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Prediction, Accommodation, and the Logic of Discovery 1

Patrick Maher

University of Michigan

1. Arguments against the predictivist thesis

It is widely believed that if a piece of evidence for a theory was known at the time
the theory was proposed, then it does not confirm the theory as strongly as it would if
the evidence had been discovered after the theory was proposed. I shall call this view
the predictivist thesis. Those who have endorsed it include Leibniz (1678), Huygens
(1690, preface), Whewell (1847 vol. 2, p. 64f.), Peirce (1883), Duhem (1914, ch. H, §5),
Popper (1965, p. 241f.), Lakatos (1970, p. 123), and Kuhn (1977, p. 322). On the other
hand, the thesis has been rejected by a number of philosophers, including Mill (1872
bk. in, ch. 14, §6), Keynes (1921, p. 305), Rosenkrantz (1977, p. 169f.), Horwich (1982,
pp. 108-117) and Schlesinger (1987). Others, while not rejecting the predictivist thesis,
nevertheless regard the justification of the thesis as problematic; these include Hempel
(1966, p. 38) and Gardner (1982).

The view that the predictivist thesis is problematic stems in large part from a percep-
tion that this thesis is incompatible with a Bayesian philosophy of science. However, the
arguments which are supposed to demonstrate this incompatibility are fallacious, as the
following brief discussion will show.

One simple argument, stated by Hempel, Lakatos, Rosenkrantz and Gardner, begins
by asserting that the probability of hypothesis H, given evidence E, is determined by
H and E; and from this it concludes that the probability of hypothesis H is indepen-
dent of whether E was known at the time H was proposed. But while the premise of
this argument is true, the conclusion does not follow; for there is nothing to prevent us
taking the total evidence for H to include not only the evidence E, but also informa-
tion about whether or not E was predicted—as Simon pointed out in (1955). Letting
O be the proposition that evidence E had been observed at the time H was proposed, a
Bayesian formulation of the predictivist thesis would be that2

P(H\E0) > P(H\E0).

Nothing in the above argument shows that this inequality cannot be true.

Horwich offers an insightful account of what the predictivist thesis asserts, and also
two arguments which are intended to show that the thesis is false. One of these (the sec-
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ond in his presentation) shows correctly that a certain argument for the predictivist the-
sis is unsound; but of course, this does not prove that the thesis is false. So I shall con-
centrate here on his other argument which, if correct, would indeed demonstrate that the
predictivist thesis is false. Horwich uses the notation

F = our theory fits the data D
HT = our theory is true
HR = we required a theory that would fit the data D.

Here HR is taken to entail F. In these terms, the predictivist thesis can be stated as

P{HT\FHR) > P(HT\HR).

Horwich claims that the probabilities on either side of this inequality are in fact equal,
and thus that the predictivist thesis is false. In support of this, he asserts that "what is
relevant to the probability of HT, in the information HR, is precisely that our theory fits
the data D." But this assertion is merely a restatement of the anti-predictivist position,
and so as an argument against the predictivist thesis it simply begs the question.3

Some predictivists, such as Popper and Lakatos, have claimed that evidence which
was known at the time a hypothesis was proposed provides no support for the hypothe-
sis. This claim is not entailed by the predictivist thesis, and I shall not be discussing it
here, except to say that some arguments against the predictivist thesis rest on a failure
to distinguish the two propositions. For example, Schlesinger (1987, p. 37) asserts that
scientific practice does not accord with the predictivist thesis, and offers as support of
this such facts as that Galileo's experiments on free fall were taken to confirm Newton's
theory of gravitation. But this fact, and the others Schlesinger cites, are perfectly com-
patible with the predictivist thesis; what they tend to show is only that evidence known
at the time a hypothesis was proposed can provide support for that hypothesis.

i

In fact, scientific practice accords well with the predictivist thesis, as I shall now il- !
lustrate with a discussion of the scientific reaction to Mendeleyev's periodic table of the j
elements. j

1
2. A historical example: Mendeleyev's periodic table I

By the middle of the 19th century more than 60 chemical elements were known,
with new ones continuing to be discovered. For each of these elements, chemists at-
tempted to determine its atomic weight, density, specific heat, and other properties. The
result was a collection of facts that lacked rational order. Mendeleyev noticed that if
the elements were arranged by their atomic weights, then valences and other properties
tended to recur periodically. However, there were gaps in the pattern, and in a paper of
1871 Mendeleyev asserted that these corresponded to elements which existed but had not
yet been discovered. He named three of these elements eka-aluminum, eka-boron, and
eka-silicon, and gave detailed descriptions of their properties. The reaction of the sci-
entific world was skeptical. But then in 1874 Lecoq de Boisbaudran found an element
which corresponded to Mendeleyev's description of eka-aluminum, and which he called
gallium. This was regarded as a remarkable event; it was the first time in history that a
person had correctly foreseen the existence and properties of an undiscovered element.
Confidence that Mendeleyev's other predictions would be confirmed increased markedly.
Four years later, Nilson discovered an element which corresponded to Mendeleyev's de-
scription of eka-boron, and which he named scandium. Now chemists were expecting
to find Mendeleyev's third element, though the Royal Society did not wait for that dis-
covery, awarding Mendeleyev its Davy Medal in 1882. Mendeleyev's eka-silicon was
discovered by Winkler in 1886, and" named germanium.4
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If scientists accord no special confirmatory value to predictions, then it is quite inex-
plicable why their confidence in Mendeleyev's predictions should have increased sub-
stantially after one or two of those predictions had been verified. There were 62 ele-
ments in Mendeleyev's table of 1871, so we could say that Mendeleyev's prediction of
eka-silicon was initially made on the basis of evidence concerning 62 elements.5 After
the discovery of gallium, the prediction concerning eka-silicon was now backed by ev-
idence concerning 63 elements; and after the discovery of scandium, it was backed by
evidence concerning 64 elements. But the difference between these bodies of evidence is
much too small by itself to account for the dramatically altered attitude to Mendeleyev's
prediction of eka-silicon. The only plausible explanation is that scientists were im-
pressed by the fact that these latter pieces of evidence were verified predictions rather
than accommodated evidence.

3. Predicting coin tosses

We have now seen that the predictivist thesis has not been proved inconsistent with
Bayesian theory, and that it accords with the history of science; but we do not yet have
an explanation of why the predictivist thesis might be true. My main aim in the remain-
der of this paper will be to provide such an explanation.* I begin with a consideration of
the following artificial example, which I think is suggestive.

Imagine an experiment in which a coin is tossed 99 times, and a subject records
whether the coin landed heads or tails on each toss. The coin seems to be normal, and
the sequence of tosses appears random. The subject is now asked to tell us the outcome
of the first 100 tosses of the coin. The subject responds by reading back the outcome of
the first 99 tosses, and then adding the prediction that the 100th toss will be heads. As-
suming that no mistakes have been made in recording the observed tosses, the probabil-
ity that the subject is right about these 100 tosses is equal to the probability that the last
toss will be heads. I invite you to consider what probability you would give to this being
true.

Now consider a slightly different case. Here a subject is asked to predict the results
of 100 tosses of the coin. The subject responds with an apparently random sequence of
heads and tails. The coin is tossed 99 times, and these tosses are all exactly as the sub-
ject predicted. The coin is now to be tossed for the 100th time, and the subject has pre-
dicted that this toss will land heads. In this case, what probability would you give to the
100th toss being heads?

People I have talked to say that in the first case they would give a probability of
around 1/2 to the 100th toss landing heads, while in the second case they judge the prob-
ability to be near one. Their rationale is that in the first case the subject is probably just
making a random guess, while in the second case the successful prediction of 99 tosses
is strong evidence that the subject is not merely guessing, but rather has some reliable
method for predicting the tosses.

The difference between the two cases is a difference between prediction and ac-
commodation of evidence. For let E be the hypothesis that the first 99 tosses are as
they have been observed to be, and H the conjunction of E together with the prediction
that the 100th toss will land heads. In both cases, our subjects have asserted H, and in
both cases there is evidence E to support that assertion; the difference is that in the first
case the evidence E was accommodated, while in the second case it was predicted. The
widely shared intuition is that this difference makes a difference to the probability of H,
because the prediction of E in the second case is evidence that our subject is an extraor-
dinarily good predictor of coin tosses, while the accommodation of E in the first case is
no evidence for the reliability of the subject's predictions.
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This suggests that perhaps in the scientific case too, successful prediction might con-
firm that the method used to generate the hypothesis in question is a reliable one, and
thereby provide additional confirmation for the hypothesis. This account of the special
value of prediction also has some historical support, as can be seen by returning again to
our example of Mendeleyev's periodic table.

Mendeleyev's method was to look for patterns in the properties of the elements. He
was by no means the first to do this, but the earlier efforts had not been very success-
ful, and there was considerable skepticism about the value of this approach. Berzelius
commented that apparent numerical relationships could frequently be found between
elements, but that subsequent revisions of atomic weights would alter these relation-
ships, and therefore it was not safe to make speculative assumptions.7 In 1866, New-
lands presented a paper to the Chemical Society which organized the elements according
to a "Law of Octaves", and was asked facetiously if he had ever thought of classifying
the elements in alphabetical order. His paper was returned by the editor of the Journal
of the Chemical Society as unsuitable for publication (Ihde 1964, pp. 240-242). The
method of looking for patterns in the elements was evidently thought to have no better
than random chance of leading to correct conclusions. But the success of Mendeleyev's
predictions led the method to be taken seriously. When a similar situation arose in par-
ticle physics in the next century, the method of looking for patterns was judged likely to
be a good method for trying to make sense of the data.8

In the next two sections I will show how this intuitive explanation of the value of
prediction can be formalized within Bayesian confirmation theory.

4. Notation and Assumptions

, I shall begin by reformulating the predictivist thesis in a way that brings out the role
of the method by which the hypothesis was generated. To that end, let M be the hypoth-
esis generation method operative on the occasion at issue, and let MJJ be the proposition
that M generated hypothesis H at time t. Let O be the proposition that the truth value
of E had been input to M at time t. (This interpretation of O is weaker than the one we
used in section 1, since on the present interpretation 0 does not imply that E is true.)
Then the predictivist thesis can be stated as

P(H\MHE0) > P{H\MHE0). (1)

The reliability of method M can be taken to be the probability that a hypothesis is
true, given that it has been generated by M. Since we want to allow that we may be ig-
norant of the true reliability of a method, the probability referred to here will need to be
an objective probability, not a subjective probability.

Now consider the special case in which method M is known to be either completely
reliable, or else random. That is, the probability of a hypothesis being true, given that
it was generated by M, is either 1, or else is the probability of a randomly chosen hy-
pothesis being true.9 What I will do here is give a Bayesian analysis of this special case.
While this special case is not very realistic, the analysis which I shall give is capable of
being generalized to more realistic cases. I concentrate on this special case here because
it simplifies the mathematics, and so facilitates insight into the essential features of the
account.

I shall let R denote that method M is completely reliable, so that R denotes that M
is merely a random method. Then it is part of the intended meaning of R that

* P(H\RMH) = \. (2)
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It follows from this that P(H\RMHEO) = P{H\RMHEO) = 1; thus if we were
sure that M was completely reliable, the predictivist thesis (1) would be false. Except in
pathological circumstances, the same would also be true if we were sure that M was a
random method, i.e. we would have

P(H\RMHEO) = P(H\RMHEO). (3)

This says that if we are given that the method is random, and that it generated a hy-
pothesis H which was correct about evidence E, then the probability of H is the same
whether evidence E was accommodated or predicted. For instance, in the coin-tossing
example of the preceding section, if we are given that the subject has only a random
chance of getting a prediction right, we would normally say that the probability of the
100th toss agreeing with the subject's prediction is 1/2, regardless of whether the first
99 tosses were accommodated or predicted by the subject, and so (3) is satisfied. On the
other hand, one can imagine pathological cases in which (3) would not hold, because 0
is itself relevant evidence concerning H. For example, the coin tosses might actually be
conducted before the experiment is begun; and you might know that the experimenter
always runs the experiment involving accommodation of the first 99 tosses when heads
occurred on the 100th toss, and otherwise runs the experiment involving prediction of
all 100 tosses;10 then O would be evidence in favor of H, even when we know that the
method is random. In such pathological cases, successful prediction can actually be evi-
dence that the asserted hypothesis is false.

This shows that the predictivist thesis does not hold under all possible circum-
stances; what what we aim to show here is that the thesis holds given certain assump-
tions which are typically satisfied in science. And (3) will be one assumption of this
kind."

From what has been said, it is clear that the predictivist thesis will be true only if we
are not completely certain of the reliability of method M; that is, the probability of R
must be neither 0 nor 1. And in order for the conditional probabilities which we have
just discussed to be definable in the usual way, we need to assume that the conditioning
probabilities are non-zero, i.e. we need to assume

P(RMHEO)P(RMHE0)P(RMHEO)P(RMHE0) > 0. (4)

Of course, (4) entails in particular that the probability of R is neither 0 nor 1. I shall as-
sume that (4) holds.

Obviously (1) cannot be true if P{H\MHE0) = 1; thus we will need to assume that
P{H\MJJE0) < 1. In view of (2) and (4), this assumption is equivalent to

P(.H\RMHE0) < 1. (5)

This assumption would certainly be violated if H were a logical consequence of RMffEO;
and it might be violated in other cases too. But in the sorts of scientific situations of
which our Mendeleyev example is representative, we can expect (5) to be satisfied.

There are a couple of additional assumptions, asserting the irrelevance of O to other
propositions of interest, which we shall need, and which we can expect to be satisfied in
normal scientific circumstances. One is the following:

P(.R\EO) = P(R\EO). (6)

In words: If we have no information about what hypothesis M has generated, but do
know that evidence E obtains, then the further information that the truth value of E has
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been input to M neither increases nor decreases the probability that M is reliable. Thus
in the coin-tossing case, if we know the result of the first 99 tosses, but do not know
what hypothesis the subject has proposed, then the further information that the subject
was given the results of those first 99 tosses before being asked to propose a hypothesis
is no reason to think the subject is or is not reliable. This condition could be violated in
a pathological situation like the one we considered in discussing (3). It is also clear that
if (6) is violated, then the mere fact that prediction has occurred might itself be evidence
that the method is unreliable, and thus the predictivist thesis could fail. So we will as-
sume (6).12

Let ME denote that M has generated a hypothesis which entails E. A second as-
sumption about the irrelevance of O, which we shall need, is that

P(MH\MEREO) _ P(MH\MEREO)
P{MH\MEREO) ~ P{MH\MEREO)'

As a simple illustration, consider our coin-tossing example again. Here we could reason-
ably expect to have

P{H\MEREO) = P{H\MEREO) = P(H\E). (8)

From (2), and the fact that the subject must take a stand on the truth value of H, we also
have P(.MH\HR) = 1. Applying (2) again, it then follows that P(MH\MEREO) and
P(MH\MEREO) are both equal to P(H\E)A3 Also we can suppose that the prob-
ability of a random method predicting heads on the 100th toss is 1/2, in which case
P(MH\MERE0) - P(MH\MERE0) = 1/2. It then follows that (7) holds. Note that
if the coin is thought to be fair, then P(H\E) = 1/2, and the numerator and denomina-

. tor are the same on both sides. On the other hand, if the coin is thought to be biased for
heads, say, then the numerator will be greater than the denominator on each side, but (7)
continues to hold.

Scientific cases differ from our coin-tossing example in that scientists, unlike our ex-
perimental subject, are permitted to suspend judgment. Thus scientists can use hypothesis-
generating methods which may fail to generate any hypothesis on a given topic. Under
these circumstances, it is quite consistent with (2) to have P(MH\HR) < 1. Then even
if (8) continues to hold, the numerators in (7) need not be equal. Since predicting H is
less risky when E is known than when E is not known, we might well have

P{MH\MERE0) > P(MH\MERE0).

If this is so, then for (7) to hold we must also have

P(MH\MERE0) > P{MH\MERE0),

and this seems likely to hold for the same reason.

Of course, it is possible for (7) to be violated; and when it is, the predictivist thesis
can also fail. This may be illustrated in our coin-tossing example by supposing we know
that if M is random, then almost certainly it predicts unobserved coin tosses by suppos-
ing they will conform to a certain specific sequence, and that in this sequence the first el-
ement is tails and the 100th element is heads. Then given the first 99 tosses, the method
if random will almost certainly predict tails on the 100th toss, but if no tosses are given
then the method will almost certainly predict heads on the 100th toss. Then

P(MH \MERE0) « 0; P(MH \MERE0) « 1.
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Assuming (8) continues to hold, we still have P(MH\MEREO) = P(MH\MEREO) =
P(H\E), and therefore have a violation of (7). Also, in this example MHEO confirms
R more strongly than does MHEO, and hence it is possible for the predictivist thesis to
fail. But situations such as this seem unlikely to arise in normal scientific contexts, and
so I shall assume that (7) holds.14

Let ME denote that M has generated a hypothesis inconsistent with E, and let ME E

denote that either ME or ME obtains. A further assumption which we shall need is that

, P(MEtE\REO) > P(ME<E\REO). (9)

That is, if the truth-value of E is not input to the method (and if E is true), then the
probability of M generating a hypothesis which takes a stance on the truth value of E
is at least as great when M is reliable as when M is random. In our coin-tossing exam-
ple, we have P(MEE) = 1, and hence have the special case of (9) in which both sides
of the inequality are equal. In Mendeleyev's case, one might not be sure in advance that
his method would produce a hypothesis which asserted or denied the existence of an el-
ement with the properties of gallium (say). Thus we could have P(MEE\EO) < 1, and
so our reason for thinking that (9) holds in the coin-tossing example does not apply here.
But the fact that Mendeleyev was bold enough to make his unprecedented prediction in-
dicates that he was confident of the reliability of his method; and if we take this confi-
dence to be evidence for the actual reliability of his method (or at least not evidence for
its unreliability),15 then we will have

P(R\MEtEEO) > P(R\MEiEEO).

It now follows from Bayes' theorem that (9) holds in Mendeleyev's case. On the other
hand, if (9) were to fail, so that P{MEE\REO) > P(MEE\REO), then the mere fact
that a prediction of the truth value of E has been made can be evidence for R, and under
these circumstances the predictivist thesis can fail. So I shall assume that (9) holds.

To derive the predictivist thesis, we will also need to assume that if M is random,
then there is a positive probability that it would predict E when E obtains, i.e.

P(ME\REO) > 0. (10)

To see how (10) may fail, let M be the method which predicts that unobserved coin
tosses will always land heads, and suppose the coin is fair. Then M has only a random
chance of success, although (10) is violated if E is evidence that the coin landed heads
on a certain toss. However, in realistic situations we typically do not know enough about
a method to be sure what hypothesis it will generate, in which case (10) will hold. This
is clearly so when the method is identified merely as "the subject's method of predicting
coin tosses". We can similarly interpret "Mendeleyev's method of projecting patterns in
the elements" as being sufficiently underspecified that (10) holds.

We are now almost done with assumptions. We just need to note two points. First,
we are assuming (again for simplicity) that hypothesis H entails evidence E; conse-
quently, we have

P(ME\MH) = 1. (11)
We also assume that if evidence E is input to method M, then M will generate a hypoth-
esis which entails E; that is,

P(ME\EO) = 1. (12)

Of course, evidence is in reality often uncertain, so that it can be reasonable to entertain
hypotheses that contradict some available evidence. But we are here making the ideal-
ization that the evidence E is certainly true, and that allows us to assume (12) holds.
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It remains to show that the assumptions made in this section suffice to entail the pre-
dictivist thesis (1).

5. Derivation of the predictivist thesis

According to the intuitive argument sketched in section 3, successful prediction in-
creases the probability that the hypothesis generation method being used is reliable. This
intuition can be expressed as

P{R\MHE0) > P(R\MHE0). (13)

The argument then goes on to say that (13) in turn entails (1). I will show that both parts
of this argument are valid, given the assumptions we have specified.

I begin with the derivation of (13). By the theorem of total probability,

P(E\MEtBR) = P(E\MER)P(ME\MEiER) + P(E\MER)P(ME\ME<ER).

From (2), with E and E substituted for H, we have P(E\MER) = P(E\MER) = 1.
Hence

(14)

Now Bayes' theorem, (14), and (2) with E substituted for H, give us successively:

p , , _ . . . „„- P(E\MER)P(ME\MEtER)
P(ME\MEtERE) = P m l E E R )

= P{E\MER)
= 1- (15)

Thus

P(ME\MEtERE0)P(ME>E\RE0)

* P(ME\ME>ERE0)P(ME>E\RE0y Y ( )

P(ME\RE0) . . , .,
* s m c e ME e n t m l s

Since (12) implies that P(ME\REO) = P(ME\REO) = 1, we then have that

P(ME\REO) P(ME\REO):

P{ME\REO) > P(ME\REO)'

So by (7),

P(MH \MEREO)P(ME \REO) P{MH\MEREO)P{ME\REO)
P(MH\MEREO)P(ME\REO) > P(MH\MEREO)P{ME\REO)'

In view of (11), it follows that

P{MH.\RE0) P(MH\RE0)

P(MH\RE0) > P(MH\RE0)'
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Together with (4) and (6), this implies that

_ P(MH\REO) P(R\EO)P(MH\REO) + P(R\EO)P(MH\REO)

~ P(MH\REO) X P(R\Ed)P(MH\RE6) + P{R\Ed)P(MH\RE0)

P(MH\REO)P(MH\EO) . . . , ,

= pwH\REO)P(MH\Eoy b y ^ t h e o r c m o f t o t a l p r o b a b l l l t y

_ P(MH\RE0)P(R\E0)P{MH\EO)
P{MH\REO)P(R\EO)P{MH\E0y Y

P{R\MHEO)
= P(R\MHEOy ^ Bayes'theorem.

This completes the proof of (13).

We now proceed to show that (13) entails (1), given our assumptions. By the theo-
rem of total probability,

P(H\MHEO) _ P(.R\MHEO)P(H\RMHEO) + P{R\MHEO)P{H\RMHEO)
P(H\MHEO) ~

From (2) we have that P{H\RMHEO) = P(H\RMHEO) = 1; and by (3) we have that
P(H\RMHEO) = P(H\RMHEO) = 6, say. Thus

P(H\MHEO) _ P(R\MHE0) + SP(R\MHEO)
P(H\MHEO) ~ P(R\MHEO) + 6P(R\MHE0)

_ Q.-S)P{R\MHE0) + 6
~ (l-S)P(R\MHEO) + S'

Assumption (5) asserts that S < 1; consequently, the above equation together with (13)
entails (1).

6. Concluding remarks

We have now shown that Bayesians can agree with the predictivist thesis, and further
can offer a Bayesian explanation of why it holds when it does. In the course of devel-
oping this explanation, we made a sizable number of assumptions. A few of these were
idealizations designed to simplify the formal analysis; for example, the assumption that
the hypothesis generation method is either completely reliable or else random. I plan to
show on another occasion that it is possible to relax these assumptions, and still give es-
sentially the same explanation of the predictivist thesis. However, most of the assump-
tions we made were found to be necessary, in that without them the predictivist thesis
could fail. This category includes such assumptions as that we not be certain of the relia-
bility of the method, and that the occurrence of accommodation should not itself confirm
the reliability of the method. It is because these latter assumptions do normally hold in
scientific contexts that the predictivist thesis is true in those contexts.

Those who have accepted the predictivist thesis seem not to have been aware that
the thesis can fail under certain conditions. I see it as one of the merits of the present ac-
count that it reveals this fact.
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At least until fairly recently, it has been generally accepted in the philosophy of sci-
ence that the method by which a hypothesis was discovered is irrelevant to the confirma-
tion (or corroboration) of that hypothesis (Popper 1959, p. 31f.). A related view is that
there can be no "logic of discovery", i.e. no way of identifying discovery methods which
are more likely than others to yield true hypotheses. A corollary of our explanation of
the predictivist thesis is that these widely accepted views are incorrect. For we have seen
that successful prediction provides reason to think that a discovery method is reliable;
and since reason to believe a method reliable is reason to believe the hypotheses it gen-
erates are true, it follows that the method by which a hypothesis is generated is indeed
relevant to the confirmation of that hypothesis.16

According to the account I have offered, the confirmatory relevance of discovery
methods is central to understanding the predictivist thesis. The fact that this relevance
has been widely denied probably explains why the explanation of the predictivist thesis
has eluded so many eminent philosophers of science.

Notes

1This paper was written during my tenure as a fellow with the Michigan Society of
Fellows. It is based on research supported by the National Science Foundation under
grant SES-8708168.

2I am using concatenation to represent conjunction, and overbars to represent nega-
tion. Thus EO is the proposition that E is true and O is false.

3Horwich does offer an analogy which is intended to support the statement I have just
quoted. In this analogy, the statements considered are:

F = my car is green
Hp = the previous owner painted the car an ineradicable green
Hi =1 insisted upon a green car.

Horwich claims that "the only element in [Hi] which is relevant to the probability of Hp
is that my car is green", and thus concludes that

The anti-predictivist position is then supposed to be analogous to this. But Horwich's
account of his example is faulty. To see this, let

FB = my car was green when I bought it.

By the theorem of total probability,

P{HP\HjF) = P(HP\HiFFB)P(FB\HiF) + P(HP\HIFFB)P(FB\HIF).

We can plausibly suppose that the relevance of Hi to Hp is fully accounted for by the
fact that Hi entails FB, in which case P(HP\HiFFB) = P(HP\FFB). Also, since Hi
entails FB> P(FB\HiF) = 1 and P(FB\HiF) = 0. Thus we obtain

= P(HP\FFB).
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Now the theorem of total probability also gives us

P(HP\F) = P(HP\FFB)P(FB\F) + P(HP\FFB)P(FB\F).

Since P(Hp\FFB) = 0, we then have

P(HP\F) = P(HP\FFB)P(FB\F).

Now the fact that my car is green does not imply that it was green when I bought it,
and so it is reasonable to suppose that P(FB \F) < 1, in which case it follows that
P{Hp\HjF) > P(Hp\F), contrary to Horwich's claim. So if there is any analogy here
at all, it is one that supports the predictivist thesis.

4For the history of the development of the periodic table, see Ihde (1964), chapter 9.

5Though there was doubt about the correctness of the reported properties for some
of these elements, and Mendeleyev put question marks against five of the entries in the
table (which is reproduced in Ihde (1964, p. 245).

6Campbell and Vinci (1982, 1983) have made two attempts to give a Bayesian expla-
nation of a variant form of the predictivist thesis. What they argue for is that success-
ful prediction confirms the approximate truth of a hypothesis more than does successful
accommodation. (Though they prefer to speak of "heuristically novel" evidence, rather
than predicted evidence.) Unfortunately, neither of these attempts is successful. In the
1982 paper, they derive their conclusion by assuming, amongst other things, that (i) the
probability of a hypothesis H being close to the truth, given only that it has successfully
accommodated evidence E, must be very small; and (ii) the probability of H fitting evi-
dence E, given that H is not close to the truth and was not designed to accommodate E,
is vanishingly small. But these assumptions beg the question against the anti-predictivist,
who will hold that when H and E are such that (ii) is satisfied, then (i) is false. As for
the 1983 paper, let N be the proposition that of the hypotheses generated by method M
which are not close to the truth, very few entail E; also let T be the proposition that H
is close to the truth. Then what Campbell and Vinci establish in this second paper is that
(in my notation):

P(T\MHEN0) > P(T\MHE0).

But here the extra confirmation on the left-hand side comes from N, not from 0; and so
this result fails to establish that prediction has any special confirmatory value.

7JJ. Berzelius, Lehrbuch der Chemie (1845); cited in Ihde (1964), p. 237.

8In particle physics, the method led to the discovery of the "eightfold way" by Gell-
Mann and Ne'eman (1964).

9In the latter case, the probability will depend on the proportion of true statements in
the class from which the hypothesis was chosen.

10"Prediction" is now the description by the subject of tosses whose outcomes have
not been revealed to the subject, though they are known to the experimenter.

11 Actually, we do not need the full strength of (3);_for the arguments which follow, it
would suffice to assume the weaker condition P(H\RMHE0) > P(H\RMHE0).
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12As this discussion suggests, it would suffice for our purposes to make the weaker as-
sumption that P(R\EO) > P(R\EO).

13Proof of the last two statements: Since the subject must take a stance on the truth
value of H, M# implies that M has generated a hypothesis inconsistent with H, whence
it follows from (2) that P(H\MnR) = 0. It then follows from Bayes' theorem that
P(MH\HR) = 0, and hence that P(MH\HR) = 1. Also (2) and Bayes' theorem entail
that P(MH \HR) = 0. Now by the theorem of total probability,

P(MH\MERE0) = P(MH\HMERE0)P(H\MERE0)+
P(MH\HMERE0)P{H\MERE0)

= P{H\MERE0), by the above results
= P(H\E), by (8).

A similar proof shows that P{MH\MERE0) is also equal to P(H\E).

14Again, a weaker assumption would suffice; in this case, it would be enough to as-
sume that

P{MH\MERE0) ^ P(MH\MERE0)
P(MH\MERE0) ~ P{MH\MERE0)'

15Let C be the event that Mendeleyev is confident of the reliability of his method.
Then the first assumption stated here can be represented more precisely as

P(C\MEtEE0) > P{C\ME<EE0).

The second assumption is that

P{R\CMEEE0) > P(R\CMEBEO), and P(R\CMEEEO) > P{R\CMEEE0).
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