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HOLLING-TYPE FUNCTIONAL RESPONSE
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Abstract

A delayed predator-prey system with Holling type III functional response is investigated.
It is proved that the system is uniformly persistent under some appropriate conditions. By
means of suitable Lyapunov functionals, sufficient conditions are derived for the local and
global asymptotic stability of a positive equilibrium of the system. Numerical simulations
are presented to illustrate the feasibility of our main results.

1. Introduction

The functional response is a key element in all predator-prey interactions. In popula-
tion dynamics, the functional response refers to the number of prey eaten per predator
per unit time as a function of prey density. Holling [19, 20] studied predation of small
mammals on pine sawflies and found that predation rates increased with increasing
prey population density. This resulted from two effects: (1) each predator increased
its consumption rate when exposed to a higher prey density, and (2) predator density
increased with increasing prey density. Holling suggested three kinds of functional
responses as follows:

(1)
ax

——-,
m + x2

where x represents the density of prey. Functions pi(x), P2(x) and pi(x) are now
referred to as Holling type I, II and HI functional responses. Function pi{x) is also
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referred to as a Michaelis-Menten function in studying enzymatic reactions. Holling
type II and HI responses illustrate the principle of time budgets in behavioural ecology.
This principle assumes that a predator spends its time on two kinds of activities:
searching for prey and prey handling which includes: chasing, killing, eating and
digesting.

Type I functional responses (linear) are found in passive predators like spiders. The
number of flies caught in a net is proportional to fly density. Prey mortality due to
predation is constant.

Type II functional responses are most typical of predators that specialise in one or
a few prey. Here a > 0 denotes the search rate of the predator and m > 0 is the
half-saturation constant. Prey mortality declines with prey density. Predators of this
type cause maximum mortality at low prey density. For example, small mammals
destroy most gypsy moth pupae in sparse populations of gypsy moths. However in
high-density defoliating populations, small mammals kill a negligible proportion of
pupae.

In type III functional responses (sigmoid), the risk of being preyed upon is small
at low prey density but increases up to a certain point as prey density increases.
This is referred to as positive density-dependent or stabilising mortality (Hassell [12],
Holling [21]). Several factors can lead to atype III functional response such as predator
learning, prey refuge and the presence of alternative prey (Holling [21]). The presence
of a prey refuge has been hypothesised to be a factor leading to positive density-
dependent mortality in several predator-prey systems (Bailey [1], Hassell [12], Hixon
and Carr [17]). Alternative prey can lead to a type HI functional response through
switching behaviour (Murdoch [31], Murdoch etal. [32], Murdoch and Marks [33]).

Predator-prey systems with Holling-type functional responses have been studied
extensively and the dynamics of such systems are now very well understood. The
analysis of these models has been centred around the persistence of populations,
the stability of equilibria, the existence and uniqueness of limit cycles, and Hopf
bifurcations (see, for example, [2, 3, 6, 11, 16, 18, 23, 24, 27, 29, 36] and the
references cited therein).

We note that time delays of one type or another have been incorporated into bi-
ological models by many researchers; we refer to the monographs of Cushing [5],
Gopalsamy [10], Kuang [25] and MacDonald [28] for general delayed biological sys-
tems and to Beretta and Kuang [4], Gopalsamy [8, 9], Hastings [13], He [14, 15],
May [30], Ruan [34], Wang and Ma [37], Xu and Yang [39], and the references cited
therein for studies on delayed biological systems. In general, delay differential equa-
tions exhibit much more complicated dynamics than ordinary differential equations
since a time delay could cause a stable equilibrium to become unstable and cause the
population to fluctuate. Time delay due to gestation is a common example, because
generally the consumption of prey by a predator throughout its past history governs

https://doi.org/10.1017/S1446181100013729 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013729


[3] Persistence and global stability in a delayed Holling type III predator-prey system 123

the present birth rate of the predator. Therefore more realistic models of population
interactions should take into account the effect of time delays.

An important problem in predator-prey theory and related topics in mathematical
ecology concerns the global stability of an ecological system with time delays. How-
ever, most of the global stability or convergence results appearing so far for delayed
ecological systems require that the instantaneous negative feedbacks dominate both
delayed feedback and interspecific interactions. Such a requirement is rarely met
in real systems since feedbacks are generally delayed. This leads to the standing
question: under what conditions will the global stability of a nonnegative steady state
of a delay differential system persist when time delays involved in some part of the
negative feedbacks are small enough? Kuang [26] presented a partial answer to this
open question for Lotka-Volterra-type systems.

The objective of this paper is to study the combined effects of functional response
and time delays on the dynamics of predator-prey systems. Motivated by the work of
Kuang [26], we consider the following delayed Holling type III predator-prey system
without dominating instantaneous negative feedback:

xx (f)x2(O- aux\(t- ri) -an-

= x2(t) ( - a 2 + a2x * ' 2
 2 - a22x2(t - T3)( - a 2V 2

with initial conditions

0 € [ - T , O ] , O) >o,
0 , € C ( [ - T , O ) , / ? + ) , 1 = 1,2,

where X\{t), x2(t) denote the densities of the prey and the predator at time t, respec-
tively. Here ah ay (i,j = 1, 2) are positive constants, r, (i = 1, 2, 3) are nonnegative
constants and x = maxfti, r2, r3}. Also ax is the intrinsic growth rate of the prey,
an is the intra-specific competition rate of the prey, a\/au is the carrying capacity of
the prey, a\2 is the capturing rate of the predator, m is the half capturing saturation
constant, a2\/a\2 is the rate of conversion of nutrients into the reproduction of the
predator and a2 is the death rate of the predator. We note that t\ > 0 denotes the delay
in the negative feedback of the prey species and that x2 is the delay due to gestation,
that is, mature adult predators can only contribute to the reproduction of the predator
biomass. In addition, we have included the term — a22x2(t — r3) in the dynamics of
the predator to incorporate the negative feedback of predator crowding.

We adopt the following notation and concepts throughout this paper.
Let R\ — [x e R2 : x\ > 0, x2 > 0}. For ecological reasons, we consider

system (1.1) only in Int R\.
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DEFINITION 1.1. System (1.1) is said to be uniformly persistent if there exists a
compact region D c Int/?+ such that every solution x(r) = (x\{t),x2{t)) of system
(1.1) with initial conditions (1.2) eventually enters and remains in the region D.

The organisation of this paper is as follows. In the next section, we present a
permanence result for system (1.1). In Section 3, we establish conditions for the
local stability of a positive equilibrium of system (1.1) and show that these conditions
depend on Ti and T3. In Section 4, sufficient conditions are derived for the global
asymptotic stability of the positive equilibrium of system (1.1). Some examples and
numerical simulations are presented in Section 5 to illustrate the feasibility of our
main results. In Section 6, a brief discussion is given to conclude this work.

2. Uniform persistence

In this section, by using the criterion proposed by Freedman and Ruan [7] for
retarded functional differential equations, we establish sufficient conditions to guar-
antee the persistence of system (1.1). The following lemmas are elementary and are
concerned with the qualitative nature of solutions of system (1.1).

LEMMA 2.1. Solutions of system (1.1) with initial conditions (1.2) are defined on
[0, +oo) and remain positive for all t > 0.

LEMMA 2.2. Let x{t) = (xi(t), x2(t)) denote any positive solution of system (1.1)
with initial conditions (1.2). Then there exists a T > 0 such that ift>T

xdt)<Mu x2(t)<M2, (2.1)

where

M, = — eaiZl, M2 = —e"2it\ (2.2)
au a22

The proofs of Lemmas 2.1 and 2.2 are similar to those of Lemmas 2.1 and 2.2
of [37] and we therefore omit them here.

We are now in a position to establish the uniform persistence of system (1.1).

THEOREM 2.1. System (1.1) is uniformly persistent provided that

(HI) a\(a2X - a2) > ma2a\x,

(H2) a,T, <3/2 .

PROOF. It is easy to verify that system (1.1) has two equilibria £0(0,0) and
Ei(ai/an,0) on the boundary of R\. From the assumptions of the theorem we
know that the omega limit set of the boundary of R\ is the union of the boundary
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equilibria Eo and Ex. We choose p(xx(t),x2(t)) = x"'(t)x?(t), where a, (i = 1, 2)
are undetermined positive constants. We have

—— = a, I a, - axxxx(t - r,) - aX2 • — j - —

( Jc?(r-T2) , A
a2 -a2 + a2l

 l—r- - a22x2(t - r3) .
V m+x\{.t-T2) )

If we choose ux = 1. and a2 so small that axax — a2a2 > 0, then rj/ is positive at Eo.
Under Assumption (HI), it is easy to verify that yfr is positive at Ex. Hence there is a
choice of a2 to ensure ^ > 0 at the boundary equilibria. If the condition (H2) holds,
it follows from [38] that E\ is globally asymptotically stable with respect to solutions
initiating in the x x -axis. It is easy to verify that Eo is globally asymptotically stable
in the x2-axis. Thus it follows from Theorem 3.12 of Freedman and Ruan [7] that
system (1.1) is uniformly persistent.

REMARK 1. If rx = x2 = T3 = 0, then system (1.1) reduces to an instantaneous
system, that is, one without time delay. From the proof of Theorem 2.1, we see
that if (HI) holds, then the corresponding instantaneous system of (1.1) is uniformly
persistent, which implies that system (1.1) must have at least one positive equilibrium
(see Hutson [22]).

3. Local asymptotic stability

From Section 2, we see that if (HI) holds, then system (1.1) has at least one positive
equilibrium. Let E*(x*, x^) be a positive equilibrium of system (1.1). In this section,
we discuss the local asymptotic stability of the positive equilibrium E*(x*, jcj*).

Linearising system (1.1) at £*(**, x^), we obtain

J Nt(t) = AnN1(t - T,) + *„#,(*) + AnN2(t),

I Ni{t) = A2lNy(t - T2) + A22N2(t - r3),

where

anxf anx*x*(.xf - m)
A

2ma21x*x*
7 — A l 2 = ~(m + *, )2

We note that the locally uniformly asymptotic stability of the positive equilibrium
E*(x*, x}) of system (1.1) follows from that of the zero solution of system (3.1) (see
Kuang [25, Theorem 4.2, page 26]).
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THEOREM 3.1. Let (HI) hold. Assume further that

(H3) Anri(2Au-2\Bu\+Ai2)-AliA22r3 < -2(A,, + Bn) + An - A2U

(H4) AnAnXt - A22z3(An -^A^) < -2A22 + An - A2l.

Then the positive equilibrium E* of system (1.1) is uniformly asymptotically stable.

PROOF. The first equation of (3.1) can be rewritten as

Ni(t) = (All + Bn)Nl(t) + AnN2(t)-Ali f N,(u)du

= (An + B^N^t) + AnN2(t)

-Au f (AuNi{u-xly+BliN1(.u)+AnN2{u))du.
Jt-tt

Define Wu(t) = Nf(t). Calculating the derivative of Wu(t) along solutions of (3.1),
we have

= 2Ni(t)\(An-

-A|, / (AnN^u - T^) + BnNi(u) + Al2N2(u))du\
Jt-Tl 1

= 2(An+Bu)Nt(

t-T,

Using the inequality a2 + b2 > lab, we get

j t Wn(t) < 2(AU + Bn)N
2(t) - AnN

2(t) - AnN
2(

+ AU f [AnN2(u-xx)-\Bll\N
2(u) + A12N

2(u)]du. (3.2)
Jl-T,

Define Wn(t) as

Wl2(t)=Auf f [AnN2(u-zx)-\Bu\N
2
x(u)+AnN

2
2(u)\dudv. (3.3)

It follows from (3.2) and (3.3) that

^ Wl2(t))

,, + Bn) - A,2 + Anrl(An - \BU\

Auri[AnN2(t - xt) - \Bu\N
2(t) + Ai2N

2(t)]. (3.4)
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Let W,(r) be defined by

W,(r) = Wu(t) + Wn(t) + W13(0, (3.5)

where
I"

N2(u)du. (3.6)
2(

It-Xl

Then we derive from (3.4H3.6) that

d
W,(r) [2(A,, + B,,) - AI2 + TjA.KA,, - |B,,| + A12)]JV,2(O

- AnN
2(t) + Auz,[AuN

2{t) - \Bn\N
2(t) + Al2

= [2(A,, + S,,) - A,2 + r,A,,(2A1, -

Similarly, the second equation of (3.1) can be rewritten as

N2(t) = A22N2(t)+A2iNl(t-r2)-A22 I N2(u)du
Jt — T}

= A 2 2 N 2 ( t ) + A 2 l N l ( t - r 2 ) - A 2 2 I [ A 2 l N l { u - \
J I—X)

We define W2l(t) = N2(t). Then calculating the derivative of W2l(t) along solutions
of (3.1), we derive that

j t W2i(t) = 2N2(t) IA22N2(O + A2itf,(f - T2)

—An I [A2\Ni(u — T2) + A22N2(u — T3)]du \
Jl-T, \

= 2A22N
2(t) + 2A21yV,(r - x2)N2(t)

-2A22N2(t) / [A2lNx(u - x2) + A22N2(u - T3)]du.

Using the inequality a2 + b2 > 2a£, we get

— W2l(t) < 2A22N
2{t) + A2lN

2(t - r2)

+ A2iN
2(t) - A22T3(A2, - A22)N

2(t)

f' 7 2
— A22 I [A21A^, (u — T2) — A22N2 (u — r3)J du. (3.7)
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Define W22(t) as

u — T2) — A22N2 (M — r3)] du dv
—r3 ^ v
• (

A2i / Nf(u)du. (3.8)

It follows from (3.7) and (3.8) that

— ( W ( ) + W()) < [2A22 + A21 - A22T3(A21 - A22)]N2(r) + A2lN*(t)

• (3.9)

Let W2(t) be defined by

W2(t) = W21(t) + Wu(t) + WaW, (3.10)

where

.Wait) = -A 2 2 T 3 (A 2 1 f Nf(u)du - A22 f iV|(«) rfu) . (3.11)

Then we derive from (3.9H3.11) that

— W2(t) < [2A22 + A21 - A 2 2 T 3 ( A 2 1 - A22)]/V2
2(r) + A21Ar,2(r)

-A2 2r3[A2 1iV2(O-A2 27V2
2(O]

Au - A22r3(A21 - 2A22)]A^|(r) + A21(l - 2

Let W(t) = Wi(f) + W2(r). Then calculating the derivative of W(t) along solutions
of (3.1), we have

- A12 + A 1 1 T 1 (2A U - 2\BU\ + Al2)]Nf(t)

- A12(l - A , , T , ) ^ 2
2 ( 0 + A2I(1 - 2

+ [2A22 + A21 - A22r3(A21 -

where

a, = -[2(A,, + 5U) - A,2 + A2, + A, ,T , (2A, , - 2\Bn\ + AI2) - A2iA22r3],

a2 = -[lA-n - Ax2 + A2, + AnA12T! - A22T3(A2I - 2A22)].

Clearly, Assumptions (H3)-(H4) imply that ori > 0, a2 > 0. According to the Lya-
punov theorem (see Kuang [25, Theorem 5.1, page 27]), we see that the zero solution
of (3.1) is uniformly asymptotically stable. Accordingly, the positive equilibrium E*
of system (1.1) is uniformly asymptotically stable.
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COROLLARY 3.1. Let (HI) hold. Assume further that 2(An + Bn)-An+A2X < 0,
1An — A12 + A2\ < 0. Then the positive equilibrium E*(x*, x2) is locally asymptot-
ically stable provided that 0 < max{Ti, r3} < xL, where

TV. = nun
An(2An - 2\BU\ + An) - A2XA22 AuAn - A22(A2l - 2A22)

1
J

REMARK 2. By using the Lyapunov function V(t) = (-A2l/Al2)Nf(t) + 7v*2
2(O

one can easily prove that if A n + Bn < 0, then the positive equilibrium of the "instan-
taneous" (when T, = 0, i = 1, 2, 3) model (1.1) is locally uniformly asymptotically
stable. If 2(AU + Bn) - Ai2 + A2l < 0 and 2A22 - An + A2X < 0, then the local
uniform asymptotic stability of E* of the delayed model (1.1) is preserved for small
t! and T3 satisfying (H3)-(H4).

It is interesting to discuss the effect of time delays on the stability of the positive
equilibrium of (1.1). We assume that the positive equilibrium E* exists for system
(1.1). For simplicity, first, we let t] = T3 = 0, x2 = x.

The characteristic equation for (3.1) takes the form

where PX(X) = (X - A,, - Bn)(k - A22) and QY{\) = -AnA2l. If A,, + Bu < 0,
then from the discussions in Remark 2 we see that the positive equilibrium E* of (1.1)
is stable for r = 0. It is easy to examine that

Fi(y) = \Pidy)\2-\Ql(iy)\2

= y* + l(An + Buf + A2
22]y2 + A2

22(An + flu)
2 - A2

X2A
2

2V

If An + #11 < 0 and A22{An + Bu) + A]2A2i > 0, then it is easy to verify that
Fx(y) = 0 has no positive roots; if An + Bu < 0 and A22{An + Bn) + Ai2A2i < 0,
then F] (y) = 0 has a unique positive root. By applying [25, Theorem 4.1, page 83], we
see that if A n + B\\ < Oand A22(AM + 5n) + A]2A2i > 0, as r increases, no stability
switch may occur; if An + Bu < 0 and A22(Au + Bu) + A!2A2i < 0, then there
is a positive constant r0 (which can be evaluated explicitly) such that for r > r0, E*
becomes unstable. Notice thatif 2(An + flu) — A]2 + A2i < 0,2A22 —A]2+A21 < 0,
then it is easy to verify that Au + BU < 0, A22G4u + Bu) + Ai2A2i > 0. Thus, in this
case, from the discussions above, we see that the delay due to gestation of the predator
is harmless for the local stability of the positive equilibrium E* of system (1.1).

Secondly, we set X\ = r2 = 0, r3 = r. Then the characteristic equation for (3.1)
takes the form

Xz = 0,
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where P2(k) = k(X-Au - Bn) - AnAlu Q2(k) = -A22&-An - Bu). It is easy
to demonstrate that

F2(y) = \P2(iy)\2-\Q2(iy)\2

= y* + [(An + Bu)
2 - A\2 + 2AnA2i]y2 + A2

UA2
21 - A2

2(AU + Bu)
2.

Set

A = [(Au + Bu)2 - A\\ + 2AnAlxf - 4[A2
nA

2
2l - A2

22(AU + Bu)
2\

If A < Oor A > 0, An + Bn < 0, A22(AU + Bu) + AnA2l < 0 and (Au + fl,,)2 -
A\2 + 2AnA2x > 0, then F2(y) = 0 has no positive roots. In this case, as r increases,
no stability switch may occur; if Au + Bu < 0 and A22(AU + Bn) + A12A2i > 0,
then it is easy to verify that F2OO = 0 has a unique positive root which is simple.
Accordingly, there is a positive constant T0, such that for x > T0, E* becomes unstable.

If we let r2 = T3 = 0, ti = T, a similar conclusion can be obtained for (1.1).
Therefore if An + Bu < 0 and A22(Au + Bu) + AnA2i > 0, then time delays due to
negative feedbacks of the prey and predator destabilise E* for (1.1). So does the delay
due to gestation of the predator if An + Bn < 0andA22(An + Bn) + Al2A2\ < 0.

4. Global asymptotic stability

In this section, we provide conditions under which the positive equilibrium E* of
system (1.1) is globally asymptotically stable. The method of proof is to construct
a suitable Lyapunov functional for system (1.1) by borrowing the technique used in
[14, 15]. It is immediate that if the conditions for the global stability of the positive
equilibrium E*(x*, x2) are explicitly independent of x* and x2, then E*(x*, x2) is in
fact unique.

THEOREM 4.1. Suppose that system (1.1) satisfies (H1MH2). Then the positive
equilibrium E* of system (1.1) is globally asymptotically stable provided that

(H5) ru-> 0 , i = l ,2 ,
(H6) /•ur22-ri2r2i > 0,

where

ru =Zan—

a2\r2, = 7=(\+a22M2xi), r22 = a22(l-a22M2x3),
jm

in which M\ and M2 are defined by (2.2).
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PROOF. Let x(t) = (xi(t),x2(t)) be any solution of (1.1) with initial condi-
tions (1.2). Define u(t) = (KI(O, u2(t)) by

(4.1)„,(/) = In ^ and
x*

On substituting (4.1) into (1.1), we derive

m
n\x*2(xlxx - m) (l) _

( f)( + ?y '(m + jcf

dt (m + x\(t - T2))(m + xf

e^'-^ - 1).

(,_r2) _

The first equation of (4.2) can be rewritten as

m

J,-Ti

1) ( e

m+ xf
- w) ( 0 _

*2)

t-Ty

(m+x?)(m+;c;2
m) I

; 2 r I
Let

(4.2)

(4-4)

Calculating the upper right derivative of Vu(t) along solutions of (4.2), it follows
from (4.3) and (4.4) that

D+ Vu(t) < -anx .V 'W -

+ ^*2)
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By Lemma 2.2, we know that there exists a T > 0 such that x*eu'(l) = *, (t) < Mx for
t>T. Hence for t > 71 + T, we have

< -xrto, - a?™+?T))\SM - II + ^ I e * « - II2 / ( + * ) 2J

1

J
anxp^ + 2 ^

We now define a Lyapunov functional VJ (?) as

V1(O= V,,(0+ VI2(0, (4.6)

where

(4.7)

It then follows from (4.5M4.7) and (1.1) that for t > T + r

\ 2Vm(ni+^n /J

< -x\ \au - ( — = + — - flu
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m

= -rnx*\euM - 1| - njxJIe-'W - 1|. (4.8)

The second equation of (4.2) can be rewritten as

X-,3 1 (m + x*(s - r2))(m + xf)

- a22X*2(e
U2is-T3)-l)\ds. (4.9)

Let

Calculating the upper right derivative of V2i (0 along solutions of (4.2), it follows
from (4.9) and (4.10) that

D+V2l(t) < -a22*2>«.<" - 1| + ^ ^ y , ( r r 2 ) + ,r) U|(,-r2) _
(m+^f(r-T2))(m+jr*2)

y
Uiis-T^ -l\\ds

a22x*2\e
uM - 1| ^

a22x* [
i-r,
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By Lemma 2.2, we see that there exists a T > 0 such that x\euM = x2(t) < M2 for
t > T. Hence for / > T + r, we have

D+ V21(f) < - ^

+ a22M2f [^xWe^-^-W + avxl^-^-lAds. (4.11)

Define a Lyapunov functional V2(r) as

V2(r)= V21(O+K22(O, (4.12)

where

= a22M2 [ [ \^Lx;\eu'^ - 1| +a22xl\eu*-^ - l\\dsdv
Jt-r,Jv IV J

a22M2r3 { ^ {
[ Jm J,_T2

-^ - l\\

J
e u M - \ \ d s + a22x* [' \eu^s) - l \ d s \

Jt-Ti
l\ds. (4.13)

Then it follows from (4.11)-(4.13) that for t > T + r

D+ V2(t) < —T=(1 + a22M2r3)x*\e"M — 1| — a22;

,"i(0 — 1| — A-22x*|e"2(r) - 1 | . (4 .14)

According to Assumptions (H5)-(H6), we know that C = (/•(,)2x2 is an M-matrix.
Hence there exist positive constants c, (1 = 1, 2) such that

ruCi + r2\c2 = hi > 0 and rnc\ + r22c2 = h2 > 0.

We now define a Lyapunov functional V(t) as V{t) = ci Vj(r) + c2V^(0- Then we
have from (4.8) and (4.14) that for r > T + r

D+V(t) < -A^JIe"^" - 1| - AaxJIe-'W - 1|. (4.15)

Since system (1.1) is uniformly persistent, one can see that there exist positive con-
stants mk (k = 1, 2) and a T* > T + r such thatx;e"*(l) = A:t(0 >mk(k = 1, 2) for
t > T*. Using the mean value theorem one obtains

(it = 1, 2),
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where x^eek{') lies between xk{t) and x{. Let S = min{m\hi, m2h2). Then it follows
from (4.15) that for t> T*

D+ V(t) < -5(|«i(/)l + l«2(0l)- (4-16)

Noting that V(t) > min{ci, c2}(|M!(r)H-|M2(Ol), we can conclude from the Lyapunov
theorem and (4.16) that the zero solution of (4.2) is globally asymptotically stable
and hence that the positive equilibrium E*(x*, x^) of (1.1) is globally asymptotically
stable.

COROLLARY 4.1. Let (H1)-(H2) hold. Assume further that

I\ a i /a2i — a2\ ana2X

a22 2au - —-= - ax — > 0. (4.17)
\ 2^/m V WQ2 / 2m

Then the positive equilibrium E*(x*, x%) of system (1.1) is globally asymptotically
stable provided that 0 < max{riea'ri, r3e

fl2":3} < TG, where

- ((A,B4 + A4B, + A2B3 + A3B2)
2

in which

A] =2au - —,= -au , A2 = — - = , A3 = ——, A4 = a22,

5. Examples

If the instantaneous system related to (1.1) has a globally stable equilibrium E*,
then, in general, it is anticipated that E* is globally stable for maxf t ] , r3} < r c , and
locally asymptotically stable for max{ri , r3} < xL, where 0 < rG < rL. From the
results derived in previous sections, it is not easy to determine whether, in general, the
sufficient conditions given there ensure the ordering of the values of r given above.
However, it is straightforward to find specific examples for which this ordering holds
as we now demonstrate.
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10 20 30 40 50 60 70 60 90 100

FIGURE 1. The temporal solution found by numerical simulation of system (5.1) with TI = 0.1382, T2 = 1
and r3 = 0.1382. Initial data are (JCI , x2) = (0.06,0.06).

EXAMPLE 1. Consider the following system:

ii(t)=xl(t)[3--r.
xi(t)x2(t)

Mt) = x2(t) | -1 + ̂  , f ' ' Xl) . -4*2(r -y l + x. (t — Xi)( - '

(5.1)

System (5.1) has a unique positive equilibrium £*(l/2, 5/36). Using Theorem 2.1 we
know that system (5.1) is uniformly persistent provided that t] < 0.5. By Theorem 3.1
and Corollary 3.1, we see that the positive equilibrium E*(l/2, 5/36) is locally
asymptotically stable provided that maxfti, T3} < 0.1382, or 132129r, + 2800r3 <
36918 and 4293ti + 7300r3 < 1602. By Theorem 4.1 and Corollary 4.1, we know
that the positive equilibrium E*(l/2, 5/36) of (5.1) is globally asymptotically stable
provided that max{fi, r3} < 0.02384, or ru > 0, r22 > 0 and rnr12 — rx2r2l > 0,
where /•„ = 185/18 - V6l - (53/9)A/iT,(3/2 + V6l), rn = - ( 1 + 53M,Ti/9)/2,
r2X = -70(1 + 4M2r3)/9, r22 = 4(1 - 4A/2r3), M, = 27e3r'/53, M2 = 35e90Ti/1/lS..

Using L. F. Shampine and S. Thompson's program dde2 3 for solving DDEs [35],
numerical simulation shows that if maxf^, T3} < 0.1382, the positive equilibrium E*
is locally stable (see Figure 1). In fact, after testing a large range of initial data, it
seems that E* is also globally stable for max{ri, r3) < 0.1382 and further numerical
simulations suggest that it remains so for max{ri, r3) < 0.43 (see Figure 2). For
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FIGURE 2. The temporal solution found by numerical simulation of system (5.1) with x\ = 0.43, x-i = 1
and T3 = 0.43. Initial data are (xt, x2) = (0.06, 0.06).

min{Ti, r3} > 0.5, numerical simulation shows that a stability switch occurs and the
positive equilibrium E* becomes unstable (see Figure 3). These results suggest that
the bounds derived in previous sections are somewhat conservative.

EXAMPLE 2. Consider another delayed system:

*1 (0*2(0 \^2-O.Lei ( 0 -

-1+4-
- r2)

-0.1*2(0
) •

(5.2)

System (5.2) has a unique positive equilibrium £"*(0.7353, 4.0372). By Theorem 2.1
we see that system (5.2) is uniformly persistent. It is easy to calculate that

An + Bu =-0.6480, A22(A n + Bu) + A nA2] =-3.2491.

Then the positive equilibrium of the corresponding instantaneous system (r2 = 0) of
(5.2) is locally asymptotically stable. From the discussions in Section 3, we see that as
T2 increases, a stability switch occurs. Thus there is a positive constant r0 such that for
r2 > r0, E* becomes unstable. Numerical simulation confirms our above observation
at r2 = 0.35 (see Figure 4). On the other hand, it is easy to show that (4.17) doesn't
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10 15 20 25 30 35 40 45 50

FIGURE 3. The temporal solution found by numerical simulation of system (5.1) with TI = 0.6, x2 = 1
and r3 = 0.6. Initial data are (x\,x2) = (0.06, 0.06).

30

25

20
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•x2

20 30 40 50 60 70

time t
80

FIGURE 4. The temporal solution found by numerical simulation of system (5.2) with x2 = 0.35. Initial
data are (*,, x2) & (0.06,0.06).
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FIGURE 5. The temporal solution found by numerical simulation of system (5.2) with T2 = 0.2. Initial
data are (xi(0), x2{6)) = (0.0006,0.0006).

hold for system (5.2). After testing a large range of initial data, it appears that E* is
locally and globally asymptotically stable for x2 < 0.2 (see Figure 5).

6. Discussion

In this paper, we investigated the global dynamics of a predator-prey model with
Holling type III functional response and time delays. Borrowing the result of Freedman
and Ruan [7], we have established sufficient conditions for system (1.1) to be uniformly
persistent. By means of suitable Lyapunov functionals, we have discussed the local and
global asymptotic stability of a positive equilibrium of system (1.1). By Theorem 2.1,
we see that system (1.1) with initial conditions (1.2) will be uniformly persistent if the
delay due to negative feedback of the prey is small enough, and the intrinsic growth
rate of the prey species and the conversion rate of the predator are high and the death
rate of the predator and the intra-specific competition rate of the prey are low. By
Theorems 3.1 and 4.1, we have shown that under some conditions, if the positive
equilibrium of the corresponding instantaneous system is locally and globally stable,
then local and global stability of the positive equilibrium of the delayed system (1.1)
will persist when time delays due to negative feedbacks of the prey and predator are
sufficiently small.
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We would like to mention here that numerical simulations in Examples 1 and 2
show that our results in Theorems 3.1 and 4.1 have room for improvement. We leave
this for future work.
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