by the Canadian Association of
Friedreich’s ataxia and recruited from the entire province of
Québec. X-ray, CT and MRI studies were carried out in all
patients before their inclusion in the study. Those showing
central (i.e. ventricular dilatation) and cortical (i.e. cortical sulci
dilatation) atrophies according to previously-defined
radiological criteria18,19 were excluded, so that only patients with
clearly identified cerebellar damage were included in this study.
Others excluded were OPCA patients with even mild
parkinsonian signs, as assessed by reinforcement methods.20

Finally, epileptics, alcoholics, patients with medical diseases in
evolution, and patients taking medications which could interfere
with the metabolism of biogenic amines, were excluded. Also,
those taking vitamins, as well as those with dietary deficiencies,
were excluded from the present study. Dietary deficiencies were
determined on the basis of a dietary assessment by a dietician,
and on the basis of plasma vitamin levels. The patients gave
informed consent to participate in the study, which was approved
by the Research Ethics Board of the hospital.

All FA adult patients included in this study fulfilled the
diagnostic criteria of Harding.21 Genetic studies were undertaken
in the OPCApatients in the laboratory of Dr. Guy Rouleau at the
Montréal General Hospital.2 2 These studies allowed us to

classify the autosomal dominant OPCApatients into two groups:
those with SCA1 in which the locus is on chromosome 6p, and
those with SCA2 in which the locus is on chromosome 12q.

Patients with ARSAC fulfilled the diagnostic criteria of
Bouchard et al23 and were originally from Charlevoix-Saguenay
county in the province of Québec.

Clinical assessment
Besides the routine clinical neurological examination, the

degree of ataxia in the upper and lower limbs was assessed as
mild to moderate or severe following previously established
criteria.19 Ataxia in OPCA patients was assessed for both upper
and lower limbs. In FA patients it was done only for the upper
limbs, because they were already paraplegic (see below).

The degree of cerebellar atrophy was assessed as mild to
moderate or severe by inspection of the films by the
n e u r o r a d i o l o g i s t1 9 using previously defined radiological
criteria.18,24,25.

Crossed cerebello-cerebral diaschisis was initially described
using SPECT in patients with unilateral cerebellar infarcts.26-30

In a previous study, out of 15 OPCA patients with marked
reductions in cerebellar hexamethylpropyleneamine oxime
( H M PAO) uptake, 11 had bilateral fronto-parietal HMPA O
hypoperfusion in spite of a normal CT scan at the supratentorial
level.28 Therefore we carried out SPECT studies in all our
patients in order to establish the metabolic effects at a distance
from the anatomical (cerebellar) gross macroscopic damage. The
method was fully described in our previous papers.28,31

Biochemical measures
All patients underwent routine laboratory tests. CSF was

collected by lumbar puncture on fasting patients between 8:00 a.m.
and 9:30 a.m.

Thiamine status was determined solely on the basis of CSF
levels, without taking into account the plasma levels. This was
done for two reasons, namely: i) in a previous study13 we showed
that in heredo-degenerative ataxias, plasma vitamin levels are
normal whereas CSF thiamine levels are low. In this study the
important variable is the amount of vitamin available to the
brain; and ii) low plasma levels due to borderline deficiencies
might be corrected by improved nutrition during a short stay in
the hospital, but recovery of CSF levels would take longer.

Thiamine levels were determined by the microbiological
method, in duplicate, using Lactobacillus fermenti.32 When low
values of thiamine were found, an additional incubation was
carried out with added thiamine to check that no inhibitors of
bacterial growth were present.3 3 Using this method of
verification, the normal values of CSF thiamine in our laboratory
are higher than 24 ng/ml. This is in good agreement with levels
reported by Baker and Frank, 32 and by Rindi et al. 34

Tryptophan, 5HIAA, HVA and MHPG were measured in CSF
using high performance liquid chromatography with
fluorometric and electrochemical detection.3 5 , 3 6 All of the
biochemical analyses were done blind to the clinical assessment.

Statistics 
From a pool of 101 control subjects, three control groups

were matched by age and sex with patient groups by an
independent researcher not involved directly in the study. Thus,
the three control groups differed slightly because of the
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somewhat different age and sex profiles of the three patient
groups.

The sex ratios of the patients and the controls were compared
using a X2 test. Differences in length of illness between the
patients were assessed using an analysis of variance (ANOVA)
for parallel groups. Finally, the CSF values between the patients
and the controls were evaluated using a 2 by 3 ANOVA.

Similarly, a 2 by 2 ANOVA was used to compare values from
the FA and OPCA patients, including the degree of cerebral
atrophy, the degree of ataxia and the presence or absence of
diaschisis.

For all the variables, the critical level of significance was set
at five per cent.

RESULTS

Clinical measures
All but six of the FApatients were confined to a wheelchair; all

had paraplegia and a bilateral cerebellar and upper motor neuron
syndrome as revealed by Babinski sign. Thirty-one had dorso-

lumbar scoliosis, 39 had polyneuropathies, nine were diabetics and
nine had cardiomyopathies. Twenty-eight FA patients had mild-
moderate, and 12 severe, ataxias of the upper limbs.

Of the OPCA patients, 20 had autosomal dominant OPCA,
corresponding to form 3 from the classification of Huang and
Plaitakis,37 in whom the SCA1 locus maps on chromosome 6p,
and 24 patients had autosomal dominant OPCAcorresponding to
form 5 n of Huang and Plaitakis, in whom the SCA2 locus maps
on chromosome 12q.22 This latter form is characterized by slow
ocular saccades. 3 8 There were no biochemical diff e r e n c e s
between the two variants (data not shown).

All OPCA patients were able to walk; 14 had a mild ataxia,
14 had a moderate ataxia, and the remaining 12 had severe
cerebellar ataxias. Twelve had polyneuropathies, while four had
bilateral or unilateral plantar extensor response.

The nine patients with ARSAC had the classical clinical
picture: spastic paraparesis with ataxia of gait, dysarthria, distal
muscle wasting, posterior column signs. 2 3 Six had
polyneuropathies and in eight patients the sensory action
potentials in the lower limb were absent. All patients, except for

Table 1: CSF Neurochemical Findings in Patients with Heredo-Degenerative Ataxias

Variables Friedreich’s ataxia OPCA ARSAC
Sex ratio M/F Patients 23/17 21/23 2/7

Controls 20/20 22/22 3/7
Age (years) Patients 29.0±0.9 43.8±1.9 38.0±3.2

Controls 31.2±1.1 43.4±1.9 39.6±3.4
Lenght of the ilness (years) Patients 18.7±1.0 15.0±1.6 33.0±5.7
HVA Patients 31.4±2.4** 31.3±2.4** 27.8±4.7**

Controls 51.2±4.3 51.7±3.1 63.3±13.3
Tryptophan Patients 493±28** 430±22 368±40

Controls 405±19 406±20 346±21
5HIAA Patients 18.5±1.7** 21.3±2.3 19.1±4.2

Controls 25.7±2.0 26.2±l.9 24.1±2.6
MHPG Patients 7.84±0.42 7.70±0.44* 6.60±1.0

Controls 9.06±0.54 9.13±0.38 9.01±1.1 
Thiamine Patients 26.4±1.6** 23.6±1.8** 15.2±1.44** 

Controls 34.6±1.7 32.7±1.5 33.1±1.7

* p < 0.05, ** p < 0.01 when contrasting mean values of the patients with those of their respective controls.
Except for sex ratio, all values are means±SE in ng/ml.

Table 2. Relationships between the Degree of Ataxia and CSF Neurochemical Findings

Variables Friedreich's ataxia OPCA
Mild-moderate ataxia Severe ataxia Mild-moderate ataxia Severe ataxia

(15M, 13F) (8M, 4F) (11M, 12F) (10M, 11F)
Age (years) 27.6±1.2 29.6±1.1 42.3±2.9 45.4±2.5
HVA 33.9±3.0 25.5±3.8 34.2±2.9 28.2±3.9
Tryptophan 465±32 558±50 421±19 440±41
5HIAA 20.5±2.2 14.1±2.3 23.9±3.9 18.2±2.1
MHPG 7.50±0.53 8.49±0.66 7.73±0.57 7.69±0.71
Thiamine 26.1±1.8 27.0±3.2 25.6±2.7 21.4±2.5

CSF neurochemical values are expressed as mean±SE in ng/ml.
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one in a wheelchair, were able to walk. Characteristic retinal
striation found in ARSAC was evident in four patients.

Amine metabolites and thiamine
FA patients had significantly lower CSF HVA, 5HIAA and

thiamine values than control patients and had a trend for lower
MHPG levels (Table 1). In OPCA patients, CSF HVA, MHPG
and thiamine values were significantly lower, while 5HIAA
values showed only a trend towards lower levels. In ARSAC
patients (Table 1), thiamine and HVA had mean values less than
half that in control subjects.

While biochemical values did not differ between patients with
mild-moderate ataxia and those with severe ataxia in each
disorder (Table 2), taking FA and OPCA patients together, those
with severe ataxia had lower HVA levels (F1,80 = 4.02, p<0.05).
For CSF 5-HIAA there was only a trend for those with severe
ataxia to have lower levels that those with mild-moderate ataxia
(F1,78 = 3.18, p<0.075), while MHPG and thiamine did not differ
with severity.

While age (F1,80 = 0.16) and levels of HVA (F1,80 = 0.99),
tryptophan (F1,80 = 0.12), 5HIAA(F1,78 = 0.01) or MHPG (F1,74 =
0.001) did not differ between those with mild-moderate and
severe cerebellar atrophy, there was a trend for CSF thiamine
levels to be lower in patients with severe atrophy (F1,80 = 3.49,
p<0.075) (Table 3).

As mentioned above, some patients with heredo-spinocere-
bellar ataxias display a reverse cerebello to basal ganglia to
frontoparietal diaschisis, i.e. a bilateral reduced HMPAO uptake

at the supratentorial level despite a normal CTscan or MRI at the
basal ganglia or cortical levels.28 Table 4 shows values for age
and the biochemical variables in FA and OPCA patients who
were divided into two groups: one with no cerebellar to basal
ganglia to cortical diaschisis and the other with diaschisis.
Patients with diaschisis tended to be older than those without
diaschisis (F1,80 = 3.35, p<0.075), and had higher CSF levels of
HVA (F1,80 = 14.3, p<0.001), 5HIAA (F1,80 = 8.09, p<0.01), and
MHPG (F1,74 = 5.78, p<0.05) than those with no diaschisis.
Thiamine levels did not differ either with diagnosis (F1,79 = 1.35)
or with diaschisis (F1,79 = 1.42).

Covariance analyses did not show any relationship between
CSF thiamine on one hand and CSF amine metabolites on the
other.

DISCUSSION AND CONCLUSION

Our results are consistent with those from a variety of small
studies that found low CSF HVA in patients with FA2,39,40

OPCA1,2 and in multiple system atrophy which encompasses the
overlapping syndromes of OPCAand striatonigral degeneration,
accompanied in many cases by autonomic failure.3 In post-
mortem studies, mild to moderate striatal dopamine loss is a
common but not constant feature of OPCA.41 However, in OPCA
patients having moderate to marked striatal dopamine reduction,
no parkinsonian symptoms were observed, which was explained
by the fact that the degree of dopamine loss did not attain a
critical threshold. Our OPCA patients also did not exhibit any

Table 3: Relationships between the Degree of Cerebellar Atrophy on CT Scans or MRI and the CSF Neurochemical Findings

Variables Friedreich’s ataxia OPCA
Mild-moderate Severe cerebellar atrophy Mild-moderate Severe cerebellar atrophy

(16M, 12F) (7M, 5F) (11M, 12F) (10M, 11F)
Age (years) 29.3±1.2 28.3±1.2 45.4±29.3 42.0±2.4
HVA 33.5±3.0 26.5±4.0 31.6±3.3 31.0±3.6
Tryptophan 501±36 475±38 418±32 443±29
5HIAA 20.0±2.2 14.7±2.1 19.3±3.4 23.3±3.2
MHPG 7.84±0.51 7.84±0.75 7.68±0.54 7.74±0.73
Thiamine 27.6±2.0 23.6±2.2 25.6±2.8 21.2±2.2

CSF neurochemical values are expressed as mean±SE in ng/ml.

Table 4: Relationships between SPECT Studies and the CSF Neurochemical Findings

Variables Friedreich’s ataxia OPCA
No diaschisis Diaschisis Nodiaschisis Diaschisis
(13M, 13F) (I0M, 4F) (I0M, 14F) (11M, 9F)

Age (years) 28.9±1.2 29.1±1.5 41.8±2.4 46.1±3.0
HVA 26.8±2.1 39.9±5.2 25.9±3.0 37.8±3.4
Tryptophan 470±33 535±50 435±37 423±19
5HIAA 17.0±2.0 21.5±3.1 16.1±1.9 27.2±4.1
MHPG 7.38±0.48 8.70±0.77 6.91±0.54 8.60±0.69
Thiamine 25.6±1.7 27.8±3.2 21.7±2.4 26.0±2.8

CSF neurochemical values are expressed as mean±SE in ng/ml.
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parkinsonian signs in spite of the significant reduction of CSF
HVA.

The exact role of dopamine in heredo-degenerative ataxias
remains uncertain. Dopaminergic innervation of the cerebellum
has been documented,42,43 although levels are low, but animal
work supports a relationship between the cerebellum and
striatum. Rats given the neurotoxin 3-acetylpyrdine, which
causes degeneration of the olivocerebellar system, also have low
levels of dopamine in the striatum.44 In our study, OPCAand FA
patients with severe ataxias had significantly lower CSF HVA
values than those with mild-moderate ataxias (Table 2).
Therefore, low CSF HVA is presumably secondary to changes in
the cerebellum. SPECT findings showed that both FA and OPCA
patients with cerebello to basal ganglia to cortical diaschisis have
higher CSF HVA values than those without diaschisis, in whom
the reduced cerebellar HMPAO uptake was limited to the
cerebellar anatomic damage (Table 4). In crossed cerebellar to
cerebral diaschisis, at the subcortical level, we found that remote
reduced HMPAO uptake involved the basal ganglia but not the
thalamus,27,28 a result confirmed in other laboratories.29,30 At the
cortical level, diminution of HMPAO uptake is more pronounced
in the frontal lobe and less so in the parietal lobe. T h e
significance of these findings remains to be elucidated.

Kish et al45 found normal serotonin but elevated 5HIAA
levels in cerebellar cortex of patients with OPCA. Strazielle et
al46 found normal serotonin levels but evidence of degeneration
of serotonin neurons in the brains of lurcher mutant mice, which
are a model of OPCA. The decline in CSF 5HIAA we found is
not as striking as that reported by Trouillas et al40 but is in
agreement with our preliminary findings.2 In our FA patients,
CSF 5HIAAvalues were lower than in the OPCApatients, which
could be explained by the additional involvement of the brain
stem. Thus, the low CSF 5HIAA may have been due to
degeneration of serotonin neurons but the tendency for CSF
5 H I A A and HVA levels to be correlated may have also
contributed to this lowering.47

We found low CSF MHPG values in our OPCApatients, with
a trend to low values in FA patients (Table 1), although levels in
ARSAC patients were normal. Our data are consistent with those
of Kish et al48 who found a 40% decrease of noradrenaline in the
cerebellum of 15 patients with dominantly inherited OPCA.
While the noradrenergic system in the human cerebellum has
been fully documented,49 its possible role in cerebellar ataxias is
not clear, although Watson and Elligott50 found that cerebellar
noradrenaline depletion is associated with impaired acquisition
of specific locomotor tasks in rats.

In a previous study, we found normal blood thiamine but low
CSF thiamine in FA and OPCA patients.13 In the present study,
we found severe CSF thiamine deficiency in all three groups of
patients. Animal studies indicate the importance of thiamine in
the cerebellum. In rats, the cerebellum, medulla and pons have
the highest thiamine turnover rate in the central nervous
system34,51,52 and these are the first regions to develop lesions
due to thiamine deficiency.53 In the present study when FA and
OPCA patients were analyzed together (Table 3), patients with
severe cerebellar atrophy had significantly lower CSF thiamine
values than those with mild-moderate atrophies but other
variables were not specifically related to low thiamine levels.
However, thiamine deficiency is associated with degeneration of

serotonin neurons in rats14,54 and we found that three out of five
alcoholic patients with low CSF thiamine concentrations also
had low CSF 5HIAA. When the patients were treated with
thiamine, CSF 5HIAA was markedly increased in those three
patients.16 Thiamine deficiency also lowers brain noradrenaline
in rats and CSF MHPG in humans,9,10 although no effects on
dopamine have been reported.  Therefore, some of the lowering
of CSF 5HIAAand MHPG may have been secondary to thiamine
deficiency.

Various replacement therapies have been tried in heredo-
degenerative ataxias. The serotonin precursor, D-L-5-
hydroxytryptophan, has produced variable results,55-57 while the
serotonin1A agonist buspirone has achieved some success in
patients with OPCAand cerebellar cortical atrophy.58,59 We have
used the dopamine releaser amantadine hydrochloride in both FA
and OPCA. Improvement was mild in FA but striking in OPCA
p a t i e n t s .6 0 , 6 1 Given that amantadine can block NMDA
r e c e p t o r s6 2 , 6 3 and can prevent NMDA r e c e p t o r- m e d i a t e d
neurotoxicity,64 this may have contributed to its action. Thiamine
has not been tested, but probably should be. If it has an effect,
some combination of thiamine with potentiation of serotonin and
dopamine function may be best for symptom alleviation.
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