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Abstract

We consider integral models of Hilbert modular varieties with Iwahori level structure at primes over p, first proving
a Kodaira—Spencer isomorphism that gives a concise description of their dualizing sheaves. We then analyze fibres
of the degeneracy maps to Hilbert modular varieties of level prime to p and deduce the vanishing of higher direct
images of structure and dualizing sheaves, generalizing prior work with Kassaei and Sasaki (for p unramified in
the totally real field F). We apply the vanishing results to prove flatness of the finite morphisms in the resulting
Stein factorizations, and combine them with the Kodaira—Spencer isomorphism to simplify and generalize the
construction of Hecke operators at primes over p on Hilbert modular forms (integrally and mod p).
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1. Introduction

The motivation for this paper is two-fold: the construction of Galois representations and of Hecke
operators at primes over p in the setting of mod p Hilbert modular forms for a totally real field F. By
mod p Hilbert modular forms, we mean sections of automorphic line bundles of arbitrary weight over
mod p Hilbert modular varieties of level prime to p. We will explain this below more precisely, discuss
what was done previously, and describe how the results here complete the picture for Hecke operators
and feed into an argument that does so for Galois representations.

First, let us recall the nature of the difficulty in constructing Hecke operators at p in characteristic
p. One issue already arises in the setting of classical modular forms. For simplicity, assume N > 4
and let X;(N) denote the modular curve I'} (N)\$*, so that X;(N) may be viewed as parametrizing
pairs (E, P), where E is a generalized elliptic curve over C and P is a point of E of order N (see, for
example, [DR73]). Similarly, for p not dividing N and I'} (N; p) = I'1 (N) N Ty(p), the modular curve
X1 (N;p) =T1(N; p)\O* parametrizes data of the form (E, P, C), where (E, P) is as above and C is a
subgroup of E of order p, and there are two natural degeneracy maps 71, 7 : X1 (N; p) — X1(N), with
m(E,P,C) = (E,P) and my(E,P,C) = (E/C, P mod C). The space of modular forms of weight k

with respect to I'; (N) may be identified with H°(X;(N), w®¥), where the line bundle w = 0*Q}, XN

is the pull-back of Q}E /X1 (N) along the zero section O : X;(N) — E. The Hecke operator 7}, can then
be defined as the composite

HO(X1(N),w®*) — H(X1(N: p), my0®")
— HY(X{(N; p), mjw®*) — H(X|(N), w®¥)

divided by p, where the first map is pull-back, the second is induced by the universal isogeny over
X1(N; p), and the third is the trace. To define 7}, integrally or in characteristic p, one can work instead
with integral models of the curves and show (as in [Con07, §4.5], for example) that the resulting
composite morphism

7T1,*(7l';a)®k) — ﬂl,*(ﬂ*[w@k) — w® (1.1)

of sheaves is divisible by p (assuming k > 1).

This paper offers an alternative to the standard approach just described to the construction of Hecke
operators at p. In particular, it allows for a more general and direct definition of the morphism which
produces (1.1) after multiplication by p. Our perspective thus breaks the mindset reflected in [Cal20,
§3.4], which described all prior constructions by saying that the ‘correct’ definition of T involves first
defining a map coming from a correspondence and then showing that it is ‘divisible’ by the correct
power of p.

To construct integral and mod p Hecke operators at primes over p over more general Shimura
varieties, one encounters the further difficulty that the degeneracy maps no longer necessarily extend to
finite flat morphisms on the usual integral models, so the definition of a trace morphism requires a more
sophisticated application of Grothendieck—Serre duality. Emerton, Reduzzi and Xiao take this approach
in [ERX17a] to defining Hecke operators at primes over p for Hilbert modular forms, integrally and mod
p, but for a restricted set of weights. However, Fakhruddin and Pilloni set up a general framework in
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[FP23] and prove results for Hilbert modular forms that are optimal in terms of the weights! considered,
but they assume p is unramified in F.

This paper contains both a conceptual innovation and a technical improvement on previous work,
yielding an optimal result. The innovation takes the form of a Kodaira—Spencer isomorphism describing
the dualizing (or canonical) sheaf on integral models of Iwahori-level Hilbert modular varieties. In
addition to being strikingly natural and simple to state, it can also be viewed as encoding integrality
properties of Hecke operators at p. The technical advance is a cohomological vanishing theorem for the
dualizing sheaf, showing that its higher direct images relative to certain degeneracy maps are trivial.
This generalizes such a result in [DKS23], where it is proved under the assumption that p is unramified
in F, and we apply it here to define Hecke operators integrally and in characteristic p, obtaining them
directly from morphisms of coherent sheaves rather than (rescaled) morphisms of complexes in a derived
category, as in [ERX17a] and [FP23].

The cohomological vanishing is also useful in proving the existence of Galois representations as-
sociated to mod p Hilbert modular eigenforms of arbitrary weight. The construction of such Galois
representations is proved independently by Emerton, Reduzzi and Xiao in [ERX17b], and by Goldring
and Koskivirta in [GK19], under parity conditions on the weight. These conditions are inherited from
the obvious parity obstruction to algebraicity for automorphic forms on Resy;q GL2; however, they are
unnecessary, and unnatural, in the consideration of automorphic forms in finite characteristic. The con-
struction of Galois representations for mod p Hilbert modular forms of arbitrary weight is carried out
in [DS23] under the assumption that p is unramified in F, with the cohomological vanishing result in
[DKS23] playing a crucial role in the argument. The generalization proved in this paper can similarly
be used, in conjunction with the methods of [DS23] and [ERX17b], to prove the existence of Galois
representations associated to mod p Hilbert modular eigenforms in full generality.

The cohomological vanishing results also have applications to the study of integral models for
Iwahori-level Hilbert modular varieties. Indeed, similar arguments to those for the dualizing sheaves
also show that the higher direct images of their structure sheaves vanish, and together with Grothendieck—
Serre duality, this implies the flatness of the finite morphisms in the Stein factorizations of the degeneracy
maps. As a result, we obtain Cohen—Macaulay models for the Iwahori-level varieties which are finite
flat over the smooth models for the varieties of prime-to-p level.

We now describe our results in more detail.

We fix a prime p and a totally real field F, and let OF denote the ring of integers of F. Fix also
embeddings Q — Q,, and Q — C, and let O denote the ring of integers of a sufficiently large finite
extension K of Q, in @p.

Let U be a sufficiently small open compact subgroup of GL>(Af ¢) containing GL>(OF ). A
construction of Pappas and Rapoport [PR0O5] yields a smooth model Y over O for the Hilbert modular
variety with complex points

GLy(F):\(9* X GLa(Afr 1) /U),

where § is the complex upper-half plane and X is the set of embeddings F — Q. The scheme
Y is equipped with line bundles? w and ¢ arising from its interpretation as a coarse moduli space
parametrizing abelian schemes with additional data including an Op-action. Since Y is smooth over O,
its relative dualizing sheaf Ky /o is identified with AlFQ] Q;/O, and in [RX17] (see also [Dia23, §3.3]),
Reduzzi and Xiao establish an integral version of the Kodaira—Spencer isomorphism, taking the form

Ky/o = 5 1w®,

IThe results in [FP23] are only formulated integrally, necessitating a parity condition on the weight, but the hypothesis is not
essential to the methods there.

2We remark that ¢ is trivializable, but only non-canonically, and we systematically incorporate it into constructions to render
them Hecke-equivariant.
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Let p be a prime of OF containing p. Denote its residue degree by f, and let

Uo(P)={(ZZ)€U

Augmenting the moduli problem for Y with suitable isogeny data then produces a model Yy (p) for the
Hilbert modular variety of level Uy (p), equipped with a pair of degeneracy maps ny, 7 : Yo(p) — Y.
The morphisms 7 and 7, are projective, but not finite or flat unless Fy, = Q.

The scheme Yy(p) is syntomic over O, and hence has an invertible dualizing sheaf Ky ) 0. Our
Iwahori-level version of the Kodaira—Spencer isomorphism is the following (Theorem 3.5; see there for
the precise meaning of Hecke-equivariant).

Cp € DOFJJ }

Theorem A. There is a Hecke-equivariant isomorphism
Kyym/0 = 1567 w) ® mjw.
The idea of the proof is that, for sufficiently small U, the Hecke correspondence
(m1,72) 1 Yo(p) = ¥V XY

is a closed immersion whose conormal bundle can be described using deformation-theoretic considera-
tions similar to those applied to the diagonal embedding Y — Y XY in the proof of the Kodaira—Spencer
isomorphism for level prime to p. We mention also that Theorem A can be expressed in terms of upper-
shriek functors as an isomorphism

! ~
Tw = mjw,

and that 7j6 and 7360 are canonically isomorphic, so that 7; and 7, can be interchanged in these
statements.

We now describe our cohomological vanishing results. For simplicity, we focus on the vanishing
of R"m,*ICyO(p)/o for i > 0. Since 71 x : Yo(p)k — Yk is finite, the problem reduces to proving the
vanishing of Riﬁl,*lcyo(p) JE,» where 7; : Yo(p) — Y is the reduction® of 7r;. Then Yo(p) is a local

complete intersection which may be written as a union of smooth subschemes Y (p); indexed by subsets
J of X, where X, is the set of embeddings F, — @p. The technical heart of this paper is a complete
description of the fibres of the restriction of 7| to Y((p)s, proving the following (Corollary 4.14; see
there for the definition of m and ¢, and Theorem 4.13 for an even more precise version).

Theorem B. Every nonempty fibre of Yo(p); — Y is isomorphic to (P")™ x S°, where S =
Spec (F,[T1/T?) and m and § are determined by J.

This generalizes Theorem D of [DKS23], where it is proved under the assumption that p is unramified
in F. Work in this direction, for arbitrary behavior of p, was also carried out* in [ERX17a, §4]. The
approach taken here to the general case relies on a brute force analysis of the local deformation theory
of the fibres, undertaken in §§4.3—4.5. With this in hand, the proof is similar to the one in [DKS23], as
is the deduction of cohomological vanishing via the ‘dicing’ argument introduced there. Furthermore,
we observe here that similar arguments give the vanishing of R’y Oy, ) for i > 0, and combining
these results with Grothendieck—Serre duality gives the following (see Corollaries 5.4 and 5.7):

Theorem C. The sheaves Riﬂl,*l(:yo(p)/o and Riﬂl,*OYO(p) vanish for i > 0, and are locally free of
rank 1 + p» ifi = 0. Furthermore, there is a Hecke-equivariant isomorphism

71Oy (p) — Homoy, (11 Ky ()05 Ky j0)-

3We work here over F,,, slightly deviating from the notation in the paper.
4There is, however, a serious gap in the argument in [ERX17a]; see Remark 4.12 below.
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As in [DKS23], we in fact treat the degeneracy map ¢ : Y1 () — Y where B is the radical of pOp
and Y| () is a model for the Hilbert modular variety of level U, (B), this being what is needed for the
construction of Galois representations. The case where P contains the radical, for example P = p, is
a mild generalization, and this implies the result for 7;. It follows also that the models for the Hilbert
modular varieties of level U; (p) and Uy(p) defined by

Spec(¢.Oy,(y)) and Spec(ry, Oy p))

are finite and flat over Y, and hence Cohen—Macaulay. We remark that if p is unramified in F, such a
model for level U;(p) (and indeed U;(p")) was constructed by Kottwitz and Wake in [KW17]; it is
natural to ask how these models may be related. Since our (finite flat over Y) models are defined via
Stein factorization and Y (p) is normal, we obtain the following, perhaps surprising, further consequence
(Corollary 5.12), pointed out to us by G. Pappas:

Corollary D. The normalization of Y in Yy (p)k is flat over Y.

Note also that combining Theorems A and C with the Kodaira—Spencer isomorphism over Y and the
isomorphism 7{¢ = 7136 gives an isomorphism

71,+Oyyp) = Homoy, (11,xm50, w),
and hence a canonical morphism
T THW — W
which we call the saving trace. Over Yk it coincides with the composite
(m1,smyw)k — (T w)k — Wk

divided by p%, where the first morphism is induced by the universal isogeny and the second is the trace
relative to 1 k. (See (5.21); note that for F = Q, this recovers the divisibility of (1.1) by p in the case
k=1)

The saving trace can be used to define the Hecke operator 7, on Hilbert modular forms with
coefficients in an arbitrary O-algebra R; for simplicity, we restrict our attention in this introduction to
R = F,. First, recall that for any k = (kg)gex € Z* (and sufficiently small U), there is an associated

automorphic bundle 711( over Y (denoted Ak 0F, in §2.3; in particular, 711 =w= WE, ). IfF #Q,so
that the Koecher Principle holds, then My (U, E,) =H 0(7, 711() is the space of Hilbert modular forms
over Fp of weight k and level U; if F = Q, one needs to compactify ¥ and extend Ay = @%* to define
M (U, R,). Taking the direct limit over all (sufficiently small) U containing GL»(OF ), we obtain a

GLZ(Agp ;)-module My (Fp). We remark that even forms of paritious weight k in characteristic p do not
necessarily lift to characteristic zero; indeed, this is already the case for F = Q and k = 1.
If kg > 1 for all & € X, (a mild hypothesis in view of the main result of [DK23] and [DDW24,

Prop. 1.13]), then the universal isogeny induces a morphism ﬁ;;lk,l — ﬁ”f?lk,l over Y(p). Twisting
its direct image by the saving trace 7, ,T,w = (7 1,+T,w)5  — w over Yz then yields a morphism
r r

ﬁl’*ﬁzAk 4 Ak,

and hence an endomorphism T, of My (U ;ﬁp) (see (5.25)). Taking the limit over U thus defines a

GLZ(A;P ;)-equivariant endomorphism 7, of Mk(Fp). See Theorem 5.13 for a statement applicable to
more general weights, coefficients and cohomology degrees.
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2. Hilbert modular varieties
2.1. Notation

Fix a prime p and a totally real field F of degree d = [F : Q]. We let O denote the ring of integers
of F, b its different, S, the set of primes over p. For each p € §,, we write F;, for the completion of
F at p, and we let F} o denote its maximal unramified subextension, F, the residue field OF /p, f, the
residue degree [Fy o : Qp] = [Fy : Fp], and e, the ramification index [F, : Fy 0]. We also fix a choice
of totally positive @, € F so that vy(wy) = 1 and vy (wp) = O for all other p’ € S,,. In particular, @,
is a uniformizer in F}, and for each p € S, and let E, (1) € W(F,)[u] denote its minimal polynomial
over Fy o, whose ring of integers we identify with W ([F,).

We adopt much of the notation and conventions of [Dia23] for notions and constructions associated
to embeddings of F. In particular, for each p € S,,, we let X, denote the set of embeddings F}, — @p,

and we identify ¥ := UDES[, %, with the set of embeddings F' — @p via the canonical bijection. We
also let %y o denote the set of embeddings Fy 0 — Q,,, which we identify with the set of embeddings
W(F,) — W(F)), or equivalently F, — F, and we let £y = Hpesp 2p,0-

For each p € S, we fix a choice of embedding 1, ¢ € X, 0, and fori € Z/ f,Z, welet 1y ; = ¢' 0 Ty o

where ¢ is the Frobenius automorphism of Fp. We also fix an ordering 0y ;.1,0p,i,2, - - -, Op,ie, Of the
embeddings 6 € X, restricting to 7, ;, so that

YX={0pij|lP€ESpIi€Z/fZ,1 <j<ep}.

Finally, we let o~ denote the permutation of X defined by o (6y,i, ;) = Oy.i,j+1 if j # ep and (O ie,) =
Opit1,1-

Choose a finite extension K of Q,, sufficiently large to contain the images of all § € X; let O denote
its ring of integers, @ a uniformizer, and £ its residue field.

For 7 € £, 0, we define E;(«) € O[u] to be the image of E, under the homomorphism induced by
T, so that

0r@0 = @ Orpowe,. 0= OM/(E-).

peS, T€EX 0 TEX

For any O ® O-module M, we obtain a corresponding decomposition M = (P .y, M+, and we also
write My ; for M+ if T = 7y ;. Similarly, if S is a scheme over O and M is a quasi-coherent sheaf of
OFr ® Os-modules on S, then we write M, = M, ; for the corresponding summand of M.

Foreach 6 = 0, ; ; € X, we factor E; = sgtg where 7 = 1y ;,

SQ = ST,j = (M - gp,i,l(wp)) e (I/t - gp,i,j(wp)) (2 1)
and tg (= Opi j+1(@p)) -+ (U = Op i, (@p)); '

tr j

note that the ideals (s¢) and (t¢) in O[u]/(E) are each other’s annihilators, and that the corresponding
ideals in OF » ®w (g,),r O are independent of the choice of the uniformizer w@.

2.2. The Pappas-Rapoport model

‘We now recall the definition, due to Pappas and Rapoport, for smooth integral models of Hilbert modular
varieties of level prime to p,

We let Ap ¢ = F ® Z denote the finite adeles of F, and we let Agpz =0Q0® 6l<pp) = FoZP,
where 5}1’) (resp. Z(P)) is the prime-to-p completion of Of (resp. Z), so 7P = [l¢sp Ze and
O =0 @ZP =1y, OF .
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Let U be an open compact subgroup of GL2(6F) C GLa(Af ¢) of the form U,UP, where U, =
GL>(OF,p). Consider the functor which associates, to a locally Noetherian O-scheme S, the set of
isomorphism classes of data (A, ¢, 4,1, F*), where

o s:A — Sisan abelian scheme of relative dimension d;

t: O — End g(A) is a homomorphism;

o Ais an OFf-linear quasi-polarization of A such that for each connected component S; of S, A induces
an isomorphism ¢;d ®¢p,. As, — Agl_ for some fractional ideal ¢; of F prime to p;

[¢]

o nisalevel UP structure on A; that is, a 71 (S;, s;)-invariant UP -orbit of (’9\;7’9 )_linear isomorphisms
ni : (O)? > d&o, TP (As)

for a choice of geometric point 5; on each connected component S; of S, where T(?) denotes the
product over £ # p of the {-adic Tate modules, and g € U? acts on 1; by pre-composing with right
multiplication by g~!;

o F* is a collection of Pappas—Rapoport filtrations; that is, for each T = 1,; € Xy, an increasing
filtration of OF » ®w (5,),r Os-modules

0=FO c gV c...c plo D c plew) _ (S*Qi\/s)f

suchthatfor j = 1,..., ep, the quotient }"ij) /.FT(j_D is a line bundle on S on which OF acts via 8y ; ;.

If UP is sufficiently small, then the functor is representable by an infinite disjoint union Y of
smooth, quasi-projective schemes of relative dimension d over O. Furthermore, we have an action of

v € OIX7 (p).+ O Yy defined by composing the quasi-polarization with ¢(v), and the action factors
X

through a free action of O (P)+ /(UN (’)IX,)2 by which the quotient is representable by a smooth quasi-
projective scheme of relative dimension d over O, which we denote by Y. We also have a natural right
action of g € GLZ(A;” z) on the inverse system of schemes Yy defined by pre-composing the level

structure 77 with right-multiplication by g~!, and the action descends to one on the inverse system of
schemes Yy, . Furthermore, we have a compatible system of isomorphisms of the Yy, (C) (for any choice
of @ — C) with the Hilbert modular varieties

GLy(F);\($* X GLy(Ar 1) /U)

under which the action of GLz(Agp ;) corresponds to right multiplication.

2.3. Automorphic bundles
Let A = (A, , 4,1, F*) denote the universal object over Yy . Recall that ”HCIIR (A/Yy)isa (Zariski-)locally
free sheaf of rank two O ® Oi"u -modules, and hence decomposes as @TezHéR(A / ?U)T, where each
HéR(A /Yu). is locally free of rank two over O;U [ul/(EL).

For 7 = 7,; and 6 = 0, j, we let Ly denote the line bundle ]—'T(j) /]:ij_l) on Yy. We let Qij)
denote the pre-image of fﬁj_l) in "HCIIR(A/?U)T under u — 6(wy), so that Py := gif) /]-'ij_1> is a rank

two vector bundle on Yy, containing Ly as a sub-bundle. We let My = Po/Lg = gif )/]-'.Ej ) and
No =Ly ®o;, Mg = /\é_ Pg. For any k, m € Z*, we let A, denote the line bundle
U Yu

(3" w0y, N5™)

0eX
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on ?U. We also let w = .2(1,0 and 6 = ,10,1- Note that w may be identified with /\‘éN (S*Qi‘/)7 ); we
Y U
remark that, less obviously, 6 may be identified with /\é‘{ (H éR(A /Yy)) (and more naturally with
DiSCF/Q ® /\éd; (/H(ljR(A/YU)))
U

There is a natural action of O; (p).+ ON the vector bundles .7-"T(j ) and gif ) over the one on Yy,

inducing actions on Ly, Pg, Mg and Ny; however, the restriction to (U N 0;)2 is nontrivial, so it
fails to define descent data on these sheaves to Yy (see [Dia23, §3.2]). More precisely, if v = ,u2 for
some u € U N OF, then v acts on Lg, Pg and M (resp. Nyg) by 6(u) (resp. 6(v)). Thus, if k + 2m is
parallel, in the sense that k¢ + 2m ¢ is independent of 6, then we obtain descent data on .Z(k,m (provided
Nmpg,o(UNOF) = {1}), and we let Ax m denote the resulting line bundle on Yy ; note in particular this
applies to w and 5, yielding the line bundles on Yy which we denote w and 6. More generally, if R is an
O-algebra in which the image of [T 6(u)***™¢ is 1 for all u € U N O}, then Ax m.g := Axm ®0 R
descends to a line bundle on Yy g := Yy X0 R which we denote by Ak m r; note in particular that if
pN R = 0 for some N, then this applies to all k, m whenever U is sufficiently small (depending on N).
We also have natural left action of GL, (A}‘f z) on the various vector bundles over its right action
on the inverse system Y. More precisely, suppose that g € GLz(Ag 2) is such that g"'Ug c U’,
where U and U’ are sufficiently small open compact subgroups of GL,(AF ¢) containing GL>(OF ).
Let A" = (A’,/, A, n’, F’*) denote the universal object over Yy, and similarly let £/, etc., denote the
associated vector bundles. As described in [Dia23, §3.2], the morphism py : )7U — )7U, is associated with
a (prime-to-p) quasi-isogeny A — p, A’ inducing isomorphisms ,5;]—';” ) 5 Fij ), which in turn give
rise to isomorphisms p, L}, — Ly, etc., satisfying the usual compatibilities. Furthermore, if k + 2m is

parallel, then the resulting isomorphisms ,5; Jz(l’(m 5 Xk,m descend to isomorphisms pz,Al’(,m 5 Ak.m,

where pg : Yy — Yy is the morphism obtained by descent from p,, and more generally, we obtain
isomorphisms pg A | & = A.m.r Whenever the image in R of [T, 6(u)**2™¢ is 1 forall u € U'nOx%.

If R = C and k + 2m is parallel, then we recover the usual automorphic line bundles on Yy (C) whose
global sections are Hilbert modular forms of weight (k, m) and level U, along with the usual®> Hecke
action of GL, (A;” z) on their direct limit over U.

Finally, recall from [Dia23, §3.2] that the quasi-polarization and Poincaré duality induce a perfect
alternating pairing on Py (depending on the choice of @), and hence a trivialization of Ny, but their
products do not descend to trivializations of the bundles Ay m g over Yy (if m # 0). These are, however,
torsion bundles, which are furthermore non-canonically trivializable for sufficiently small U. The Hecke
action on their global sections is given by [Dia23, Prop. 3.2.2].

2.4. Iwahori-level structure

For p € §,,, we let Iy(p) denote the Iwahori subgroup

{ (Z Z) € GLQ(OFJ))

C € pOF,p }

In this section, we recall the definition of suitable integral models of Hilbert modular varieties with such
level structure at a set of primes over p.

Fix an ideal B of OF containing the radical of pOF, so that P = [],p p for some subset P of S,.
We are mainly interested in the cases P = {p} and P = S, but the additional generality introduces
no difficulties, and it may be instructive (and amusing) to note how some of our results specialize to
well-known ones in the case P = (. Let U be an open compact subgroup of GL, (A ¢) as above, so that

5Up to a factor of || det ||, depending on normalizations.
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U = U,UP where U, = GL2(OF,p,) and U? is a sufficiently small open subgroup of GLZ(@\}” )), and
we let

Uo(B) = {g € Ulgyp € lo(p) forall p|%P }.

dWeletwgp = [[ @y, fig = 2 fo. dp = X epfo, Zp = [1 Zp and Zg o = [ [ Zp 0, with the product, sums
and unions taken over the set of p dividing .

For a locally Noetherian O-scheme S, we consider the functor which associates to S the set of
isomorphism classes of triples (A, A,,¥), where A, = (A;,y;, A;,1;, F;) define elements of Yy (S) for
i=1,2andy : A| — A, is an isogeny of degree p/® such that
ker(y) c A1[B];

Y is Op-linear (i.e., ¥ o t; (@) = ta(@) oy for all @ € OF);

Aoy (my) =y oy oy,

Y o1y = (as UP-orbits on each connected component of S);

Y Fy c Fp ey FYy c FU) forallp € S, 7 € Zopand j = 1., ep).

O O O O O

For such an isogeny ¢, consider also the isogeny £ : A, — P! ®p, A such that Eoyy : A] —
P! ®0,. Aj is the canonical isogeny with kernel A; [B]. The compatibility with the quasi-polarizations
A1 and A, then implies the commutativity of the resulting diagram of p-integral quasi-isogenies (over
each connected component of the base S):

& _
Ay ———— P @0, A

/lzl lwﬁ ®l
(1ey)”

(b R0 Az)v B (b R0 Al)v.

This in turn implies the commutativity of the diagram

*

fT
B0y Heyt —— Hep

w%' ®ﬂ7,|l Jllr,z
()Y

\% \
Hoy—He

for each 7 € Xy, where H.; is the T-component of the locally free O ® Og-module HéR(Ai /S)
for i = 1,2, the superscript ¥ denotes its Og[u]/(E)-dual, and the p ; are the T-components of the
isomorphisms obtained from the polarizations and Poincaré duality (see [Dia23, (4)]). The condition
that I,D*]:i{z) c ]-'ij; for all j therefore implies that & (P ®c,- (]-'i{;)L) c (.7-'1({2)){ so it follows from
[Dia23, Lemma 3.1.1] that

£ ©o, FI)) c (FI)). 2.2)

The functor defined above is representable by a scheme ?Uo(qg), projective over Yy relative to either

of the forgetful morphisms.¢ In the next section, we prove that the schemes Yy, (p) are syntomic of
relative dimension d over O (see also [ERX17a, Prop. 3.3]). Note that we again have a free action of

O;’(p)’ Jun (9;;)2 for which the quotient is representable by a quasi-projective scheme of relative

6The compatibility in (2.2) is included in other references as a further requirement on the isogeny ¢ in the moduli problem
defining the model. As we have shown that it is automatically satisfied, it follows that our definition agrees with the one used in
[DK23, §7], for example, except that there it is assumed that B = p, U = U (n) for some n and the polarization ideals are fixed
(and normalized differently). Our ?UO(D) is therefore isomorphic to an infinite disjoint union of the schemes denoted ¥R in loc.
cit. in the case U = U (n), and its quotient by a finite étale cover if U (n) c U.
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dimension d over O, which we denote by Yy, (), and a natural right action of GLz(Agp 2) on the inverse

system of the ?Uo(‘B) (over U?) descending to one on the inverse system of Y, (). Furthermore, the
schemes Yy, () are independent of the choices of @y, and we again have isomorphisms of their sets of
complex points with Hilbert modular varieties

Yuo(p)(C) = GLo(F):\(H* X GLo(AF £)/Uo(B))

under which the action of GLZ(A(FP 2) corresponds to right multiplication.

Consider also the forgetful morphisms 7; : YUo(‘B) - Yy sending (A, A,,¥)to A, fori=1,2, and
their product

hi=(7,70) : ?Uo(‘B) — Yy xo Yy,

descending to morphisms 7; : Yy, (p) — Yy and h : Yy, (p) — Yu Xo Yy, which are again independent
of the choices of wy.

Proposition 2.1. For sufficiently small U, the morphisms h and h are closed immersions.

Proof. Since his projective, it suffices to prove that it is injective on geometric points and their tangent
spaces. Furthermore, the assertion for % follows from the one for 4.

Suppose then that (A,, A,,¢) and (A}, A},¥") correspond to geometric points of ?U(](q;) with the
same image under h. Thus, there are isomorphisms f; : A; — A/ fori = 1,2 which are compatible with
all auxiliary data. Let & : A} — A; be the unique isogeny such that £ o ¢" o fi = p, and consider the
OF-linear endomorphism « := & o f; oy of A| (where we identify O with a subalgebra of End (A;)
via ¢1). We wish to prove that & = p, as this implies that f, oy = ¢’ o f, giving the desired injectivity
on geometric points.

First, note that the compatibility of " and f; with quasi-polarizations implies that ¥ o1y owg 0 & =
pz/l’z. Combining this with the compatibility of  and f, with quasi-polarizations, it follows that
@¥ o 1) o = p2A;. In particular, F(a) is stable under the 1;-Rosati involution of End°(A), which
sends a to p>a~'. By the classification of endomorphism algebras of abelian varieties, it follows that
either @ € F, in which case @ = +p, or F(«) is a quadratic CM-extension of F, in which case « is in its
ring of integers and aa = p?.

Next, note that the compatibility of ¥, ¥’, fi and f> with level structures implies that if U c U(n),
then @ o7, = p7j,, where 77, : (Op /n)? = A;[n] is the isomorphism induced by 7, . It follows that a — p
annihilates Aj[n], and therefore so does @ — p (writing @ = « if @ € F). Letting 8 denote the element
a+a—-2p € Op, it follows that 8 annihilates A [n], and hence 8 € n. Furthermore, since « is a root of

X*—(B+2p)X +p’

and either @« = +p or F(a) is a CM-extension of F, it follows that |§(B8)| < 4p for all embeddings
6 : F — R.If n is such that Nr g (n) > (4p)!F*Ql this implies that 8 = 0, and hence, @ = p.

We have now proved that h is injective on geometric points. The injectivity on tangent spaces is
immediate from the Grothendieck—Messing Theorem, a version of which we recall below for convenience
and for later use. O

Let S be a scheme and i : S < T a nilpotent divided power thickening. If  : B — T is an abelian
scheme of dimension d, then the restriction over S of the crystal R 1 ferys,« OB crys 18 canonically identified
with Rlicrys,*OE,crys’ where7 : B — S is the base-change of 7 : B — T The image of 1.QL - under the
resulting isomorphism

HéR(B/T) ;) (thcrys,*OB,crys)T ; (lecrys,*OE’crys)T (23)
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is thus an O -subbundle Vg of (lecrys,*O

- e - Al
B. Crys)T whose restriction to S corresponds to t*QE/S under

the canonical isomorphism

/H(ljR(E/S) ;> (Rl;crys,*OE,crys)S — i*(lecrys,*OE’crys)T~

The Grothendieck—Messing Theorem (as in [Gro74, Ch. V, §4]) states that the functor sending B to
(B, V) defines an equivalence between the categories of abelian schemes over 7 and that of pairs (4, V),
where s : A — S is an abelian scheme and V is an Or-subbundle of (Rlscrys,*O Acrys)T such that i*V
corresponds to s*Q}A /s under the canonical isomorphism of i*(R lscrys +Oacrys)T With ’HéR(A /S). A
morphism of pairs (A, V) — (A’,V’) being a pair of morphisms (A — A",V — V) satlsfymg the
evident compatibility, it follows that if 7 : B — T and ¢’ : B’ — T are abelian schemes and y : B — B
is a morphism of their base-changes to S, then ¢ extends (necessarily uniquely) to a morphism B — B’
if and only if the morphism

/

=
lr//crys . ( crys, * OE' ,Crys r — (R Lerys, Oﬁ,crys )r

sends V’ to V. In particular, the functor sending B to B is faithful, which is all that is needed in the proof
of Proposition 2.1.

For later reference, we note if the data A = (A, ¢, 4,1, F*) corresponds to an element of 17U (S), then
to give a lift to an element of Yu (T) is equivalent to giving a lift £° of the Pappas—Rapoport filtrations
to (R lscrys,*O A.crys)T > By which we mean a collection of OF » ®w (r,),r Or-submodules

0=60 ceMc...ceglo™ cgle

of (R'scrys,«Oa crys)T .7 for each 7 = 73, ; such that

o Eﬁj)/é’ij_l) is a line bundle on T on which OF acts via 8y ; ;.
o €Y corresponds to ) under the canonical isomorphism

L*(Rlscrys,*OA,crys)T = (Rlscrys,*OA,crys)S = H(ljR(A/S)

for j = 1,...,ep. The bijection is defined by sending the data of a lift g = (A, 4,7, L F*) to the lift of
filtrations corresponding to F* under the canonical isomorphism

H‘IjR(Z/T) = (Rl}icrys,*og’crys)T = (Rlscrys,*OA,crys)T~

The injectivity of the map is a straightforward consequence of the Grothendieck—-Messing Theorem; for
the surjectivity, one needs also to know that the quasi-polarization A extends to the lift of A associated
to (A,V) with V = 697558”) , which is ensured by [Vol05, Prop. 2.10]. Since the theorem provides
an equivalence of categories, it follows also that if a triple (A,, A,, %) corresponds to an element of

?Uo(‘B) (S), then to give a lift to an element of ?Uo(‘B) (T) is equivalent to giving lifts £ of the Pappas—
Rapoport filtrations ;" to (R lsi,crys,*O Aq,arys)r fori = 1,2, such that 51° and 52‘ are compatible with

. 1 1
lp:rys’r . (R s2,crys,*0A2,crys)T — (R Sl,crys,*OAl,crys)T'

2.5. Local structure: an example

In the next section, we will recall the analysis of the local structure of 17Uo(‘13)~ First, however, at the
suggestion of the referee, we consider the case where F is a quadratic extension ramified at p. This will
already illustrate the key ideas and techniques; the general case is then mainly a matter of transforming
them into an inductive argument.
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To further fix ideas and make the analysis more concrete, let F = Q(+/p) and B = p = w,OF, where
@p = /p. Wealso let O = Z,[w] and X = {6, 6>}, where @? = p, 61(wy) = @ and 6, (@y) = —@,
so that O ® O = O[u]/(u® — p), in which s| = u — @ and t| = u + @ in the notation of §2.1.

Suppose now that y € ?U()(p) (Fp), and let S denote the local ring Ofuo(p),y and (A, A’, ) denote the

corresponding triple over S. Thus, the S[u]/(u* — p)-module H°(A, Q}A / ) is free of rank two over S,
equipped with a filtration of S-modules

0=FO cF) cF®= H(A, Q) )

such that (u — @)FM = 0, (u +@)F?® < FO, and L; := FD and L, := F@/FD are each
free of rank one. Viewing H%(A, Q! /s) as a submodule of the free rank two S[u]/ (u?> - p)-module
Hl (A/S), and letting GV = (u + @)H} (A/S) (or equivalently, the kernel of u — @ on H},(A/S))
and G? = (u+@)'FW (i.e., the preimage of F! in Hl, (A/S) under u + @), we obtain inclusions
of free S-modules

F®
¢ .
0cF® G? c HL (A/S)
o &
G\
such that each successive quotient is free of rank one over S.
Furthermore, the free rank two S-modules P; := G and P, := G® /F() are equipped with perfect

alternating pairings (-, -); whose construction we briefly recall (see [Dia23, §3.1] for more details).
Firstly, Poincaré duality and the polarization on A yield an isomorphism

Hiz(A/S) — Homs(d™' ®p, Hyz(A/S),S) «— Hom o, gs(Hiz(A/S), OF ® ),

and hence a perfect alternating pairing (-, -)qgr on H éR (A/S) over O ® S = S[u]/(u* - p). Furthermore,
one finds that this induces an isomorphism

GV — Hom s(H}z (A/S)/(u — @)Hz (A/S), (u+@)(OF ® S)),
and our perfect pairing on P; = G (over S) is then obtained from the isomorphisms
H(A]S)/(u - @)Hi(A)S) — GV and S — (u+@)(OF ®S)

defined by multiplication by u + @. However, one finds that F(!) and G are orthogonal complements,
and the perfect pairing on P, = G® /F(1 is then obtained from the resulting isomorphism

G?/FY = Homs(GP/FV, (u - @) (OF ® S)).
Similarly, we have the filtration
0=F'O cpcp®= HO(A”, Q) ),

which we use to define S-modules L] C P; for i = 1,2 such that L] and P]/L], free of rank one
and P; is equipped with a perfect alternating pairing. Furthermore, the S[u] /(u? — @)-linear map

https://doi.org/10.1017/fms.2025.13 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.13

Forum of Mathematics, Sigma 13

UiR - HéR(A’/S) — HéR(A/S) induces morphisms ¢ : P; — P; restricting to L; — L;, and the
equation ¢ o A’ o " = wyAd (where A and A’ are the polarizations on A and A”) implies that

(lﬂzR(X), ‘l’;R(Z»dR = u(x, Z)éR,

and hence, (7 (x), ¥ (2))i = 0i(@p){x,2)! = xw(x,z)/ fori = 1,2 and x,z € P/,
Consider the behavior of the maps ¢ at the closed point (i.e., ¥;  : : P, — Pip), where we use
0 to denote - ®s F),. We find that ¢, has rank one (see the argument in the general case), and since
; v (L 0) c Ly, 1t follows that y} O(L’O) =0ory; 0(P’O) = L; . To fix ideas even further, let us
suppose that both these hold for i =1, and that only the first holds for i = 2. We will prove that in this
case, the completion of S at its maximal ideal n is isomorphic to the O-algebra

R := O[[X1, X[, X211/ (X, X + @).

In order to do so, we will construct a homomorphism R—>S using a parametrization of the S-lines

L; c P;and L] C P with respect to suitable choices of bases for the ambient S-planes. We will then use

the Grothendieck—Messing Theorem to prove inductively that the resulting homomorphism R, — S, is

an isomorphism for all n > 1, where S| = S/(w,n), S, = §/n" for n > 2, and R,, is defined similarly.
First, note that our assumptions on the w;‘ imply that F, ‘@~ uH 1R(A(’) /Ep). Indeed, we have

1 * * 2 1 * 1
F(;( ) ¢ ker(yyg o) and lﬂdR’O(Fé( )) C Fé ) = WdR,o(GE)( )),
so that Fé(z) C G(')(l), and comparing dimensions gives equality. However,
1 ® 7(2 % —1 /(1 1
F(; 'c ‘/’dR,o(Go( )= Yar,o(u IFO( ) cay,

and comparing dimensions implies a,//dR 0(G'(Z)) G(()l), but ¥ 0(G(')(Q)) ¢ Féz), S0 FO(Z) # G(()l). It

follows that Fé Visa cyclicFp, [u]/ (u?)-module and Fél) = uFo(z). We may therefore choose bases (x, z)
for HéR(Ao/IFp) and (x’, z’) for HéR(Aé/]Fp) as F, [#]/(u?)-modules so that

FV = Qux), P = (), )Y = (ux’y and F[® = (ux’,uz’)

(where (-) denotes generation as F, [u]/ (u?)-modules). Elementary manipulations show that we can

furthermore choose these bases so that the matrix of ¢,  is ( _Ou (1)) and (x, 2)ar,0 = (X, 2 Vg o = I-
We then have bases for P ¢ and Pi o defined by

e10=ux, fio=uz, and elo—ux flo—uz,

sothat L1 o = Fpey o, L] 0= F e; o {€1.0, f1.0)1.0 = <ei,o’fll,o>i,0 = 1, and the matrix of 'I’T,o takes the

form (8 0) Consider the isomorphisms Py o ®g, S1 = P11 and Pi 0 ®rF, S1 = P{ , obtained from the
canonical isomorphisms

Hip(Ao/Fp) ®, S1 — Hlx(A1/S1) and Hi(Aj/F,) ®=, S| — Hig(A}/S))

(systematically using -, for ®sS,). Their functoriality properties further ensure that the matrix of 1//1"1
has the same form as above with respect to the corresponding bases for P; | and P1 |» which we denote
(e1.1, f1.1) and (e1 ],fl 1), and that (e 1, f1,1)1,1 = (e1 l,fl 1>1 ; = 1. However e ; and el | are no
longer bases for L ; and L1 > instead we have L; | = Sl(el 1—51,1f1,1) and Ll = Sl(el 1 sl i)
for some (unique) sy,1, s1 | € 1nS;. An elementary matrix calculation then shows that we may lift the
chosen bases (e, f) for P and (ef, f{) for P| over S so that {ey, f1)1 = (e], f); = | and the resulting
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matrix of 7 is (_(; (1)) We then have L = S(e; — s1f1) and L] = S(e| — s/ f1) for some uniquely
determined s, si € 1, and the fact that wT(Li) C L means that

01 L) _ (=57 _ a1
o 0f\-s1) \-@w | i\ sy )
and therefore s, si = -w.

Similarly, using the bases for P ¢ and P ; defined by

€0 =x+ Fél), fo=uz+ Fél), and e}, =uz'+ F(;(l), frg=—x"+ Fé(l)

gives Lo o =Fpezo, L IF",,e2 0’ (€2.0, [2.002,0 = (eé 0’ f2,0>§ o = 1, and the matrix of 1//; o takes the

form (8 1 ) Note however that the canonical isomorphism a does not (necessarily) send Lo = (;1)

toL;; =F 1( ) , and therefore does not yield an isomorphism between P; ¢ ®F, S1 and P, ;. However
letting S1/» = S/I, where I = (s1,5],1n%) C (@, n?), we find that & and o’ still induce isomorphisms
P ®F, S1/2 = P2,12 and Pé 0 ®F, S1/2 = é 12 We may then lift the resulting bases for P /> and

P2 1/, to ones, say (e2, f2) for Py and (e}, f;) for P}, such that {e2, f2)2 = (e}, f3); = 1 and the matrix

for y3 has the form ( o ) Defining s, 55 € n by Ly = S(e2 — s2/2) and L) = (e} — s} f,), the fact
that 5 (L}) C L now translates into the equation s} = —w's>.

We now define the homomorphism p : R—S by X| — 51, Xl’ — Si and X, — s7, and we will
sketch the proof that it is an isomorphism.

We first prove that p is surjective, or equivalently, that the F,-vector space 1/(w@, n?) is spanned

by s1.1, sl , and 57,1, or equivalently, if 6 : 1 = T :=F, [e]/(e ) is an [F,-algebra homomorphism
such that 5(s1 1) = 6(s] 1) = 8(s2,1) = 0, then ¢ factors through F,. This in turn is equivalent to the

assertion that for such a (5 the triple (A A W) = 6*(A,, A}, 1), is isomorphic to the base-change
(viaF, — T) of (A, A}, ¥o). By the Grothendieck— Messmg Theorem,” this in turn is equivalent to
the assertion that for i = 1,2, the T-modules F 1( 9 ®s, T and F 1( ) ®s, T correspond (respectively) to
Féi) ®g, T and F(;(i) ®g, T under the canonical isomorphisms

Hip(Ao/Fp) ®s, T = Hip (A/T) and Hi(A)/F,) ®s, T = Hig(A'/T)

(induced by @ and a’). Since Fl(l) =L =S1(er,1—s1,1f1,1) and 6(s1,1) = 0, we have that Fl(l) ®s, T =

T(e1,1 ® 1), and by construction, e ; corresponds to e o ® 1 under «. Similarly, we see that Fl'(l) ®s, T

7(1)

corresponds to F"* ®g, T. Note also that ¢ factors through Sy /2, so the same argument shows that

2 1
(FPJF) @5, T = L1 ®s, T = Ly ®s,, T

corresponds to Ly o ®g, T = (Féz) / Fél) ) ®p, T under the isomorphism induced by «, and hence that

F @ ®s, T corresponds to F () ®r,, T Finally, the fact that Lé 12 ®sT =T(e) ,®1) follows automatically
(2)

from the description of ], so we similarly obtain the desired conclusion for F*™ ®s, T.

In order to prove that p; : Ry — S is an isomorphism, we could again cons1der the map on tangent
spaces, but in order to be more indicative of the inductive step treating p,,, we will interpret the argument
as the construction of a surjective homomorphism S§; — R;. Note thatify € Y, Us(p) (R1) is alift of y, then

the induced map S = (’)YU oy R, factors through §. Furthermore, by the Grothendieck—Messing

7As described at the end of §2.4, but in the simplest case, namely for the thickening Spec (F,) < Spec (T'), and using the
canonical isomorphisms Hys(Ao/T) = Hyy (Ao/Fp) @k, T and Hey(Ap/T) = Hjp (A)/Fp) @z, T to reinterpret (2.3).
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Theorem (with i : Spec (F,,) < Spec (R1)), to give such a lift is equivalent to giving lifts
F c F? c Hiz(Ao/Fy) ®, R and F'V c F'¥ ¢ Hiz(A}[F,) ®s, R

of the Pappas—Rapoport filtrations compatible with ¢, ; ® 1. More precisely, we require that the F@
and F’(® (fori = 1, 2) be free Rj-modules® such that

o ff) ®r, Fp = Féi) and F'® ®r, Fp = Fé(l‘);~ N

o uF® c FU=D and yF' c F’0-D (where FO = F'0 = ();

o (Wiro® D) c FO.

We will write down such lifts in terms of the bases (x, z) and (x’, Z"), where (x, z) and (x 7’) are the bases
already chosen for H (AO/IF ) and H (A /Fp)andXx = x®]1, etc. Letting P = uH r(A0/Fp) ®r, R
and P’ = uH‘R(A /Fp) ®r, Ri, note that the matrix of the R;-linear map wl P — P, induced by

vt ar.o With respect to the bases (ux,uz) and (ux’,uz’) is ( ) It follows that

FO=Rux-X2) and F'D=RuE -X,7)

are free Ri-modules such that (ZT(f "My ¢ F where X, denotes the image of X in Ry, etc. Letting
P, denote the free rank two R;-module (x~'F)/F() and similarly defining P,, one finds that the

matrix of the R;-linear map Jz : ﬁé — P, induced by ¥ir o 18 ( 8 (1) ) with respect to the bases
GF-XZ+FY uz+FY) and (X, ¥ +uz +F'V, 3 +X,7 + F'D).
(Note that XX + uz’ € u~'F'D since u(X,x" +uZ’) = uX; (¥ - fi'z").) We thus find that

FO = G- X +uX0)D), and FO = @ -X,7), X7 +47)

yields lifts of the Pappas—Rapoport filtrations with the desired properties (where (-) here denotes
generation as R;[u]/(u*)-modules). As already explained, this yields a homomorphism §; — R;.
Furthermore our definition of the parameters s 1, s; , and s3,1 ensures that 51,1 X, s; P 71 and

§2,1 X, mod (Yl,fi), so the map is surjective. Since R| and S| are Artinian, and p; : Ry — S
is also surjective, it follows that the lengths of R; and S§; are the same, and therefore that p; is an
isomorphism.

Suppose now that n > 1 and that p, : R, — S, is an isomorphism. In order to prove that

pn
Pn+1 i an isomorphism, it suffices (arguing as above) to show® that the composite S » S, — R,

lifts to a surjective homomorphism § — R,;. Using the thickening Spec (S,) < Spec (R+1),
with HclryS(An /Ryu+1) instead of HéR(AO /Fp) ®g, R, the construction of lifts of the Pappas—Rapoport
filtrations on H cllR(A" /Sy) is similar to the one above, once one has abstracted the argument establishing
the existence of suitable bases for P; and 13; (see the proof in the general case). While the isomorphism

Crys(Ao /Ry) = éR(Ao /Ep) ®g, Ry was implicitly used in the proof of the surjectivity of the resulting
homomorphism §; — Rj, no such isomorphism is available relative to the thickening Spec (S,,) —
Spec (R,+1), nor is it needed, since the surjectivity of the resulting homomorphism S,,; — R, is
immediate from that of its composite with R,+; — R,,.

8The first bullet renders this equivalent to the successive quotients being free over Ry, and the second implies that they are in
fact Ry [u]/(u?)-modules.
9In this case, we have that R, = R; and S; = Sy, so we could assume n > 2 if we wanted.
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2.6. Local structure: in general

We now proceed to analyze the local structure of Yo(B) for arbitrary F and B, proving'© in particular
that the schemes are reduced and syntomic (i.e., flat local complete intersections, over O).

Let y be a closed point of YUO(‘B) in characteristic p. We let S denote the local ring O3 n

Yuo)-y’
its maximal ideal, Sy the residue field, S; = S/(n%, @) and S,, = S/n" for n > 1. We let (A, A", )
denote the corresponding triple over S, and similarly write (A, A, , ¢,,) for the triple over S,, for n > 0.
For each 7 = 1,; € Xy, we view the Pappas—Rapoport filtrations as being defined by S[u]/(E.)-

submodules F\Y) ¢ HO(A, Q! 4s)r and their quotients FY) ¢ H(A,, QY s, )r over Sy[ul/(E7) for

n > 0, and similarly with A replaced by A’. For each 6 = 6, ; ; € X, we let Ly = FT(J)/FT(J_I) and
Py = G(Tj ) / F.Ej . where G(Tj ) denotes the preimage of FT(j U under multiplication by u — 6(w,) on
H éR(A /8)z, so that Ly is a rank one summand of the free rank two S-module Pg. We similarly define
Ly and P}, and systematically use -, to denote - ®s Sj,.

By definition, the isogeny ¢ : A — A’ induces morphisms ¢, : P, — Py for 6 € X such that
Yy(Ly) C Lg. Note that iy, is an isomorphism for 6 ¢ Xg. Recall also from [Dia23, §3.1] that Poincaré
duality and the quasi-polarizations give rise to perfect alternating pairings on Py and P/, which we
denote by (-, )¢ and (-, -),. Furthermore, the compatibility of ¢ with the quasi-polarizations implies
the commutativity of the resulting diagram

2p Mo
ASP94>/\SP9

[ b
0(wg)

S ——S.

Note in particular if § € Xg, then the So-linear map lp’; 0" P'g o — Pe,o is not invertible (since
Soz,b 0.0 = = 0); we will show that 1t has rank one. To that end, let W = W(Sy) and consider the free

rank two O ® W-module D := (Ag/W). Thus, D decomposes as &, D, where each D is free

crys

of rank two over W[u]/(E.), and we let G(TJ) denote the preimage of G(T]()) = Lt‘lF_£]0 Y in D ; under
the canonical projectionto D, /pD, = éR(A() /So)-. Note that if 7 = 7, ;, then we have a sequence of
inclusions

u®'D, = 5(,” C 5(72) c---C 5(:"_1) C 5(78")

such that dimso(a(fj )/ pD;) = dimSO(G(Tj ())) = j + 1 and the projection to H&R(AO /So). identifies
éif)/u'c'(f) with Py for j = ,ep and 6 = 6, ; ;. Similarly, decomposing D’ := Hclrys(A(’)/W)
as ®; D7, and defining G ") as the preimage of G (1 ) in D’., the isogeny o : Ag — A{ induces an

1nJectlve (’)p ® W-linear homomorphlsm D" — D Whose cokernel is killed by u and has dimension
S over Sy. Furthermore, the restrictions lﬁT : D — D are isomorphisms for T ¢ Zg o, and restrict

to homomorphisms 5'” ) 5 ) whose cokernel projects onto that of ¢ , for each 7 = 7; € Zg.0,

6 = 0y, ;. Therefore, it suffices to prove that the cokernel of each GV — GV, necessarily nontrivial if
T € X 0, haslength (at most) one over W. For j = 1, this follows from the identifications u*~ 'D, = 5 (D
and u®»~'D’ = G'(l) which implies that the sum over 7 of the lengths of the cokernels is fig. For j > 1,

it then follows by induction from the injectivity of l//T and the fact that ng ) /G (T] D and G'T(J ) / G'T(J 1)
each have length one.

19The result is essentially Proposition 3.3 of [ERX17a], but we will give a complete proof for several reasons: 1) our different
definition of the moduli problem, 2) our greater degree of generality, and 3) the omission of the proof in loc. cit. that the maps
to Grassmannians induce isomorphisms on tangent spaces, where our perspective provides the basis for the construction of an
Iwahori-level Kodaira—Spencer isomorphism.
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We then define
Ty ={0eXZg|imyy,) =Loo} and X[ ={6€Xg|ker(yyy) =Ly}
Note that X =X, U Z;, and define
R=0[Xg,Xyloes/(g6)ocs,
Xg — 0(wy) X)), if 0 € £\ X,
where g = X; — 0(wp)Xg, if 0 € Z; \Zy,

XoX, +6(wy), if 6 € T, N T,

We will show that a suitable parametrization of the lines Lg and L}, by the variables X4 and X/, defines

an O-algebra homomorphism R — § inducing an isomorphism W ®w () Em = §n, where m is the
maximal ideal of R generated by @ and the variables Xy and X, for 6 € X. (Recall that k is the residue
field of O, so that R/m = k, and that W (k) denotes the ring of Witt vectors of k.)

Let a denote the composite of the canonical isomorphisms

Hgp (A0/S0) ®s, S1 —> Hyyo(Ao/S1) — Hig(A1/S))

(where we write HclryS(AO /S1) for (Rlso,crys,*o Ao,crys) (S1)), and similarly define

@’ Hig(A}/So) ®s, S1 — Hig (A]/S1).

Thus, @ and @’ are O ® S} -linear and compatible with 1//8 and ¢/}. It follows that for each 7 = 7, ; € X,
a and o’ decompose as direct sums of S [u] /u?-linear isomorphisms @, and o, such that the diagrams

, v ol
Hlo (A)/S0)r ®sy St —— Hip (Ao/So)r ®s, S

Q;J/ QTJV
:

’ 7,1
Hip(A][S1)e ————— H(A1/S1)-
commute. We then consider the chain of ideals

@) =10 c 1M ..oV ) oy

where 1 5" ) is defined by the vanishing of the maps
F) ®s, 81 — Hip(A1/SD/FL] and  F/0) g, $1 — Hip (A]/S1)-/F.\)
induced by @ and @/ for £ = 1,...,j. For 8 = 6, ; ;, we let Sg = S/Igj_l), so that @ and « restrict

in particular to Sy [u]-linear isomorphisms
Fgo_l) ®s, So — FU ™ @5 Sy and F;(,é_l) ®s, So — FIV™ @5 S,
and hence to Sg[u]-linear isomorphisms

GY) 5,50 — G @5 Sg and G'Y) ®s, 59 — G ®5 Se.
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We thus obtain Sg-linear isomorphisms a¢ and a}, such that the diagram

, ¥ 08!
PG,O ®s, S — Pg,0 ®s, Se

a;l QHJ
=)

P/ ®s So 9—>Py ®s S¢

commutes. Furthermore, ay is compatible with the pairings {,-)g,0 and (-, )¢, and similarly, a}, is
compatible with (-, -); ; and (-, ).
We claim that bases By = (eg, fo) for P and By, = (e}, f,) for P}, may be chosen so that
0 eg®s Sy =ap(Lg,o®s, Se) and 6'9 ®s S¢ = a';)(L’g,() ®s, So);
o (eq, foreo =€y, fo)y =1

o the matrix of ¢, with respect to By and By, is

1 0 () 0 0 1
(0 a(m))’ ( 0"B 1) or (—e(m)o) 2.4

according to whether' 6 € £\ £{, X[ \ Ey or X, N X{.

Indeed, first choose bases Bg,o = (eg,0, fo,0) for Pg,o and B;) 0= (e’g 0 fg’ o) for P;) o sothat Lgo =
Soeo.0, Le 0= Soe‘9 o> (€6.0- f6,000.0 = (eg 0’ fg 0)9 o= land we 0 has the requlred form (mod n), and
lift the bases (g (eg.0® 1), @g(fg.0 ® 1)) and (ag(e p0® 1),y (fg o ® 1)) arbitrarily to bases By and
B;, over § satisfying the condition on the pairings. The matrix T of y/* p With respect to Bg and By, then
has the required form mod Iij Y and satisfies det(T) = 6(wsy). We may then replace By and B, by
ByU and B, U’ for some U, U’ € ker(SL2(S) — SL2(Sg)) so that the resulting matrix U~'TU’ has
the required form.

We now have Lg = S(eg — s¢fp) and L}y = S(ej, — s, f,) for unique s, s}, € n, and the fact that
Wy (L) C Lo means that
o s¢ =6(wp)s,if0 € 2\ X];
o sy =0(wp)seif 6 € ]\ Xy:
o sgsp =—0(wyp) if 6 € Xy NE[.
Thus, the O-algebra homomorphism O[Xg, X ]962 — § defined by Xg > Sg, X > sa factors
through R. We will prove that the resulting morphism p : W ®w (¢, Ry — Sn is an 1somorph1sm

Welet Ry = Wew (1) R/(m? @) and R, = W®w x) R/m", so we obtain morphisms p,, : R, — S,.
It suffices to prove that each of these is an isomorphism, which we achieve by induction on n.

We start by showing that p; is surjective (i.e., that the homomorphism induced by p on tangent spaces
is injective). First, note that Iij) = (Iijil), sg,5p) forall T = 7 ;, 6 = 6 ; ;. Indeed, by construction,
the ideal Iij ) / Iﬁj “ of Sg is defined by the vanishing of the maps

Lgo®s,Se — (Pg/Lg) ®s Se and Ly, ®s,Sg — (Py/Ly) ®s Se

induced by @ and ay), and these are precisely s¢ and s7, (mod /7 G _1)) relative to the bases a;] (eg®1),
(fo+Lg)®1, a/;‘l (ep®1)and (f,+Ly)®1. It follows that the image of p; contains each I( , so letting

T denote the quotient of S by the ideal generated by / i for all T € X, it suffices to prove the projection
T — Sy is an isomorphism (i.e., that the triple (A, A", ) ®s T is isomorphic to (A, A}, ¥o) ®s, T). By
the definition of 7, we have that F'_ (] ) o ®s, T corresponds to F_ (] ) { ®s, T under @, ®s, T for all 7 and j,

Note that if 6 ¢ Zg, then 6 (wg) € O and g is an isomorphism. This is the simplest case, but we toss it in with the case
ey \ Z’y for convenience; note that we could just as well have included it with the case 6 € E; \ Zy.
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and similarly for F;(é), F. (] )
at the end of §2.4.

To deduce that p; is an isomorphism, it suffices to prove that 1g(R;) < 1g(S1), which will follow
from the existence of a surjection S — R;. We construct such a surjection by defining suitable lifts
of the Pappas—Rapoport filtrations Fj and F;° to H! (A¢/R)) and H (A(j/Ry). For 7 = 1 ; and

crys crys

0 = Oy, welet Rg = Ry/Jy U=D where the ideals JY) are defined inductively by J” = (0) and
Ji’ ) = (Ji’ 1), Xo, Xp). We will inductively define chains of R [u]/u®?-submodules

and a7, so the conclusion is immediate from the equivalence established

0=FO cFY c...c F'’ c H! (Ao/R)):

crys

and 0 = F‘:'(O) - F‘z/'(l) e C F‘r(ep) c H(}r}’S(A(,)/Rl)T
such that the following hold for j = 1,...,ep and 8 = 6, ; ;:
o FY and f;(’ ) are free (of rank j) over Ry; _ _
o MF-I(-J) C F_I(_J*I)’ MF-:-(J) c F_I’_(lfl) and ¢3 Crys(F_;(J)) c F(J)
o ﬂjil) ®R, Ry corresponds to FT('i(;l) ®s, Ry and f;(jf ) ®R, Ry corresponds to F_ (J ®s, Ro under

the canonical isomorphisms Hj, (Ao/So) ®s, Ro = Hys(Ao/R1) ®&, Rg and dR(AO/SO) ®s, Ro =
Hclrys (A(’) /R1) ®r, Rg, which therefore induce injective Ry-linear homomorphisms

1)

=(j-1
Be : Po,o ®sy Rg — (Hclrys(AO/Rl)T/F‘SJ )) ®R, Ro
~r(j-1
and B, : Py ®s, Ry — (Hly (A)/R):/F17 ™) @g, Ro:

o (fi‘f)/fi‘i_l)) ®R, Rg is generated over Rg by Sg(€g,0® 1 — fo,0 ® Xg) and (f;(‘i)/f;(‘i_l)) ®r, Ro
is generated over Rg by B (e, , ® 1 = f, , ® X}).

Suppose then that 1 < j < e, and that
0=FOcFVc...c FUV"Y and 0=F O cFVc...c UV

have been constructed as above. We let G(Tj) u‘lfr(j b , that is, the preimage of fT(] Y in
H.(Ao/Ry); under u, and Py = GY /FY™Y | Since H.(Ao/Ry); is free of rank two over
Ry [u]/(u), we see that V™V ¢ uHgy(Ao/R1)z, 50 that G and Py are free (of ranks j + 1 and
2, respectively) over R;. Similarly, we let G2 = u=1F2U™" and P = G\ JF297Y  The conditions
on ﬁT(’ D and ﬁ;(j - imply that the third bullet holds, that w(*;’crys induces an R;-linear homomor-
phism J"‘g : P}, — Py, and that B¢ and g}, define isomorphisms Py o ®s, Ro = Py ®R, Ry and
P/e,(_) ®s, Rg SN ﬁ’H ®Rr, Rg compatible with ‘1’2,0 and JZ Furthermore, the construction of ﬂj ) and
F;(J )~ satisfying the remaining conditions is equivalent to that of invertible R;-submodules Ly C Pg
and Ly C Py such that
o dlg(L ) c L93
o Lg®r, Ro =Be(ea,0® 1~ fo0® Xo)Ro;
o L/G ®r, Rg = ,8:9(6/9’0 ®1- fH,,O ® Xé)Rg

Exactly as for de Rham cohomology (see [Dia23, §3.1]), we obtain a perfect pairing

H.y (Ao/Ry)r — Hom g, u)/uer (Hlys (Ao/R1)z, Ry [u] /(u®))

from the homomorphisms induced by the quasi-polarization on Ay and Poincaré duality on crystalline
cohomology. Furthermore, the pairing is compatible with the corresponding one on H(;R (B/R1):, where
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B and the resulting quasi-polarization are associated to an arbitrarily chosen extension of
0c 17,(1) c---C f,(j_l)

to a lift F** of the Pappas—Rapoport filtrations to ngys (Ap/R). We may therefore apply [Dia23, Lemma
3.1.1] to conclude that (177(] _1))l = yltl-e FT(J = yie 621 ), and hence obtain a perfect alternating
R;-valued pairing on Py, compatible via B¢ with (-, -) 0. We similarly obtain a perfect alternating R -
valued pairing on Pj, compatible via g, Xvith ¢, -);,’0. Furthermore, the compatibility of ¢ with the
quasi-polarizations again implies that det ¥/}, = 6(wg) (= 0) with respect to the pairings.

The same argument as in the construction of the bases By and B, then yields lifts of

:89(69,0 ®1, f9,0 ®1) and ﬁ;(elg,() ®1, féo ®1)

to bases (’e'g,ﬁ) for Py and (e}, f;) for 13’9 with respect to which the matrix of J’; is as in (2.4).
Defining Lo = (g — Xgﬁg)Rl and Z; = (e - X(;]?(:)Rl then completes the construction of ﬂj) and
F, ;(J ) satisfying the desired properties.

We may now apply the Grothendieck—Messing Theorem (as described at the end of §2.4) to obtain
a triple (A, é’, ) over R, lifting (A,), A, ¥o). Furthermore, the properties of the filtrations F* and F"*
ensure, by induction on j for each 7, that the resulting morphism S — R; — Ry factors through Sy and
induces isomorphisms

Pg ®s Ry — ﬁg ®r, Ro P, ®s Ry — ﬁ'g ®r, Ro
U U and U U
Lo ®s Ry — Lg ®g, Ry L, ®s Ry — L, ®, Rg
sending (eg® 1, fo® 1) to (Gg® 1, fg® 1) and (e}, ® 1, f; ® 1) to (¢, ® 1, £} ® 1), s0 that s¢ > X
and s}, — Xj (mod Jij _1)). We therefore conclude that the morphism § — R; is surjective, and hence
that p; : Ry — S is an isomorphism.

Suppose then that n > 1 and that p,, : R, — S, is an isomorphism. The surjectivity of p,; is
already immediate from that of p,,, so it suffices to prove that 1g(R,+1) < 1g(S,+1), which will follow
from the existence of a lift of p;;! to morphism S — R,,,1, which necessarily factors through a surjective
morphism from S,,41.

As in the case n = 0, we proceed by defining suitable lifts of the Pappas—Rapoport filtrations F,; and
F® to the crystalline cohomology of A, and A], evaluated on the thickening R,+1 — R, 5 S, (with
trivial divided power structure), but the argument is now simpler since the isomorphism on tangent
spaces has already been established. More precisely, we inductively define chains of R, [u]/(E+)-
submodules

0= F—EO) - F—EI) c--C F‘gep) c Hclrys(An/RnH)‘r
and 0= /" c F;V ¢ - c F' ¢ Hl\ (A} /Rus)

such that the following hold for j = 1,...,ep and 0 = 6, ; ;:

o ﬂj ) and f;(j ) are free (of rank j) over R,,41;

o (u—0(wp)FY c BV, (u—0(wp)F;Y < FV7V and g, o (F1) € FY;

o fT(j ) ®R,,,, Sn corresponds to FT(’,), and f;(j ) ®R,,., Sn to F;(il) under the canonical isomorphisms
HcllR(An/Sn) = H(!rys(An/RnH) ®R,. Sn and HcllR(Al”l/Sn) = Hclrys(A;z/RnH) ®Ryt Sn-

Suppose then that 1 < j < e, and that

0=FYcFVc...cFUVY and 0=FQcFVc...c FVV
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have been constructed as above. Let 6“) (u—0(wy ))_IFU_I) Py = E(f)/ﬁ(f‘” and similarly define
P’ so that Pg and P’ are free of rank two over R,.i. Furthermore, we have canonical isomorphisms

Bo : Pon — Po ®g,, Su and By : P, , — Py ®g,, Sn,

and ¢, .y induces an Ry -linear homomorphism (Z’; : 13:9 — Py compatible with ¥y, ,- The construc-

tion ~of the lequired I?ij ) and I?;(j ) is then equivalent to that of invertible R,,;{-submodules Zg C f’g
and L}, C Py, such that

° lﬂg(L ) € Ly;
o EG ®Rn+1 n= ,BG(eG,n - stG,n)Sn;
o L; ®Ri1 Sn = ,Blg(e/g,n - slgfé,n)Sn-

The same argument as for n = 0 (with tj‘.l generalizing u/ =) yields perfect alternating R,,,-valued
pairings on Py on 13;, compatible via B¢ and B} with (-, )¢, and (-,-); ., and with respect to which
det{[*g, = O(wy). We may thus lift Bg(eg,n, fo,,) and ﬁ;(e;’n,fé’n) to bases (Zg,f(;) for Py and
(e}, f;) for ﬁ; with respect to which the matrix of J}; is as in (2.4). Defining Ly = (eg — Xgﬁ)R,,H
and Z’e =(e,—-X gf;)R,,H thus yields the desired filtrations F* and F’*, and hence a lift of (An, Ay ¥n)

to a triple over R;41.

This completes the proof that p is isomorphism, and hence that (’)3 is isomorphic to
Uy(B)>Y

W ®w (k) Ol[Xo, Xylloes/(g0)oex-

As this is a reduced complete intersection, flat of relative dimension d over O, and )7U0(s1;), x is smooth
of dimension d over K, it follows that Yy, () is reduced and syntomic of dimension d over O, and that
the same holds for Yy, () since Yy, p) — Yy, () is an étale cover.

3. The Kodaira—Spencer isomorphism
3.1. The layers of a thickening

Recall that the Kodaira—Spencer isomorphism describes the dualizing sheaf of the smooth scheme Yy
over O in terms of automorphic line bundles; more precisely we have a canonical'? isomorphism

57 8w 5 Kyy o,

where w and ¢ are the line bundles on Yy defined in §2.3 and Ky,, 0 = /\éYU Q;U/O (see [Dia23, §3.3]).

We will prove an analogous result for Yz, (s3), which by the results of the preceding section is Gorenstein
over O, and hence has an invertible dualizing sheaf Ky, 0.

First, recall that the Kodaira—Spencer isomorphism for Yy was established in [RX 17] by constructing
a suitable filtration on the sheaf of relative differentials and relating its graded pieces to automorphic
line bundles. In [Dia23, §3.3], we gave a version of the construction which can be viewed as peeling off
layers of the first infinitesimal thickening of the diagonal in YU X0 YU We use the same approach here
to describe the layers of the first infinitesimal thickening of YUo(‘B) inYy Xo Yu along

h= (71, 70) : Yy — Yu %o Yu,

12A precise sense in which it is canonical is its compatibility with the natural actions of GL, (A(p )) The isomorphism, however,
depends up to sign on a choice of ordering of X, which we fix in retrospect and perpetuity.
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which we recall is a closed immersion for sufficiently small U by Proposition 2.1. Indeed the Kodaira—
Spencer filtration for Yy may be viewed as the particular case where = OF, for which the proof in
[Dia23, §3.3] requires only minor modifications to establish the desired generalization.

We assume throughout this section that U is sufficiently small that Proposition 2.1 holds. To simplify
notation and render it more consistent with that of [Dia23, §3.3], we will write S for Yu. X for Sxo S, Y for
YUo(‘B) J for the sheaf of ideals of Ox defining the image of 71 : ¥ < X, 1 : Y < Z = Spec(Ox /J?)
for the first infinitesimal thickening of Y in X, and Z = 7 /J 2 for the sheaf of ideals of O, defining the
image of «. Since X is smooth over O of dimension 2d and Y is syntomic over O of dimension d (all
dimensions being relative), it follows that % is a regular immersion (see for example [StaX, §0638]) and
its conormal bundle

C=nJ=01T
is locally free of rank d on Y = ?Uo(‘B%

Theorem 3.1. There exists a decomposition C= P C, together with an increasing filtration

TEY)
0=Fil°(C,;) c Fil'(C;) c --- Cc Fil*™1(C;) c Fil*(C;) = C

for each T = 1y ;, such that grj(gf) = 77’1“/\/1;1 ®oy T5Lg foreach j =1,..., ey, where § =0y ; ;.

Proof. Let A denote the universal abelian scheme over S, let  : A — A, denote the universal isogeny
over Y, and let B; = q;.*A for i = 1,2, where g; denotes the restriction to Z of the it projection
SXo S — §. Consider the O ® Oz-linear morphism

qz/HdR(A/S) = HéR(BQ/Z) E(RISZ,crys *OAz,crys)Z

wcl's £
—3 (R S10rys,« Oy erys)z = Hig (B1/Z) = ¢{HI(A)S)
3.1

extending’? L*’H(liR(Bz/Z) = HcllR(Az/Y) - ’H(liR(Al/Y) = L*HéR(Bl/Z), where the isomorphisms
flanking —y;,, are the ones in (2.3), for ¢ : ¥ <> Z with B = B;. Fixing for the moment 7 = 7 ; € g

and 6 = 0y ; 1, it follows from the definition of Py = QS) that (3.1) restricts to an Oz-linear morphism
4>Pe — q|Pg. Furthermore, the composite

q,L0 = q3Pe — q1Pe » q1 Mg
has trivial pull-back to ¥, so it factors through a morphism
.15 Lg = q3Le ®0, (Oz[T) — qi Mg ®0, I = 1,1; Mg @0, T,
and hence induces a morphism
Ep 1 L(TMy! ®0, T3Lo) — T.

We then define the sheaf of ideals I(l) on Z to be the image of Zy, and we let Zg) denote
the subscheme of Z defined by I§ ), and q(le. (for i = 1,2) the restrictions of the projection maps

to Zil) — S. By construction, the pull-back of E4 to Z.(,l) is trivial, and hence so is that of the

13The choice of sign is made for consistency with the conventions of the classical Kodaira—Spencer isomorphism, that is, the
case P = OF, where h is the diagonal embedding, ¢ is the identity, and we would ordinarily consider the resulting morphism
qI‘HéR( AlS) — q; “HL ir (A/S). In general, the morphism induced by ¢ goes in the opposite direction, so we introduce a minus

sign here to obviate factors of (1)< in later compatibility formulas.
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morphism ¢5L¢ — gjMg, which implies that the pull-back of (3.1) maps q(l) Lo (Tl)z*}'ﬁl) to
q(Tl)l*E = q(Tl)l*]-" (It therefore follows from the definition of G and the O ® O-linearity of (3.1)

that its pull-back to Z£ ) restricts to an O
hence to a morphism

Z(])-hnear morphism q(l)* 9 “)*g(z) (if ep > 1), and

1) 1)
qi)z 739'—>q( ' Por,
where 6" = 6, ; 5. The same argument as above now yields a morphism
Bo : (T My @0, TiLy) — T/TV

whose image is Iiz) /Iil) for some sheaf of ideals I;z) o) Iil) on Z.
Iterating the above construction thus yields, for each 7 = 7, ; € 2o, a chain of sheaves of ideals

0=70 czV c...c 7\

onZsuchthatfor j =1,...,ep and 6 = 6, ; j, the morphism (3.1) induces
_ (J) U (j)* (J)
o O ® OZ(,> linear morphisms g5 F3 q; 1 Fr

o and surjections Eg : L*(ﬂ'lMg ®oy Lg) » Iij) /Iij_l),

where Zﬁj ) is the closed subscheme of Z defined by Iﬁj ), and q(T] )1, q<] )2 are the projections Zij ) 8.
Furthermore, we claim that the map

e

PES) TEXp o

is surjective. Indeed, let Z’ denote the closed subscheme of Z defined by the image, so Z’ is the

scheme-theoretic intersection of the Z;e'g). For i = 1,2, let g; denote the projection map Z’ — §
and s : B] — Z’ the pull-back of s : A — S. By construction, (3.1) pulls back to a morphism
qé*H(liR(A/S) - qi*'H(liR(A/S) under which q’*]-'ﬁj) maps to ql*}"(j) for all 7 and j. In particular,
sé *9119' = l]é*(s*QA/s) maps to g " (s5.£2 A/S) = s1 *QB, /T,WhICh the Grothendieck—-Messing Theorem
therefore implies is induced by an isogeny zp : Bl — Bj of abelian schemes lifting , which is
necessarily compatible with Or-actions, quasi-polarizations and level structures on B; := g;"A. Since
W also respects the Pappas—Rapoport filtrations q;" F*, it follows that the triple (B}, B, W) corresponds

to a morphism r : Z’ — Y such that hor is the closed immersion Z’ <> X. Since 7 is also a closed
immersion, it follows that r is an isomorphism, yielding the desired surjectivity.

Now defining Cr = L*Iie”) and Filj(C~T) = L*Zij) foreach t = 1p; and j = 1,..., ey, we obtain
surjective morphisms

@ C. »C, and F;M;l R0y Lo —» grj(gT) for each 0 = 6, ; ;.

Since the 77’]"/\/1;1 ®oy ﬁ;ﬁg are line bundles and C is a vector bundle of rank d, it follows that all the
maps are isomorphisms. O

Rewriting the line bundles in the statement of the theorem as

Do=AMy' @TLe = TN @ T Lo @ T3 Lo
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(all tensor products being over Oy ), we consequently obtain an isomorphism
d —_— —_—
NC = XDy = W5 ' om0,
fex

Recall that the action of (’)F ()t
abelian schemes in the triple (A, A,,¥). In particular, the action factors through O

on Y is defined by its action on the quasi-polarizations of both
! (UNOF)?

and is compatible under h with the diagonal action on the product X = § X¢ S. The conormal bundle

C of h is thus equipped with an action of OF (p).+ OVET its action on Y, coinciding with the action on

C obtained from its identification with the pull-back of the conormal bundle of the closed immersion
h : Yy,p) — Yu ®0 Yy, which we denote by C.

Recall also that we have a natural action of O; ()

on S, under which v acts as 8(u) if v = u?> fory e U N Ox. Tt follows that the action factors through
O% (o)t /(U n O% )2 and hence defines descent data on the line bundles Dgy; we let Dy denote the
resultlng line bundle on Yy, (p)- It is straightforward to check that the morphisms constructed in the

on the bundles 59 and 5, so that the

on the line bundles L4 and M4 over its action

proof of Theorem 3.1 are compatible with the actions of O% Fo(p)+
decomposition and the filtrations on resulting components of C descend to ones over Yuo(p)» as do the
isomorphisms between the graded pieces and the line bundles 59.

Similarly, the constructions in the proof of Theorem 3.1 are compatible with the natural action
of GLz(A(p ). More precisely, suppose that g € GLz(A(p ) is such that g~'Ug < U’, where U,
U’ are suﬂimently small open compact subgroups of GL; (AF f) containing GLQ(OF _p) (and such that
Proposition 2.1 also holds for U”), and let p, denote the morphismsY — Y’ := YUO(‘B) andS — S’ =Yy
defined by the action on level structures as in §2.2. Systematically annotating with " the corresponding
objects for U’, so for example writing C’ for the conormal bundle of A’ : Y — X’ Theorem 3.1 yields
a decomposition C = ®rex,Cy, filtrations Fil/ (C ) and 1som0rphlsms gr/ (C ) = D, where as usual,
6 = 6y ; ; if T = 7 ;. In addition to the isomorphisms pgDH — D defined as in §_.3, we have the

isomorphism ﬁ;,(?’ — C obtained from the Cartesian diagram

We then find that this isomorphism restricts to give ﬁZ,Filj (C~;) — Fil/ (C~T) for all 7 and j, and that
the resulting diagram

3Dy —— pyer! (C})
Dy ——— gr/(Cr)
commutes, where as usual, § = 6,; ; if T = 7, ;. Combining this with the compatibility of these
isomorphisms with the descent data defined by the O% Fo(p)+ -actions, we obtain analogous results for

the vector bundles on Yy, ) and Yy, (p) with respect to the morphism p, : Yy, () — Yy, (p)-
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Summing up, we have now proved the following:

Theorem 3.2. Letting C denote the conormal bundle of the closed immersion h : Yy, () — Yu ®0 Yu,

there exists a decomposition C = (B , €% C., together with an increasing filtration

0=Fil°(C;) c Fil'(C;) c --- C Fil*™1(C;) C Fil*(C;) = C,

for each T = 1y, such that Do = gr/(C;) for each j = 1,...,ep, 0 = Oy ; ;. Furthermore, if
g 'Ug c U’, then the canonical isomorphism pgC’ — C restricts to p;Filj(C;) — Fil/ (C,) for all
T and j as above, and the resulting diagram

Dy —— pyerd (C))

DO ;} grj(C.,)

commutes.

Corollary 3.3. If U is sufficiently small that Proposition 2.1 holds, then there is an isomorphism
d
HT(S_I ®Mw ® Myw — /\C, (3.2)

where C is the conormal bundle of the closed immersion (1, 73) : Yy,p)y < Yu X Yy. Furthermore,
the isomorphisms are compatible with the action of g € GLZ(A;P 2), in the sense that if U’ is also
sufficiently small and g~'Ug < U’, then the resulting diagram

P @ @ mhW) —— py \UC

x x or—1 P * sk / d s«
T Pg0" " @ Mpyw’ ® Mypew N pgC

i |

-1 ~ d
¢ _—
71’1‘6 ® ﬂTw ® ;w AN C

commutes.

Remark 3.4. We comment briefly on the lack of symmetry between the two degeneracy maps 7, and
7y in the statements. Exchanging 71 and 7, in the definition of Dy gives the line bundle

gg = 7?5./\/1;)1 ® ;TTLQ = 7?5./\/'51 ® ﬁﬁe ® 7,?{;69
on Y, descending to a line bundle £y on Yy, (). We may then use the isomorphism

0(wg) " (AU} : TNy — TN

to define an isomorphism Dy — &g compatible with descent data, and hence inducing an isomorphism
Dy = Ey. The isomorphisms are furthermore compatible with the action of GL, (Aép z), but are
dependent (up to an element of O*) on the choices of @y There is, however, a canonical isomorphism

756 = Nmp/g(P) @z 76 = 776

making | and 7, interchangeable in the statement of Corollary 3.3.
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3.2. Dualizing sheaves

We now combine the Kodaira—Spencer isomorphism over Yy with the description of the conormal
bundle obtained in the preceding section in order to establish a Kodaira—Spencer isomorphism over

YUy (p)-

Recall that the Kodaira—Spencer filtration on Q!

e yields an isomorphism

dpl ~ s—1 2
A QYU/O =25 ® a)®
(see [RX17, §2.8] and [Dia23, Thm. 3.3.1]), which is furthermore compatible with the action of

GLz(Agp 2) in the same sense as the isomorphism of Corollary 3.3. The identification

1 _ . x0l * 1
iy, xovy) 10 = P18y, /0 ®Ovyxovy P28y, 100

where p1, p2 : Yu Xo Yy — Yy are the projection maps, therefore yields an isomorphism

NQy v 2P0 @) @ pi (67 @ w®). (3.3)

We recall a few general facts about dualizing sheaves (see, for example, [StaX, Ch. ODWE]). If a
scheme Y is Cohen—Macaulay (of constant dimension) over a base R, then it admits a relative dualizing
sheaf Ky g, which is invertible if and only if ¥ is Gorenstein over R. If p : ¥ — Y’ is étale and Y’ is
Cohen—Macaulay over R, then Ky g is canonically identified with p*Ky-/g, and with /\’(‘QY Q;, IR if Yis
smooth over R of dimension n. More generally, if X is smooth over R of dimension n, Y is syntomic over
R of dimension n — d, and i : ¥ < X is a closed immersion with conormal bundle Cy ,x, then

(A, Crix) ™" ®oy, (N Q) (3.4)

1R

Ky;r = (/\%YCY/X)_I ®oy I"Kx/r

Furthermore, the isomorphism is compatible in the obvious sense with étale base-change X — X’, and
if Y itself is smooth over R, then it may be identified with the isomorphism arising from the canonical
exact sequence

0— Cyjx — i"Qy p — Q) — 0. (3.5)

Combining the isomorphisms (3.2), (3.3) and 3.4), we conclude that if U is sufficiently small that
Proposition 2.1 holds, then we have an isomorphism

KYU()(‘B)/O = 7r36’1 QMW @ Myw. (3.6)

Furthermore, the compatibility of (3.2) and (3.3) with the action of GL, (Aff ;) and that of (3.4) with étale

base-change implies that if U’ is also sufficiently small for Proposition 2.1 to hold and g € GL; (A}p z)
is such that g~'Ug c U’, then the diagram

pZ”CYU{)m)/O — M0 @ Mippw’ @ myppw’
vl L (3.7)

’CYUO(qs)/O — ﬂZ(S‘l ® mjw ® MW

commutes, where we have written p, for both morphisms Yy, () — Yu; () and Yy — Yy as usual, the
top arrow is the pull-back of (3.6) for U’, and the right arrow is induced by the isomorphisms p} 6’ -6

and pgw’ —> w defined in §2.3.

Note that we may therefore remove the assumption that 4 : Yy, (p) — Yu XYy is a closed immersion.
Indeed, for any U” sufficiently small, we may choose U normal in U” so that Proposition 2.1 holds, and
the commutativity of (3.7) for g € U’ and U = U’ implies that (3.6) descends to such an isomorphism
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over Yy (), which is furthermore compatible with the action of GL, (A;” %) in the usual sense. We have
now proved the following:

Theorem 3.5. If U is a sufficiently small open compact subgroup of GLz(A(p ) ) containing GL2(OF ),
then there is an isomorphism

ICYUO(W/O = néé‘l ® Tjw ® Tyw
furthermore, the isomorphisms for varying U are compatible with the action of GLZ(A;” ;) in the sense
that diagram (3.7) commutes.

Remark 3.6. Recall also from Remark 3.4 that 776 = 736, so that we may exchange 7 and 7 in the
statement of the theorem, and deduce also the existence of isomorphisms

* * ~ Q2
1 Kyy 10 @ 1Ky 10 = Kyl oo

compatible in the obvious sense with the action GLQ(A(P Z)

We will also need to relate the Kodaira—Spencer isomorphisms at level U and level Uy (). Consider
the morphisms

* ] ~x *V L% -1 ~x -1
YoMl — Ly and Y, MMy — My

induced by the universal isogeny ¢ over ?Uo(‘l‘*)' Tensoring over all § € X then yields morphisms which
descend to define

mow — mjw  and n’f(é_l ® w) — 713(6_1 ® w).

Combining these with (3.6) and the isomorphisms n;‘.ICYU JO = n;(d‘l ® w) ® ' w obtained by pull-
back along 7 (for j = 1, 2) of the Kodaira-Spencer isomorphism at level U (i.e. the case ®p = OF), we
thus obtain morphisms

”T’CYU/O — ICYUO(‘B)/O and ﬂ;/CyU/@ —> ICYUO(‘B)/O (3.8)

(whose tensor product is Nmg /g (®B) times the isomorphism of Remark 3.6).
We claim that the morphisms (3.8) extend the canonical isomorphisms

* ~ * ~
ﬂl,K,CYU,K/K ;’CYUO(ii),K/K and ﬂZ,K,CYU,K/K E,CYUO(‘Q),K/K

induced by the étale morphisms 7y x and m g (writing - for base-changes from O to K).

We can again reduce to the case that U is sufficiently small that % is a closed immersion, and replace
Yu .k replaced by Yu k., Yu,(p).x bY Yu, ).k » etc. Furthermore, it suffices to prove the desired equality
holds on fibres at geometric closed points of Yy, ).k -

To that end, we first recall the description on fibres of the Kodaira—Spencer isomorphism over ?U, K-

Since we are now working in characteristic zero, the filtration on 9117 /K obtained from [Dia23, Thm.
U.,K

3.3.1] has a canonical splitting giving an isomorphism

D (Mol ® Lox) oL (3.9)

fex
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It follows from its construction that it is dual to the isomorphism whose fibre at the point y € Yu (K),
corresponding to a tuple A, is the map

d : Tany(Vy k) — () Hom g (H(4.Q} )o. H' (A, O)o)
6ex

with §-component dy described as follows: Let y € Yy (T) bealiftof yto T := K [€]/(€?) corresponding
to data A lifting A, and let @y denote the canonical isomorphism

Hix(A/T)g = Hly (A/T)g = Hip (A/K)o ® T.

Foreg € H(A, Ql‘/i)g, let ey be alift of e to HO(A, Q%/T)g. Any two such lifts differ by an element of

eHO(A, Q%/T)g, which corresponds to H°(A, Qz/f)g ®% €T under the above isomorphism. Therefore,

a’g(gg)—eg®]=fg®€

for some fy € H},(A/K)g whose image in H'(A, O4)g is independent of the choice of 2, and this

image is dg(y)(eg). _
Similarly, the filtration obtained from Theorem 3.1 on the conormal bundle Cx of

E : ?Uo(‘B),K — ?U,K X ?U,K

has a canonical splitting giving an isomorphism

B (FMelk ®FsLox) = C. (3.10)

fex

which combined with (3.4) gives an exact sequence

0— @(;TTMZ),IK ®7T§ﬁe,l<) —mey

® ?szQL — Q! — 0.
Yu .k
feX

/K /K Yu, ).k 1K

It follows from the construction (and in particular the choice of sign) in the proof of Theorem 3.1 that
the first morphism is dual to the one whose fibre at the point z € Yy, () (K) corresponding to a tuple
(é]? é29 110) iS the map

Tanz, ;) Yu,x) % Tanz, ;) Yu.x) — @Homz(HO(Az,QLZ/f)e,Hl(Al, Oa,)e)
0ex

with #-component described as follows: Letting y| = 71 (z) correspond to A, and y, = 7> (z) correspond
to A,, the lift (y,y>) is sent to

de(V1) oy — ¥y rq©de(32),
where we continue to write

Voot H(A, Q) )0 = H(A1L Q) 2o and g it H' (A2, 0a,)0 = H' (A1, O4))o
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for the maps induced by . It follows that the diagram

Pz o7t

fex

~% -1 ~x ~x -1 ~ ~ =0l =0l
@((nmw @ FiLox) ® (BMyly ®FLox)) —— QL @mQL

commutes, where the horizontal isomorphisms are those of (3.9) and (3.10), the left vertical map respects
the decomposition and is defined by (1 ® Yo 1o —W’;Y v ® 1) in the #-component, and the right vertical
map is the inclusion in (3.4). Taking top exterior powers in the resulting exact sequences (and tracking
signs) then yields the desired compatibility, which we can state as follows:

Proposition 3.7. The canonical isomorphism n{Ky,, . jx — ICYUO(‘B), « /K extends uniquely to the mor-
phism 71Ky, /0 — ICYU()(‘B) o corresponding under the Kodaira—Spencer isomorphisms to the mor-
phism r} 0 'ew) — n;(é_l ® w) induced by y; similarly the canonical isomorphism 3Ky, . jk —
ICYUO .k /K extends uniquely to the morphism 73Ky, j0 — ICYUO /O corresponding to the morphism
myw — 7w induced by .

Note that the uniqueness in the statement follows from the flatness over O of the schemes Yy and
Yy, (p) (and the invertibility of their dualizing sheaves).

4. Degeneracy fibres
4.1. Irreducible components

We now turn our attention to Hilbert modular varieties in characteristic p (i.e., over the residue field &
of 0). We fix an open compact subgroup U C GLy(AF ¢), as usual sufficiently small and containing
GLz(OFJ,), and we let Y = Yy x and ?0(%) = YU, () k-

Our aim is to describe the fibres of the degeneracy map 77y = 7y : Yo(B) — Y, or, more precisely,
its restrictions to irreducible components of Y (). We accomplish this by generalizing the arguments
in [DKS23, §7], where this was carried out under the assumption that p is unramified in F. See also
[ERX17a, §4] for partial results in this direction without this assumption.

As usual, we first carry out various constructions in the context of their étale covers by fine moduli
schemes. Recall that the scheme T := ?U, k is equipped with a stratification defined by the vanishing of
partial Hasse invariants, constructed in the generality of Pappas—Rapoport models by Reduzzi and Xiao
in [RX17, §3]. More precisely, for 6 € %, define ng = 1 unless 6 = 6, ; 1 for some p, i, in which case
ng = p, and recall that o denotes the ‘right shift’ permutation of X (see §2.1). We then have a surjective
morphism

hg 1 Pg — L (4.1)

o-lo

induced by u if ng = 1, and by the pair of surjections

w1 Ver*,
Po ‘o M (AT, —5 L7 42)

o-lo

if ng = p, and for each J C Z, the vanishing locus of the restriction of 7{9 to Lg for 0 € J defines a
smooth subscheme of T of codimension |J|, which we denote T, (see [Dia23, §4.1]).

4Analogous results hold for 7wp = 7 i, as can be shown using similar arguments or by deducing them from the results for 77
using a wys-operator.
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Now consider S := ?Uo(‘l}), x> and let (A, A, ) denote the universal triple over S. Recall that for each
6 € X, the isogeny ¢ induces an Og-linear morphism /3, : P, — Pp; its image is a rank one subbundle
of Py if 6 € X and itis anisomorphismif 6 ¢ Xg. Furthermore, ¢, restricts to a morphism £, — L of
line bundles over S, which we denote 0.0 and hence also induces one we denote i/} oM " /\/l - Mg

For J,J’ C XZg, consider the closed subschemes S J,g0 of S defined’> by the vanlshlng of v o T
all @ € J, and lﬁg,g for all 6 € J’. Note that a closed point y of S is in Sy ;- if and only if J C Z and
J' c Z;, where X, and Z;, were defined in §2.6. Furthermore, in terms of the parameters and basis
elements chosen in §2.6 for stalks at y, we see that

i x , so(fo+Lg), ifgex!,
if§ € X,, then zpb.,’M(fg+L ) = {Q(W‘B)(fa+Le), 0 $Zz’

i ! s (e _ | splea —safe), if0 €,
and if 0 € X, then Y .(ep — s fg) = {9(13’61})(69 —s¢fe), ifOEZ,,

It follows that if y € Sy -, then S; ;- is defined in a neighborhood of y by the ideal generated by
{w} U {sglOecJ} U {syl0eJ}

We have the following generalization'® of [DKS23, Cor. 4.3.2]:

Proposition 4.1. The scheme Sy_j is a reduced local complete intersection of dimension d — |J N J'|,
and is smooth over k if J U J" = Zg.

Proof. Let y be a closed point of Sy ;.. The description of the completion (9;0 ),y & the end of §2.6
gives an isomorphism

O, = k() [[Xo, Xplloez/(€o)oes

under which sg +— Xy and s; — X(;, where

X if6 €Ty -7,
_ X}, if6 €T -3,
§0=1 xyx,, if 0 € T, N3,

Xg — Q(WGB)X ,if6 ¢ 2&3.

It follows that OQJ oy is isomorphic to the quotient of this ring by the ideal (Xg)gcs + (Xj)oes, and

therefore to (X) . ;- Re» where

R k() [[Xe, Xgl1/(XeXp), if0 € (Zy—J)N(Z; =T,
0= k(y)[[Xg]] or k(y)[[Xp]], otherwise.

In particular, Og\, oy is a reduced complete intersection of dimension d — |J N J’|, and is regular if
JUJ =%g. O

If J/ = X — J, then S; j is a union of irreducible components of S, which we write simply as Sy;
furthermore, each irreducible component of S is a connected component of S; for a unique J C Zg.

For each J C Xg, we consider the restriction of 1 x to S;. We first note that the morphism factors
through 7., where J' = {6 € J| 0~'0 ¢ J }. (Recall that T} is the intersection of the vanishing loci of

. . . ho . . .
the partial Hasse invariants Ly — E‘i’_’ v 0 for 6 € J’.) Indeed, since S, is reduced, it suffices to check
5Note the deviation here from the notational conventions of [DKS23] and [DK23], where these would be written as S-(7), s
and Zq gy, 7

6Note, however that the descriptions of the cases in the proof of [DKS23, Cor. 4.3.2] are incorrect: the first case there should
be 0 € (Ig —I) N (Jg —J), the second (Jo — Ip) U (J - I), and the third (Ig — Jo) U (I = J).
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the assertion on geometric closed points, which reduces to the statement that if (A, A’, ) corresponds
to an [Fp,-point of § such that ¢y, , : My — Mg and 1//’;7]9’5 tL L,

does Zg 1Ly — Liﬂ" 0 (with the obvious notation). If 7 = 7, ; and 8 = 6, ; ; for some j > 1, then the
vanishing of ¢, , . means that

— L -14 both vanish, then so

v YY) =y c B

and hence, equality holds by comparing dimensions. However, the vanishing of zp;l o means that

c,l/?;(F;(j*l)) = Fﬁjiz), and it follows that uFfj) = Fijiz), s0 g vanishes. Similarly, if T = 7, ; and
0 = 0y.:.1, then we find that

U Hig (A" [Fp)e) = (GFY) = FYY

and l//;lT(F(;(_efT)) = F;e_"l;l). Since Ver’, oy = 1//;7% o Ver’,, and

Very (Hig (A" [Fp)e) = (FL )P,

it follows that VerZ(FT(I)) = uev—l(F;e_‘;;l))(P), which again means that hg vanishes. Similarly, one

finds that the restriction of 7, x to S factors through T~, where J” = {0 ¢ J|oc~'9 € J }.
Now consider the scheme

Py =[] Pr,. (Po),

0eJ”

where the product is fibred over 7. and Pr,, (Pg) denotes the projective bundle parametrizing rank one
subbundles of Py over T;.. (We will freely use Py to denote the pull-back of the rank two vector bundle
associated to the universal object over 7 when the base and morphism to 7 are clear from the context.)
The image of ¥ : P, — Py is a rank one subbundle of Py over S, so it determines a morphism
S; — Pr,,(Pg), and we let

g]:SJ—)P_]

denote their product over 6 € J”'.

The proof of [ERX17a, Prop. 4.5] shows that E J is bijective on closed points, and hence is a
Frobenius factor, in the sense that some power of the Frobenius endomorphism on P; factors through
it. We will instead use relative Dieudonné theory, as in [DKS23, §7.1], to geometrize the pointwise
construction in [ERX17a] of the inverse map, showing in particular that a single power of Frobenius
suffices.

Before we carry this out in the next section, let us remark that the closed subschemes 7; of T descend
to closed subschemes of ¥, which we denote by ¥ 7, and similarly, the subschemes S (or more generally
S7.s) descend to subschemes of Yo(P), which we denote Yo (P); (or Yo(B) 7.77)- Furthermore, since
we are now working in characteristic p, we may choose U sufficiently small that the natural action

un (’); on the vector bundles Py is trivial. The action of (’); ()t therefore defines descent data on the

Py to a vector bundle over Y, and denoting this too by Py, we obtain a morphism

£ : Y0Py — [ ] By, (Po).

0eJ”
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4.2. Frobenius factorization

We will define a morphism P; — S corresponding to an isogeny from A(?), where A is the pull-back
to P of the universal abelian scheme over 7. In order to do this, we first construct a certain Raynaud
(OF /B)-module scheme over T;.. To that end, we need to define a line bundle A, over P, for each
T € Xg 0, along with morphisms

57t AP — Agor and 170 Agor — AZP

such that s.¢, = 0 for all 7.
Suppose then that 7 = 7, ; € X ¢, let 8 = 6, ; 1. and consider the exact sequence

0— A — Py — AL —0 (4.3)

over Py, where A, and A’ are the line bundles defined by

o Ay =Lgand AL = My if 6 € J;

o Ar =ker(hg) — MZP, and A, = Pg/Ar — L, if 0710 = 6p 1.0, ¢ J, With hg : Py >
Lip given by (4.2) and the isomorphism Mi’f » — A, induced by Frob’, : (G

-1 0
o the tautological exact sequence over Pr,, (Pg) if 6 € J”.

;ipl)OT)(p)—)Pe;
Note | that the first two conditions are both satisfied if @ € J’, in which case the definitions coincide since
ker(hg) = Lo onTy.

We now show that Frob’, : Péf: ,) — P, and Very : Py, .., — Péﬁ 3,1 restrict to morphisms

AZP — Agor and Agor — AFP, and hence induce morphisms A°F — Ay and A — ABP,

o If =6y, €J,then A; = Lo = Ver', (u!"Py, .., ), so Frob’, (A7”) = 0 and

1

Ver'y (Apor) C Very(Po, ,,1,) = u™ (FL)P) ¢ £8P = A%P.
o IfOpie, €J,then Agor = Frobz((gie"))(l’)), so Ver), (Agor) = 0 and
Frob;(_Af”) C Frob’;‘(Pé:l?l) C Frob’;‘((giev))(p)) = Agor.

olf 6 =6y;1 ¢ Jand ;. €J,then 6;; € J' for some j € {2,...,ep}, which implies that
u]—'ﬁj ) = ]-'ij =2 We deduce that

Po c GV = FY < I cunl (A/P))-

(where the last inclusion holds since uev‘lfie") C uj_l]-'y) = uj_lgij_l) = 0), and hence that
FrobZ(Afp) c FrobZ(Pép)) c FrobZ((]—'T(e"))(P) = 0 and Ver(Agor) C Very(Pe,,..,) =
uev—l(]:iev))(p) =0.

We now define s, : AS” — Agor and 17 : Agor — AfOT as the restrictions of Frob’, and Ver’,,
yielding Raynaud data (A, s¢,r)rezy,» and we let C denote the corresponding (OF /%)-module
scheme over P;. We similarly obtain Raynaud data from the morphisms s’ : AP A;m . and
tr 2 AL — A'®P induced by Frob’, and Ver’,, and we let C” denote the resulting (O /8)-module
scheme.

Recall from [DKS23, §7.1.2] that the Dieudonné crystal D(C) is isomorphic to IT*(.A4), with ® =
IT*(s) and V = IT*(z), where A = @ A;, s = @5, t = &1, (the direct sums being over 7 € Zg o) and IT*
is the functor denoted ®* in [BBMS82, §4.3.4]. (The assertion of [DKS23, Prop.7.1.3] is for (Of/p)-
module schemes, but the analogous one for (Of /B)-module schemes is an immediate consequence.)

oT
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Similarly, we have that D(C") is isomorphic to IT*(A”) with ® = IT*(s’) and V = IT*(¢’) (again letting
A" = A, etc.). However, we have the canonical isomorphisms

D(AP[B]) = I'D(A[BDp, = T H g (A/P)) @0, (OF /P)

provided by [BBMS&2, (4.3.7.1), (3.3.7.3)], under which @ (resp. V) corresponds to I[T*Frob4 (resp.
IT* Ver4). Combined with the isomorphism

Hig(A/P)) 80, (O IB) = D Hig(A/P)) @0, (Or /) — D P Po,...
pIP pIP i€Z/{Z

induced by multiplication by = in the p-component, it follows that (4.3) yields an exact sequence of
Dieudonné crystals

0 — D(C) — D(AP[P]) — D(C’) — 0

over P;. Since P is smooth over k, we may apply [BM90, Thm. 4.1.1] to conclude that this arises from
an exact sequence of (OF /B)-module schemes

0—C" — AP[P] — C — 0.

We now define A” = AP)/C’, and let a : A(P?) — A” denote the resulting isogeny and s’ : A” — P
the structure morphism.

We now equip A” with the required auxiliary data so that the triple (AP), A”, @) will correspond to
a morphism P; — S. First, note that A’ inherits an O -action from AP as well as a unique U?-level
structure with which « is compatible.

The existence of a quasi-polarization 1" satisfying the required compatibility amounts to 1(”) induc-
ing an isomorphism Pcd @, A” — (A”")" over each connected component of P . The corresponding
argument in [Dia23, §6.1] carries over mutatis mutandis (with A replaced by A(?), A’ by A”, Hby C’, p
by B and Z; by AZ”, now running over 7 € X0 instead of i € Z/ fZ) to reduce this to the orthogonality
of A2? and u'~¢» AZP under the pairing on HéR(A(”) /Pj). induced by 1) (via [Dia23, (4)]). This in
turn is equivalent to the orthogonality of A, and u!~¢» A, under the pairing induced by A, which follows
from [Dia23, Lemma 3.1.1] via the implication that the resulting perfect pairing on Py, , , is alternating.

We now define Pappas—Rapoport filtrations for A”” — that is, a chain of Op, [u]/(#®*)-modules

0= F O cFWcF® c FO c FIO = (0@ b))

for each 7 = 7,; € %o, such that 77’ /FY™ is an invertible Op,-module annihilated by u for
Jj=1,...ep.
For each 7 € %, consider the morphism

@t Hig (A" [P1)e — Hig (AP [P1)e = Hig(A/P)))

Zariski-locally free rank two Op, [u]/(u?)-modules. Note that if 7 ¢ Xg o, then o is an isomor-
phism sending (s;’QL,,/PJ)T to (S*QL/P, ;’f?w, and we define /') = (ai“,)*]((f;{)%)(p)) for
Jj=1...,ep—1

We may therefore assume that 7 = 1, ; for some p|P, so the image of a7 is the Op,-subbundle
u ‘*evAjf’lOT of rank 2e, — 1, and the kernel of a7 is a rank one subbundle of H}, (A” /P ). For each

j=1,...,ep—1, wewill define F’U) asan Op, -subbundle of H (A" /P ) of rank j, and then verify
the required inclusions on fibres at closed points.
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Suppose first that 6, ;1 ; ¢ J. Since ue"‘l}';{fi)f = 0, it follows that .7-";’_ ::i is contained
in ul_el’AWlOT, SO (]—';J;:)T)(p) c im(a%). Therefore, (a”;)‘l(]:({:il)(i’) is an Op,-subbundle of

Hig (A" [P;) of rank j, which we define to be Fr,
Suppose next that 6, ;1 ; € J. We claim that

A¢—]OT C f;{)lo7' C g;/:?‘r C ul—epA(ﬁ?IOT'

Indeed, if 6y ;-1,1 € J, then A1, = ]:;l-)lor and

(1) )] (Jj+1) (ep) l-ep (1)
‘/—:(p*]o‘r = ]:¢*107' = gq}*lor = gqﬁ*lor cu quﬁ”o‘r'

However, if 0, ;-1,1 ¢ J, then 6 ,_1, € J' for some £ € {2,...,/}, so that ]:((b{)lw - g((;ji)T _
u‘lf;{ffi, which implies that u%—lg;i"l)w = uev‘zf;fﬁgi) cul~1FO = 42 F(=2) = 0 and hence,

Agtor C gfj){{w c g;"_jc{i _FO  cr g;m) c G cul Ay,

¢_10T ¢_10T ~lor ¢_10T

Now define 7;5{ N 013 to be ]-';{ T?T if Op;_1,j+1 € J, and to be the preimage in g;fjll of the pull-back
to P, of the tautological subbundle of Py, , , .., over Pr,, (Pa,, , ;,,) if Opi-1,j+1 € J (in which case
Op,i-1,j+1 € J”). In either case, (Tq;ffoli)@) is contained in the image of &%, so that (@)~ (7;{;1:)(”)

is an Op, -subbundle of HéR(A” /Py) of rank j + 2. Furthermore, we have

@ (W H (A7 Py)r) = A e (T @),

“lor “lor

so that u®»™'H . (A” /P ;) is a rank two Op, -subbundle of (7)™ (T‘;ffoll)(p). We conclude that
11(J %\ — j+1
]:.T/(j) = M(QT) I(T‘;Z]‘*ol)(ﬂ)

is a rank j subbundle of uH j, (A" /P)<, and hence of H (A" /P)-.
To prove that the vector bundles ]-";'('i ) define a Pappas—Rapoport filtration, we must show that

u}-‘;’(j) c -F"r/(j_l) c ]:;’(j)

forall T = 75; € Xpand j = 1,...,ep, and the desired compatibility with « is the statement that
a‘;o (F "g)) - (]-'ij ))(P) for all such 7 and j. These inclusions are immediate from the definitions if
T ¢ Zg5,0, SO We assume 7 € Xgp g.

Note that since P is smooth, it suffices to prove the corresponding inclusions hold on fibres at every
geometric closed point y € Pjy (Fl,). To that end, let F;j ) (resp. F;'(j )) denote the fibre at y of fij )
(resp. }";/(j)), and for each 7 = 7, ; and j such that 6 = 6, ; ; € J”, let T.ﬁj) denote the fibre of the the
preimage in gi" ) of the tautological line bundle in Py, , , over P.

We also let W = W(FP) and consider the Dieudonné module

D(Ay[p°]) = Hiyy(Ay /W)y = D Hlys(Ay /W),

TEZ;,,()
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for each p|P. Thus, the modules Hérys(Ay/ W), are free of rank two over W[u]/(E), equipped with
Wu]/(E+)-linear maps

@ 1%
ngys(Ay/W)j;-lOT - ngys(Ay/W)T and ngys(Ay/W)T - Hclrys(Ay/W)z-lo.r
induced by Frob, and Ver 4 and satisfying @V = V® = p, where we use - to denote - ®w 4 W. Consider
also the Dieudonné module D(AY [p*]) = @rez,,,oHclrys(A;/ /W), similarly equipped with morphisms
® and V, as well as the injective W [u]/(E)-linear maps
@5 2 Hyy (A /W) — Hiy (A /W),

compatible with @ and V. Furthermore, the morphisms ®, V and a7} are compatible under the canonical

isomorphisms Hclrys(Ay /W) ®w ﬁp = HéR(Ay /FP)T with the maps induced by the corresponding
isogenies on de Rham cohomology. Thus, letting fﬁj ) denote the preimage of Fij ) in H! (Ay /W),

crys

and similarly defining F:(j ), we are reduced to proving that

~x (7 ~x  =rr(j—1 ~x (] =(j
ua (F, (J)) c @ (F, (J )) c @ (F, (J)) c (F(]) )¢

¢‘loT
forallt=7,; € Zgpoand j =1,...,ep, or equivalently that
uF! 9 c VD c V) « FY) (4.4)
. e =) gl
where EVY) = (a/q,OT(F"CEi)))"S .
We use the following description of Eﬁj ) for 1 = tp;and j =0,1,...,ep, where we let TT(] ) denote
the preimage of 7 in Hiyi(Ay /W), for 6y ;5 € J”.

o Since @5(F/''") = pas (Hly (A7 /W),) = pu'-e»/?g,lw = uA‘f;,IOT, where

F, if 0,1 € J;
T ep—-ly-1m(e=Dygp . ] .
A =3 u®»™'V (F¢‘lo‘r) s 1f6’p,l_1,ev eJ;
T, if 0,1 €J”;
we have
“(Ep—l) ¢ . .
(D((F¢-lor) ), if ep,i—l,e,, ¢ J;
~(0 N
EY = uFo, if 0,1 € J;

uTY, if0,,,€J”.
o If 1 £ j < e, — 1, then it follows from the definition of ]-"(;'g) that

_ fijfl), ity ;¢J;
E.(rj) = uﬁ.£]+1), if 0p,i,j+l (S ];
uTY it 0y 41 €07

(Note that if 6, ; ; ¢ J and 0y ; j41 € J, then 8, ; ;11 € J', so that ufﬁjﬂ) = f.ﬁj_l).)
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o Since ®((F.*)¢) = (;'59 we have (E\%)) = ‘l(V(Egl)T))"’_l, so the formulas in the case j = 0
imply that
N Floh N e, €
B = (V! FS) )97 if 6pia11 € J;
V@ oT )9, i O € 7.

Note in particular that
uFY c EY) ¢ FY

forallt=1y;, j=0,...,ep (the case of j = e, for T = 7, ; being equivalent by an application of ® to
that of j = O for 7 = 13 ;11). The inclusions in (4.4) are then immediate from the formulas

EV™) =uF) 6y, et and EV)=FU ifg,, ¢ “5)

We have now shown that the triple (A?), A”, @) defines a morphism ¢y : P; — S. Furthermore,
rewriting equations (4.5) in the form

(Lt_] F’/(j 1))

(FYYo, if Op,i,j €J,

¢OT ¢oT "
and @, (Fyl) = (FY7)) if 0y ¢ J,

shows that Z,(y) € Sew) (Fp) for all y € PJ(FP) (where we define ¢ : X — Zg by ¢(6y,,;) =
Op.,i+1,7)- Since Py is reduced, it follows that z 7 factors through S 4. Note furthermore that if (A, A’ )
is the universal triple over S, then its pull-back by ¢ € Aut (k) is isomorphic to the universal triple

over S4(7), yielding an identification of S(Jp ) with § #(J) under which the relative Frobenius morphism
S; — Sgp) = S4(s) corresponds to the triple (4, A’,¢)P) over S;. Note also that ¢(J)" = ¢(J’) and
#(J)"” = ¢(J"), and we may similarly identify TJ(?) with T+ and P(Jp) with P (7, under which 5”)
corresponds to E¢(,) and Ej(p) to Z¢(]).

Finally, we verify that the composites

Ep(1) £ 4
PJ—J>S¢(J) qu(_[) and SJ—J)PJ—J)S¢(J)

are the Frobenius morphisms (relative to ¢ € Aut (k)).

Indeed, it suffices to check this on geometric closed points, so suppose first that (A, (Tg)gecs”)
corresponds to an element y € Py (Fp), where A corresponds to an element of 7 (Fp) and each Ty to
a line in Py = u’lﬂf'_])/ﬂj_l) (using the above notation with y suppressed, so 7 = 1 ;, 0 = 6, ; ;,

and F. 2 is the preimage in Hclrys(A /W), of the Pappas—Rapoport filtration on F; @)~ g 0(A, 9,14/]1:‘ )r C

1 R(A/ F p)z). Its image Z;(y) then corresponds to the triple (A?), A”, @) produced by the construction

—1or(j-=1) ;= (j-1
above and £4(7)(Z7(y)) is given by (AP, @9, (Pl ), Where Pl = u 1F¢o(i i3 si ) and
yg) P;; 0 Pfg P) is induced by @, .. From the formulas above, we have

¢OT(F(;’51 1)) —l(E(J ]))¢7 (T(J))¢

for 6, ; ; € J”, where TT(j)

(p)
T,

is the preimage of Ty in crys(A /W)., and it follows that o, 3(6) (P” 5 9))

, as required.
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Suppose now that (A, A’, ) corresponds to an element x € Sy (F,,), sothatif 7 = 1, ; € g0 and
6 = 6y, j, then z;’;(u‘lf’*:;(]_l)) =FY ifg e J and z;j(f’*:;(])) = FY™V if 9 ¢ J (with the evident
notation). Its image &7 (x) then corresponds to (A, (Tg)gecs~), where

* ’ T —1=7(j-1 =(j-1
Ty = yy(Py) = i (u D) EYD,

and we must show that the triple (A”), A”, @) obtained from it by applying £, is isomorphic to
(AP, A"P)_y(P)). To that end, note that the formulas for £% imply that g (F./)) = EY) for all
T=1p; € Xppand j =0,1,...,e, (using the equivalence provided by ® between the cases of j = e,
for 7 and j = O for ¢ o 7). In particular, it follows from the case of j = 0 that
(';j—)qﬁ : Hclrys(A’/W)f g I—Iclrys(A/VV);Zﬁ
and @, 1 Hly (A" /W)gor — HL(A/W)!
have the same image for all 7 € Zg 9. Combined with the fact that % and @* are isomorphisms for
T ¢ Zg5.0, we conclude that the images of

D(A' P [p=]) — D(AP [p®]) and D(A”[p=]) — D(AP [p™])

under the morphisms induced by (?) and « are the same. It follows that there is an isomorphism
A’(P) 5 A” such that the diagram

AP

R

A/(p) A"

commutes. Its compatibility with all auxiliary structures is automatic, with the exception of the Pappas—
Rapoport filtrations for 7 € Zg o, where the compatibility is implied by the equality

W (FA)? = (EL)? = &0 (FL))

¢oT

fort’=¢lorandj=1,...,ep— 1.
We have now proved the following generalization of [DKS23, Lemma 7.1.5]:

glp) o ZJ : Pj N PF]P)
and Z] o .?,7] 1Sy - Sgp) are the Frobenius morphisms (relative to ¢ € Aut (k)).

Lemma 4.2. There is a morphism Z 7Py — S(JP ) such that the composites

4.3. First-order deformations

In this section, we compute the effect of the morphisms

SJiPJ—)TJ/

on tangent spaces with a view to generalizing the results of [DKS23, §7.1.4].

We let F denote an algebraically closed field of characteristic p. First, recall that if x € T(F)
corresponds to the data A = (A, t, 4,7, F*), then the Kodaira—Spencer filtration on QIT Ik (as described
in [Dia23, §3.3]) equips the tangent space of T at x with a decomposition

Tan, (T) = @ Tany, (T)

TEY)
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and a decreasing filtration on each component such that

@ Fil /= (Tan, (7))

TEY)

is identified with the set of lifts g of A to T(F[e]) with the property that forall 7 € Zpand 1 < j < j,
F, ij ) corresponds to FT(J ) ®r F[ €] under the canonical isomorphism

Hi  (A/F[€]/(€®))r = Hl .\ (A/F); = Hiz (A/F); @ F[e].

crys
In particular, for each r = 7 ; and j = 1, ..., ey, the one-dimensional space
gr/™!(Tany(T);) := Fil/~!(Tan, (7)) /Fil/ (Tan, (T);)

is identified with the set of lines in Py ®g F[¢] lifting Ly, or equivalently with Homg(Lg, Mg), where
0= gp,i,j and Mg = Pg/Lg.

Furthermore, if x € T/ (F), then g corresponds to an element of 7, (F[€]) if and only if the Pappas—
Rapoport filtrations F. * have the property that

FU) = F§1)~®E Fle], if j = 1;
’ W FYY D if >0

for all j such that 6 = 6, ; ; € J’ (via the canonical isomorphism if j = 1). It follows that Tan, (7))
inherits a decomposition into components Tan, (7). equipped with filtrations such that

i—1 . ’.
j-1 Ny 2 | e/ (Tan (1)), if Op i & J';
gr (TanX(TJ )T) - {O, lf Hp,i,j c ]/,

Suppose now that y € P, (F) corresponds to the data (A, (L})ecs~), where A corresponds to a point
x € T;(F) and each L} is a line in Py. We may then decompose

Tany (Py) = @ Tany (Py),

7€)

and filter each component so that

B Fit - (Tany (P )-)
p
is identified with the set of lifts (g, (Z’H,)gg‘]") of (A, (Ly)ecs~) to P;(F[e]) such that the following
holdforallt=1,; € Zpand 1 < j < j,:

o F, ij ) corresponds to F. iji ®r F[€] under the canonical isomorphism;
o if§ =6y, € J”, then L corresponds to Ly ®r F[e] under the resulting isomorphism

Po=u'FVV/FI™" = py @ F[e].
We then have that

) 0, if Hp,i’j et
dimg gr]_l(Tany(PJ)T) =12,if0p,;;€J";
1, otherwise.
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Furthermore the projection Tany, (Py) — Tan, (T ) respects the decomposition and restricts to surjec-
tions Fil/ (Tan, (P;).) — Fil’ (Tan, (T, );) inducing an isomorphism

gr/™ (Tany (Py)e) — gr/™ (Tany (T )-)
unless 6 = 0, ; ; € J”, in which case we have a decomposition
gr/~N(Tan, (P),) = Vo @ V) (4.6)

where Vg (resp. V) is identified with the set of lines in Py ®r F[e] lifting Lo (resp. L)), so that the
map to gr/~!(Tan, (7}-);) has kernel V,/ and restricts to an isomorphism on Vj.
Finally, suppose that z € S;(F) corresponds to the data (A, A’, ) and identify the tangent space

Tan, (S;) with the set of lifts (g , g /, ) corresponding to elements of S (F[€]). We may then decompose

Tan, (S;) = @ Tan,(Ss)-

TEY)

and filter each component so that

EP Fil /" (Tan.(S)-)

is identified with the set of lifts (g, E, J) of (A, A’, ) to Sy (F[e]) such that the canonical isomorphisms
identify F\) with FY) @z F[e] and F.\Y) with F/'/) @z F[e] forall 7 =7, € Sgand 1 < j < j. Note
thatif 7 ¢ Xg o, then the isomorphism induced by i renders the conditions for F, ij ) and F. ;(j ) equivalent.
Suppose, however, that T = 7, ; € Xg . If 6 = 6, ; ; € J and F=h corresponds to FIY™) g Fle),
then the functoriality of the isomorphisms between crystalline and de Rham cohomology implies that
5;(;‘ )=y 'F ;(j ) corresponds to G’T(j ) ®r F[€], and consequently that F, ij ) corresponds to FT(j ) ®r Fle].
It follows that in this case, the F-linear map gr/~!(Tan,(S;);) — gr/~!(Tan,(T)) is trivial (where
x = m; corresponds to A). Similarly, if 6 = 6, ; ; ¢ J and fT(j_l) corresponds to FT(‘i_]) ®r F[e€], then
we find that 72/ corresponds to F./) ®z F[e], so that the map

gr - (Tan(Ss)7) — grj_l (Tany (T)-)

is trivial (where x” = m,(z) corresponds to A’). The degeneracy maps 7y and 7, therefore induce
injective maps from gr/~!(Tan,(S;).) to

o gr/~N(Tany (T);) = gr /=Y (Tany (Ty»),) if 0 € J;
o gr/~N(Tany(T);) = gr/~!(Tan, (7)) if 6 € Zqs but 6 ¢ J;
o either of the above if 6 ¢ XZg.

Since Tan, (S,) has dimension d, it follows that all these maps are isomorphisms.
We now describe the map induced by &; : S; — P; on tangent spaces in terms of its effect on
filtrations and graded pieces.

Lemma 4.3. Let z € S;(F) be a geometric point of Sy, and let y = £;(z). Then the F-linear homomor-
phism

t: Tan,(S;) — Tany(Py)

respects the decompositions and filtrations. Furthermore, if T = 1y ; and 6 = 6, ; ;, then the following
hold:
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1. If 6,076 ¢ J, then t induces an isomorphism
r/! (Tan,(Sy)<) — grj_l (Tany(PJ)T)~

2. If € J, then t(Fil/ ™! (Tan,(S;),)) C Fil/(Tany(Py),).
3. If6,07'0 € J and j > 2, then t induces an isomorphism

g/~ (Tany (S)r) — gr/~! (Tany (P;)r).
4. If0 € J”, then t induces an injection
gt/ (Tanz(S7)e) — g/~ (Tany (Py)r)
with image Vg (under the decomposition (4.6)), extending to an isomorphism
Fil /= (Tan; (S;)) /Fil/ (Tan; (S7)-) — gr’™" (Tany(Py)-)
ifj>2
Proof. Suppose that (A', E, ) corresponds to an element Z € Fil/~! (Tan,(S;),), where T = Tp,; and

6 =0p.;,j,and let (g, (Lo )gresr) correspond to its image y € Tan, (P;). We then have that fT(,j,) (resp.

(J") (" (") inal i ;
F;” ") corresponds to F; * ®f F[e] (resp. F_,” ” ®r F[€]) under the canonical isomorphisms

1

Hlz(A/F[€])r = Hip(A/F)r ® Fle]
(resp. Hlp (A’ [Fle])r = Hlg(A’[F)r @5 Fle])

1

fort"=tand j’ < j—1l,andforall 7" = 7y » # 7 and j’ < e, . It follows also that Z’g’, corresponds
to Ly, ® Fle] for all ' = 6y v » € J” such that 7/ # 7, or j* < j if 7" = 7. This proves that ¢
respects the decompositions and filtrations, and that 6 € J”, then the image of grf Y(Tan,(S;);) —

gr/~!(Tan,(P;),) is contained in V4. Furthermore, we have already seen that F} ) corresponds to
Fﬁ” ®z F[e] if 6 € J, so that 2) holds.

For the injectivity in 1) and the first part of 4), recall that F;(j ) corresponds to F' ;(j ) ®rFle]if0 ¢ J,
soif y € Fil/ (Tany (Ps),), thenZ € Fil/ (Tan,(Ss).). The assertions concerning the image then follow
from the fact that each space is one-dimensional.

Again, comparing dimensions, it suffices to prove injectivity in 3) and the second part of 4). Applying
the injectivity in the first part of 4), and then shifting indices to maintain the assumption that 7 €
Fil/~! (Tan, (87)<), both assertions reduce to the claim thatif j < ep, 6 € Jandy € Fil J+ (Tany (Py)z),
then 7 € Fil/ (Tan,(S;).).

To prove the claim, let F"UH) denote the image of 6'(j+1) _1I7;(j) in éf,jﬂ) = u‘lf.ﬁj) under
the morphism 1nduced by . Note that if o6 € J, then F/Y*V = FU*D \whereas if o6 ¢ J, then

F/UD FY) = . Thus, in either case, the hypothesis that y € Fil- ’”(Tany (Py),) implies that
F.;'(] D corresponds to F ;'(j ) ®r F[€]. Functoriality of the canonical isomorphism between crystalline
and de Rham cohomology then implies that their preimages under the maps induced by ¢ and ¢
correspond, that is, that 6;(/ D corresponds to G'T(j +D ®r F[€], and hence that ﬁ;(j ) corresponds to
FIY) @z Fle], so Z € Fil/ (Tany (S))y). O
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Lemma 4.4. Let t- : Tan;(Sy); — Tan, (Py); denote the T-component of the F-linear map t, with
notation as in Lemma 4.3. Then

_ [ Fil® ! (Tan,(S))c), if Opie, € J:
ker(tr) = {0, [ Opre &1
Tany(PJ)-r, lfgp,i—l,e,, ¢J;
im(t;) = { Fil'(Tany (P;)), if 6p.i1 € J;
Vgp’i’l, lf0 = Hp,i,l € ./”,

where ng.,, is the preimage of Vg, ., C gr%(Tany, (P,),) under t he projection from Tany(Py);.
In particular ker(t) has dimension #{ (p,1) | 0p i, € J }.

Proof. Tt is immediate from part 2) of Lemma 4.3 that if 7 € Fil ©~! (Tan,(S)), then #(Z) = 0.

Suppose, however, that 7 € ker(¢;). We prove by induction on j that 7 € Fil/(Tan,(S,);) for
J=1,...,ep—1,aswellas j = ey if Op; ., ¢ J. Indeed, if 7 € Fil/~!(Tan,(S;),) and Op.i.j ¢ J, then
since #(Z) € Fil/ (Tany (Py)7), parts 1) and 4) of Lemma 4.3 imply that 7 € Fil J(Tan,(Sy)7). However,
if 7 € Fil/ =1 (Tan, (S)s), 0p.i,j € Jand j < ey, then since #(z) € Filj”(Tany (Py)¢), parts 3) and 4)
of Lemma 4.3 imply that 7 € Fil/(Tan, (S;);).

This completes the proof of the description of the kernel of ¢, which immediately implies the formula
for the dimension of ker(z).

The fact that the image of f; is contained in the described space is also immediate from
Lemma 4.3. (Note that the first two cases in the description are not exclusive, but are consistent since
gr!(Tany(Py),) = 0if 6,1 € J’.) Equality then follows on noting that their direct sum over all 7 has
dimension equal to the rank of ¢. O

Now let Z denote the fibre at x of 7; : S; — T, defined as the restriction of 7} &, and consider
the tangent space Tan, (Z), which may be identified with the kernel of the F-linear map Tan,(S;) —
Tan, (7). We denote the map by s and write it as the composite

Tan, (Sy) LN Tany, (Py) — Tan,(Ty),

where the second map is the natural projection. Since each map respects the decomposition over 7 € X,
we may similarly decompose Tan,(Z) = P, Tan,(Z), where Tan,(Z), is the kernel of the composite

57 Tang (Sy)r — Tany(PJ)‘r — Tan, (Ty/)-.

We may furthermore consider the filtration on Tan;(Z), induced by the one on Tan,(S)., so that if z
corresponds to (A, A", ¢), then P, Fil Jo(Tan,(Z),) is identified with the set of its lifts (A’, g,, %) to
S (F[e]) such that g = A ®r F[e] and f;(j) corresponds to F;j) ®r Fle] forall T € ¥y and j < j,.
(Note that this condition is automatic for 7 ¢ Xg, in which case Tan,(Z), = 0.)

Lemma 4.5. The F-vector space Tan,(Z) has dimension |J'|+ 6 = |J”'| + 6, where
o=#{r=1p;| gp,i,ep7 Op,iv1,1 € J }.
More precisely, if t = 1y ; and 6 = 0y ; ;, then

1, if0 =0y, ; €Jandeither o8 & J or j = ey;

dimg gr i (Tan;(Z);) = { 0, otherwise.

Proof. Tt follows from the description of the image of #; in Lemma 4.4 that if T = 7, ;, then s is
surjective unless 6y ;-1.e,,0p.i1 € J, in which case the image of s, is Fil '(Tany (7)), which has
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codimension one in Tan, (7). Therefore, the image of s has codimension § in Tan, (7)), and the
kernel of s has dimension

dimg(Tan,(Sy)) — dimg(Tany (7)) + dimg(coker s) = |J'| + 6.

Since dimg gr/~!(Tan,(Z);) < dimz gr/~!(Tan,(S,),) =1 forallt =7p;and j = 1,...,ep, and &
is the total number of 7 and j such that if 8 = 6, ; ; € J and either o ¢ J or j = ey, it suffices to prove
that gr/~!(Tan,(Z),) = O if either ¢ J, or j < e, and Op.i.j>Op.i.j+1 € J. This is immediate from parts
1), 3) and 4) of Lemma 4.3, which show that the following maps induced by s, are isomorphisms:

o gr/™!(Tan,(Ss);) — gr/ ! (Tany(P;),) — gr/~Y(Tany(T});) in the case =16, 6 ¢ J;
o gr/™!(Tan,(Sy);) — gr/(Tany(P;);) — gr/ (Tany(Ty),) in the case 8,060 € J, j < ep;
o gr/=!(Tan,(S;);) — Vg —> gr/~!(Tan,(T});) in the case 6 € J”'.

4.4. Unobstructed deformations

‘We maintain the notation of the preceding section, so that in particular, J is a subset of X and Z is the
fibre of 7y : S; — T at a geometric point x € T (F), where J’ = {6 € J|oc~'6 ¢ J }. Following on
from the description of the tangent space in Lemma 4.5, we continue the study of the local structure of Z
at each closed point z in order to prove a generalization of [DKS23, Lemma 7.1.6], showing in particular
that the reduced subscheme is smooth. We remark, however, that if B is divisible by a prime p ramified
in F, then the fibres over T, of .;? 7 need not be totally inseparable, so the desired conclusions do not
immediately follow as in [DKS23] from the commutative algebra results of [KIN82] and the description
of the morphisms on tangent spaces. We therefore resort to a more detailed analysis of the deformation

theory.
Fixm > OandletR =F[[Xy,..., X;n]] and R, = = R/m™!forn > 0,wherem = mg = (X1, ..., X,).
Similarly, let R = Wo[[Xj,. .. ’Xfi]] and R, = R/I”+1 where Wy = W5 (F) and I = (Xy,..., X;n), s0

that R, is flat over W, and R,,/pR, = R,. We let ¢ = ¢,, : R, — R, denote the lift of the a@olute
Frobenius ¢ = ¢, on R, defined by ¢(X ) = Xp for j =1,...,m. We view R4 (as well as R, and
R,+1) as a divided power thickening of R, with d1v1ded powers deﬁned by

(pf+)t = plilfie plizllplg

for f € Rou1, gel™andi> 1.7

We now denote the data corresponding to x € T/ (F) by A, take (A, , A, ,¢,) corresponding to an
elementz, € Z(Ry),sothat A, = A ®= Ry, andlet Fj; = F;®z R, and F,;* denote the associated Pappas—
Rapoport filtrations. Suppose that 7 = 7, ; is such that 6 = 6, ; ., € J, and consider the morphisms

HL (AL R e s HY (Anf R @.7)

Tvr,n

-1 ~

of free rank two R, [#]/(E;)-modules, where A(pil) = A(pil) ®r R, and \77,1 is induced by
Ver : A% — Ag. Note that H'\,(A, /En)T cryg(/x()/wz)r ®w, Ry and H. (AP ) /R,); =

crys crys
CWS(A(” D Wa)e ®w, Ry = = Hl\ (A0/W2)§,. ®w, Ry, identifying V., with Vr o ®w, R,. Note in

Note that p[i] = 0in W, if i > 1 and p > 2.
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particular that VT,n has kernel and cokernel annihilated by p, and its image is fT(e(’)’) ®w, R,, where
l?fg) is the preimage in H/yy (Ao/ W) of FT(%‘) = H(Ao, QLO/F) under the canonical projection to

H}yy(Ao/F)r = Hl (Ao/F),. However, the kernel and cokernel of W%, are annihilated by u, and the
assumption that 6y, ; ., € J implies that i, induces a surjection

G;'(,erf) = u_lF;(,Zp_l) — Fq(_,eg) ®r R,.
It follows that Jj,n induces a surjection
5;(;,) F(ep) Sw, R,.

where 5;((2”) is the preimage in Crys(A /Ry): of GT(e,{’) under the canonical projection to

Cryg(A /Ry = HéR(A;l/Rn)T. We therefore obtain from (4.7) a commutative diagram of
R, [u]/(E+)-linear isomorphisms

/(e”)/ker(tpT ) — F(e") ®w, R,

( crys(AO/W2)¢OT/ker(VT,O)) ®Wz I’i;n

Furthermore, since ker(Jj,n) C pH (A} /Ry, C uGT<,f ), we in turn obtain R, -linear isomorphisms

crys

’(ep)/ G’(ev) ~ (F(Eb)/uF(ep)) ®F R

-1 -1
(H(}rys(AO/WZ);;OT/qurys(AO/WZ):;oT) ®r Ry

Finally, noting that the projection GT<,{’) — G;<e,{’) identifies G'T(if)/ G'(e") with P/H,l’l

1
/T(ff )/ F;(ff ) and that u®~" induces

H] An/W. ¢7l An/W- H] A ]F(P_l) ] A ]F(P_l)
crys( 0/ 2)¢,o-r/u crys( 0/ 2)(/)07 dR( 0/ )¢OT /M ( 0/ )¢OT

-1
— Hip (Ao/F)2 . [u] = Pg;g

(where Pyg 0 = G;O)T o)s We obtain from (4.7) an isomorphism

er(in) : Py, — PP, ) @2 R,

of free rank two R,,-modules.

We say that z,, is unobstructed if £(z,) sends L}, , to L(pg 8 ®r R, forall 7 = 7y ; such that6 = 0y ; .,

and 06 = 6, ;11,1 are both in J, where as usual L;)‘n = F;(,ff)/F;Ef}’_l) and Ly = F;o)T o- Note that

the condition on £ (z,,) is equivalent to the vanishing of the induced homomorphism
’ -1
Ly,— (Ps0.0/Loo0)'? ) @ R,

of free rank one R,,-modules. We let Z(R,)"™° denote the set of unobstructed elements in Z(R;,).
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Note firstly that every element z = zo of Z(F) is unobstructed. Indeed, the condition that 08 € J
implies that the image of

Uipor + Hiy(AY/ W) — H' (Ag/W»)

ul=er f;lo)T o» S0 the claim follows from the commutativity of the diagram

(G50 | .
crys (A /W )¢o‘r E— Hcrys(AO/W2)¢o-r

V;,OJ J{V‘r,()

l//‘r
cry5 (A /WZ)T i crys(AO/W2)T

Furthermore, the construction of £+ (z,) is functorial in R,, for varying m and n, in the sense that if

@ Fl[X1, ... Xull/ (X1, o X)) — FIIXL . X ] (X0 X))

I |
Rn R;l/

is an F-algebra morphism admitting a lift @ : R, — ﬁ;,, then €. (a*z,) = a*e.(z,), so that a*
sends Z(R;)"" to Z(R,)""°." In particular, if z; € Tan,(Z) (viewed as an element of Z(R;), with
Ry = F[X]/(X?)), then £ (z1) — £+ (z) ® 1 induces an F-linear map

Lo = Ly /XLy — (P, 0 /LT,0) @ XRy.
Writing this map as d(z1) ® X for a unique 9, (z1) € Homz (L}, ,, (Py0.0/Lo.0)P ), the condition
on £.(z;) in the definition of unobstructedness is then equivalent to the vanishing of 9, (z;).

More generally, if n = 1 and m is arbitrary, then to give an element z; € Z(R;) over z = zg € Z(F)
is equivalent to giving an m-tuple of tangent vectors (z(l), e, zlm)) in Tan, (Z) or more functorially
an element of Hom z(F™, Tan(Z)), the induced morphism O 7. Oz 2/ m — R being surjective
if and only if the m-tuple is linearly 1ndependent Furthermore, any F-algebra morphlsm @: R — R]

(for arbitrary m, m’) admits a lift « : R — R’, so the function

1

0 : Tan,(Z) — Homg(L} o, (Pso.0/Loe.0)” ) (4.8)

is F-linear. (Let z; € Z(R;) correspond to a basis (zil) ey zlm) ) of Tan, (Z), and realize an arbitrary

tangent vector ), alzg) as the image of z; under X; — a;X.) The set of unobstructed elements in

Tan, (Z) is thus the kernel of the resulting F-linear map

, -1
Tan. (Z) — EP Homg(L) g, (Po.0/Leo.0)? ),

TEA

where A = {7 = 1y |0pie,>0p,i+1,1 € J}, and is therefore a vector space of dimension at least |J’]

by Lemma 4.5. The functoriality of £, also implies that an element z; € Z(R;) corresponding to an

(D @

m-tuple (z AU zlm)) is unobstructed if and only if each of the zy  is, so it follows that there is a

18We could not directly define Z (R,,)"™ as the set of R,,-points of a closed subscheme since the construction of &1 (z;)
relied on the existence and choice of flat W»-lifts. An alternative approach would be to prove a suitable generalization of [DKS23,
Lemma 7.2.1] (the ‘crystallization lemma’), and use it together with the flatness of g 7 to define £, over Z.q, without knowing a
priori that it is smooth. We opted instead here for a bootstrapping argument that will allow us first to establish the smoothness of
Zeq S0 that we can apply a more direct generalization of the crystallization lemma proved in [DKS23].
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surjective F-algebra homomorphism
Oz, — R =F[[X1,.... X 11/ (X1, ..., X10)? (4.9

corresponding to an element z; € Z(R;)"™.
We shall in fact need the following more precise description of the set of unobstructed tangent vectors.

Lemma 4.6. If z € Z(F), then Tan,(Z)"™° = ®,;Tan,(Z)"°, where Tan,(Z)""° (resp. Tan,(Z)¥™° ) is
the set of unobstructed elements of Tan; (Z) (resp. Tan,(Z) ). Furthermore, for eacht = 7y ;, 6 = 0y ; j,
we have

1, ifc6 € J;

dimp grj —1(Tanz(z)gn0) = { 0, otherwise

with respect to the filtration induced by the one on Tan,(Z)., so dimg(Tan,(Z)"°) = |J'| = |J”|.

Proof. The assertion concerning the decomposition follows from the vanishing of the restriction of
0r to Tan,(Z) for 7 € A and 7’ # 7, where 0; is defined in (4.8). The assertion concerning the
filtration then follows from Lemma 4.5 and the injectivity of d; on Fil ®~!(Tan,(Z),). The desired
vanishing and injectivity are both consequences of the claim that if 7 € A, R; = F[X]/(X?) and

71 € Z(Ry) is alift of z such that F'(e"_l) corresponds to F;(Sp_l)
Ho(A/R): = Hlyy (Aj/R1): = Hi (A}/F) ® R). then F.'¢*) corresponds to F/'¢” @z Ry if and

®r R under the canonical isomorphism

only if d,:(z1) =0 (i.e., Lg corresponds to L(p ) ¢ ®r Ry under £-(z1)). Indeed, if z; € Tan,(Z), for
some 7’ # 7, then F'(j) corresponds to F.. (’) O R1 for j=0,...,ep, and if z; € Fil *'Tan,(Z),, then
F/™D corresponds to F, (e

1 ” D ®r R, and z1 is trivial if and only if F (e ”) corresponds to F;(g") ®r R;
The claim follows from the commutativity of the diagram:

P;),O ®r R

Py,
srm A)

(™
Po-H 0 ®r R

(where the top arrow is the canonical isomorphism), which in turn follows from that of

G’(ep) ®W2 Rl ’(ev)

where the top arrow is induced by the morphisms (F, W;) — (F, Ri) — (R, R)) of divided power
thickenings. This in turn is implied by the commutativity of

crys(A /Wz)‘f ®W2 Rl 4> crys(A /Rl)‘r

u?:,()@ﬁlj Jz:,l

Hclrys(AO/WZ)‘r w, El — ngyS(Al/ﬁl)T’

which in turn results from (Zf; o and Jf‘r , being evaluations of the morphism of crystals over Ry induced
by lﬁ 1. m}
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Suppose now that m is fixed (for example, as |J’|) and consider the thickening R,,+1 — R, (with trivial
divided powers), and consider the natural map Z(R,4+1)"™ — Z(R,)"™°. We will prove (Lemma 4.7
below) that this map is surjective, explaining why we call such deformations unobstructed. Before doing
so, however, we illustrate the construction of the desired liftings with some examples.

Suppose first that [F : Q] = 2. If p splits in F, then J' = J” = 0 and A = J. Therefore, Lemma 4.6
implies that all unobstructed deformations are trivial (i.e., Z(R,)"™ = Z([F)), so there is nothing to
prove. The same holds if p is inert in F, and either J = X or 0. More explicitly, it is well-known that
in the preceding cases, Z is isomorphic to (Spec (F[X]/(X?)))? (see, for example, [DKS23, (43)]), so
Z(R,)"™ consists of a single element.

Suppose, however, that p is inert in F and J = {19}, where P = pOp and £ = {19, 71 }, so

= {10}, J’ = {71} and A = 0. In particular, the condition in the definition of unobstructed is vacuous,
s0 Z(R,)"° = Z(R,) for all n > 1. Therefore, the surjectivity of Z(R,+1)"™° — Z(R,)"™ in this
case amounts to the smoothness of Z, which follows for example from [DKS23, Lemma 7.1.4.1] (or
alternatively, from Lemmas 4.2 and 4.5 above). To illustrate the proof of Lemma 4.7 more explicitly in
this case, suppose that z,, € Z(R,) and let (A,,A;,¥,) be the corresponding tuple. So in particular,
A, =A,® R, and y, : A, — A;, is an isogeny such that the morphisms

Po./Lo, — Pon/Lon and Li, — Liy
induced by y,, are trivial, where
Pl,=Hy(AL/R)): and P, =Hiz(An/Ry) = Hig(Ao/F)r, ® R

for i = 0,1, and similarly, L;,n = HO(A’ Ql AL IR ) and L;, = HO(AO,QIIL‘O/F) ®r R,. By the
Grothendieck—-Messing Theorem, lifts of é” to R,+1 correspond to lifts of the

Ll{,l’l c Pl{, = ngye(Aiz/Rn)Tz = Hérys(A;z/R'lH)Ti ®R,..1 Rn
to free rank one R;.i-submodules L], of Pl el = Clrys(A’ /Rn+1)z; for i = 0, 1. Furthermore, ¥,

lifts to an isogeny Y41 @ Apyl = Ao ® Ry — A/ _ (necessarily unique and compatible with the
auxiliary data) if and only if the morphisms

. p’ — gl ~
W;'k’n_‘_l . Pi’n+] B Pi,n+1 L Hcrys(An/Rn+l)T,' = Pi,O ®]F Rn+1

induced by ¢, send L, .\ t0 Linw1 = Lijg ® Rns1 for i = 0, 1. Moreover, the resulting point of
Yuo(p) (Rus1) lies in SJ(Rn+1) and hence in Z(R,1), if and only if

l7l/8,n+1(P(/],n+l) = LOJH'I and ¢’>lk,n+l (L;,n+l) =0

Choosing an arbitrary lift Lo a1 OF L 0., and setting L1 ol ker(w1 .+1) €nsures these conditions
are satisfied (see the first part of the proof of Lemma 4.7 for the former). Note that these imply that
; Ui (L : i ws1) C Lins fori =0, 1, and hence supply the desired lift of z,, to an element z,,41 € Z(Rp+1)
Continue to assume that [F : Q] = 2, but suppose now that p is ramified in . Let 3 be the unique
prime over p, and write Xy = {r} and £ = {6, 6,}. If J = X or 0, then we again have J’ = J"” = () (and
A =X or 0, according to whether J = X or (). Again, it follows from Lemma 4.5 that all unobstructed
lifts are trivial, so there is nothing to prove.

However, if J = {61} or {6}, then A = 0, so again all lifts are unobstructed and the desired
surjectivity amounts to the smoothness of Z, which can again be deduced from Lemmas 4.2 and 4.5. To
see the surjectivity more explicitly, we can proceed to construct a lift of z,, € Z(R,,) to Z(R,+1) as in
the inert case, the task at hand now being to lift the Pappas—Rapoport filtration:

0c kY cF® =H(A,.Q) ) C Hig(A,/Ry) = Hy (A} /Ry)
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to one in Hclrys(A ! | Rn+1) with the desired properties. In particular, if J = {6;}, then we require both
G’ = qurys(A;l/R,H]) and Fr:(+21) be sent to Fél) ®r R,+1 under the induced map

n+l

Uioy t Hiyo (Al /Rue1) = Hiyo(An/Rus1) = Hig (Ao/F) ®8 Ryar.

’

Note that in this case, J”" = {6,}, so Fn(Z) = uH éR(A;l /Ry); furthermore, the first part of the proof
of Lemma 4.7 shows that the image of 1,0;: RE u‘lFO(l) ®F R,+1. So we obtain a lift with the desired
properties by setting Fr'lfl) = uH}y (A},/Rus1), within which we choose an arbitrary lift Fr'l(:l) of FIV.
However, if J = {6}, then we require /| to send F’;ill) to 0 and G;l(fl) = u‘lFr'l(Jrll) to Féz) ®r R,+1. Note
that in this case, J' = {6}, so Féz) = uHéR(Ao /F), and we obtain a lift with the desired properties by
setting F,;(jl) =ker(y,,) and defining Fr'lizl) by arbitrarily lifting L := F,? /F,V ¢ P, = G/® /FV
toalineL;  inP, = G/(z)/F'(l) where G;(z) = u‘lFé(l) for{ =n,n+1.

n+l n+l’
The notion of unobstructedness can only play a more serious role if [F : Q] > 3. Suppose,

for example, that [F : Q] = 4 and S, = {p} with ey = f, = 2. Write £y = {79,711} and ¥ =
{60.1,60.2,01.1,01 2}, and consider the case J = {6y 1, 61,1, 01,2}, so that

J ={611}, J"={602} and A ={7}.

Let(A,, A, ¥,) correspond to anelement z, € Z(R,)""®, and consider the associated Pappas—Rapoport

filtrations
0c Fi/,(nl) c Fi,,(nZ) = HO(A;l’QI]A’,,/Rn)Ti c HJ[R(A;l/Rn)Ti = ngys(A;l/Rn)T,-

for i = 0, 1. The task now is to lift these to filtrations in HclryS(A;, /Ru+1)7, with the desired properties
relative to the R, [#]/(u?)-linear maps

Ui et - Hoys (AL Ruet)z; — Hlyo(An/Rust)r, = Hig (Ao/F)r, ®F Rpe.

More precisely, lifting z,, to Z(R,+1) is equivalent (by the Grothendieck—Messing Theorem) to defining
chains of free R,,;;-submodules

0=F9 cp) cp®
i,n+1

i,n+l i,n+l

of H!

crys

(A}, /Rn+1)e, fori = 0,1 such that

o F.'(jzl ®R,. Rn = Fl.',(nj) fori=0,1,j=1,2;

i,n

o uF'V =0and uF’® c F'Y fori=0,1;
i,n+l

i,n+l i,n+l
. ~ ' : ) ey U,
oy (G ) C FY) @ Rywr if 6, € J, where G\ = F/Y 1,
* 2 1
© wn+l(F(;,(n-)+—l) < F(E,o) ®F Rns+1;

and we must furthermore ensure that the resulting lift z,,,; € Z(R,+1) is unobstructed.
Note that since G;(rllll = uH. . (A!/Rus1), the cases with j = 1 in the third bullet amount to requiring

crys

the image of ¥ to be u‘lFi(’:)) ®r Rn+1. This is again a special case of the assertion established in

B

i,n+l
the first part of the proof of Lemma 4.7; we remark that fori = 0 (so 07'6,0 € Jand ¢~ o 7 € A,
where 6 = 6y ;1 and T = 19), the argument makes crucial use of the assumption that z,, is unobstructed.

Furthermore, since 6p € J”, we have F(;(z) = ”HullR(A;; /Ry)<,- It follows that all the conditions

with i = 0 are satisfied if we set F(;(E)H = uH/y
(1) (1)

F of FO,n .

0,n+1

(A;,/Ru+1)r, and choose within it an arbitrary lift
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The third bullet for i = 1, j = 2 translates into the requirement that

2 2
1(n)+1 c (d/l n+1) (Fl(()) ®F n+l),

which forces equality since each is free of rank 3 over R,.;. Note also that

YN e (U crys(A /Rns1)) = ®]F Rp41 C F( ) ®p Rps1

so we obtain the desired lift of F'( ) by setting F1 el = (] n+l)_1(F1(20) ®r Ry+1)- Finally, we could

choose F (2)+1 so that F/? /F'(l) is an arbitrary lift of the line F]'(j)/F]’(li) c G'l(i)/F]'(rll) to one in

1,n+1 l,n+l1
;(2 1 /F 1’ (rlll 1 thus defining a lift of z,, to an [element z,,+; € Z(R,+1). However, the requirement that

it be unobstructed determines a unique such line, specifically via the isomorphism (4.11) constructed in
the proof of Lemma 4.7.
We now return to the general setting.

Lemma 4.7. For alln > 0, the map Z(R,+1)"™° — Z(R,)"™ is surjective.

Proof. Let (A,, A}, ¥,) correspond to an element z,, € Z(R,,)""°. For £ = n,n + 1, we let
Ui Hays(AL/Re)r — Hiy(An/Re)e = Hyy (Ao/F)- ®F Ry
denote the morphism induced by ¢, so that ¢} | ®,,, Ry is identified with
Wrnt Hig(An/Rn)e = Hig (An/Ry)-
under the canonical isomorphisms
H.,\ (B/Rus1) ®R,,, Ru = Hiy(B/Ry) = Hig(B/R,)

for B = A, AJ,. Similarly, let z;: ¢ denote the morphism
ngys(A;/ﬁf)T — Hclrys(An/Ef)T = Hclrys (AO/WZ)T ®Wz Ef

for{ =n,n+1, sothatt,bT,,H ®w, F = ‘/’Tn+1 and¢’rn+1 ®R,.. t//Tn
Recall that to give an element of Z (R,,Jrl)uno hftmg Zn amounts to defining suitable chains of
Ryi1[u]/(u)-submodules

0 1 7(ep) 1 ’

0= F‘;(n)-i-l < F‘;(n)-i-l a F‘r n‘-’i-l < HC"}’S(A"/R’H'I)T (4.10)
lifting the Pappas—Rapoport filtrations on F ;(f}’) forall T = 7, ; € Xy. Before carrying this out, we prove
that if 7 is such that @ = 6, ; 1 € J, then the image of is uler F(l) ®r Ryt1.

T,n+l1
Suppose first that =16 = Op.i-1,e, ¢ J, so that 6 € J" and (F(ep 1) )(1’) has preimage u'~ ePF(l)
under the morphism

Hlx(Ao/F)r — Hi (AP [F), = Hip (Ao/F)go1or @5 g F
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induced by Ver : Aép N Ayp. Consider the commutative diagram

IR

ngys (A;l/R"‘H)T - Hclrys (A},’l(p) /Rns1)z
l
crys (A /R"+1)T - ngys(Aflp) /Rn+l)7' = HéR(An/Rn)qS*‘o-r ®R,.¢ Ry
I I I
H g (Ao/F)r @7 Ruvt — H(;R(A(()p)/F)T ®F Rust = Hip(Ao/F)y10r ®F,¢ Rust,

HéR(A;L/Rn)q)’IOT ®R,u. ¢ Ryt

IR

where the first horizontal maps are induced by the Verschiebung morphisms, the horizontal isomor-
phisms by base-change relative to absolute Frobenius morphisms (and crystalline-de Rham isomor-
phisms), top vertical maps by ¥, (and zﬁ(p )) and vertical isomorphisms by base-change (and crystalline-

de Rham isomorphisms again). The image across the top of the diagram is F ¢( "O)T "

since z,, € Sy(R,) and o016 ¢ J, this maps to F( , 1) o ©F.¢ R, 41 along the right side of the diagram.

®R,,¢ Rns1, and

Therefore, the image along the left side of the dlagram must be contained in the preimage of this, which
isul~®F ilé ®r R,+1, and equality follows on comparing ranks.

Suppose, however, that o160 € J, so that ¢‘1 o1 € A. In this case, we consider the commutative
diagram:

ngys (A;l(p) /En+1 )T

crys(A /Rn+1)T cryq(A /Rn)(j)‘lo‘r ®R ¢ Rn+]

HL (AP [Rys1)e

crys

ngys(An/ErHl)T cryq(A /Rn)¢>*lo‘r ®R ¢ Rn+1

\ /

t cry5 A(p )/Rn)(p lor ®R ¢ n+l t

crys (Ao/W2)< ®w, R n+1 t Hclrys(Ao/Wz)¢-1OT ®W2,$ En+1

Crys (A(p )/WZ)(/’ ot ®W2 ¢7 R"H'l

where the downwards arrows are induced by ¢, (and its base-changes), the northeastward arrows by
Verschiebung morphisms, all the isomorphisms are crystalline transition (and base-change) maps, and
¢ denotes both the restriction of the map ¢,,+1 : Ryy1 — Ry41 to Wy and its factorization through
R, — Rn+1
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We have that the image of Hl.\ (A} /Rus1)z in Hclrys(A;(p )/Ry+1) under the morphism induced by
Ver : A;(p ) A}, corresponds to

I":;(_e]vg‘r’n ®§n’$ En+l C Hérys(A;l/ﬁn)¢’lo‘r ®§n’$ En+l

F/(ep)
¢7lor
R,). Since z, is unobstructed, this submodule has the same the image along the right-hand side of the

diagram as that of

(this being an inclusion since R, is flat over W, and Hclrys (A,/ 13,,) ooz " is free over R, / pl?,, =

ey =(1)5 (! ~
ul ep(Fi’é)(P )®W2,$Rn+1

(A;/E,H_l )r along

the sides of the top left parallelogram is the same as that of u!'~¢ I::i l& ®w, Ry = ul~® I::T(lr)m under
the morphism

under the morphism induced by Ver : Ag — A(()p R . It follows that the image of H!

rys

HéryS(AO/Wz)T w, En+l = Hclrys(An/ﬁnH)T - Hclrys(Ar(lp)/EnH)-r

induced by Verschiebung. Furthermore, the kernel of this morphism is contained in PHclrys (A,/ §n+1 )r C

ul-e , so we conclude that the image of ¢ is contained in u!~» FD Therefore, the image
T,n+1 T,n+1

*

T,n+l
% . . . 1-ey (1) . .

of 28R & contained inu " F_ |, and equality follows on comparing ranks.

We now proceed to define the lifts of the Pappas-Rapoport filtration as in (4.10). If 7 ¢ 2,0, then
y* ., is an isomorphism, under which we require that F;(fl )+1 correspond to Fijr)l W= FT(jo) ®r R, for

all j. If T = 7 ; € Zg 0, then the definition of F;({L )+1 will depend on whether 6 = 6, ; ; and 06 are in J
(and whether j = ep):

7(0 (1 ’ - ’
o Let F‘r(,n)+1 =0and G‘r(,n)+1 = ngys(An/RnH)‘r [u] =u* chlrys(An/Rn+l)T~

o If 8 ¢ J, then we let F;(fl )+1 denote the preimage of F (=D under ¢* and if j < ey, then let

7,n+l T,n+1’°

i+l _ j .

G'U) — 1" Note that since
T,n+1 T,n+1

. y o
FUD cu»™ U (An/Rus1)r C uHLy(An/Rus1)r C iM% )

T,n+l crys

and ker(y; ) is free of rank one over Ry, it follows that F;(lfq )+1 is free of rank j over R,4;. In
: 1(J)
particular, FT ol

Furthermore, F;(f; )+1 ®R,,., R is identified with the preimage of FT({H_ " under ¥y n» which is F;f{;)
. j+1 +1)
since 6 ¢ J, and hence also G;(fntrl) ®r,,, Rn =G if j < ep.
oIf@ €J,00 € Jand j < ey, then let G'T(jn:ll) denote the preimage of Fi’::i

let F/Y = uG'Y*) Note that if 6,1 ¢ J, then 6, € J' for some £ such that 2 < £ < j, so

is annihilated by u/, so if j < ey, then G'T(,{? :]1) is free of rank j + 2 over R,,1.

under ¢ . and

7,n+l T,n+1"
6 _ pt-2) S .
uF, . = F; .1 which implies that

— j+1 s *
u Y (A /Rust)e € FOE) € uHY (A /Rust)e € im(8,,,).

However, if 6, ;1 € J, then we have shown that im(y* ) = u!"%F (M which again contains

T,n+1 T,n+1’
+1)
FU*D and
T,n+1’
* ep—1pyl ’ (1) (j+1)
wT,iHl(u ' HCTYS(An/R’“'l)T) c F‘r,n+1 = FT,n+1'
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G (]+1)

Therefore, in either case, is free over R, of rank j + 2 and contains u®~ 1Hclryg(A’ /Rui1)zs

G (]"’1)

so that F;(fl >+1 is free of rank j over R,,;1. Furthermore, el ®

R,..; Rn is identified with the preimage
of FY*" under y% ,, which is G/ ") since o6 € J, and hence also FT(fl)H ®r,,, Rn= F17.

o If6 € Jand 06 ¢ J, then we have defined F_ '(’ 1) and G (’ ) .1 above, with the property that P,

n+l

0, n+1
'T(Q o/ F;( - '~ s free of rank two over Rn+] and annlhrlated by u. Furthermore, P, | ®,., Ry is
identified with P, | = G/ /FNY and we define FT(fl )+1 so that
/(=1 (j) (j)
FT n+l c F‘r n+l c GT n+l
and {JH el = ;(fl )+1 /F. '(J 1) is an arbitrary liftof L), | = = F/Y9) /F9 to a free rank one submodule
of Py i1
o Finally, if 6 = 0y ; ., € Jand 00 € J (so 7 € A), then we have already defined F (E’_’Hl) C G;(TL

/(ep)
T,n+1

lifting FT(f," D G'(e") Furthermore, we claim that ¢ |, (G )=F, (e") - Note that it suffices to

prove l//T rl (G/T(erfll) C F( p) | since G’ is free of rank ep+1 over R,,+1 and contains ker(t//T nal)>

which is free of rank one. If ep = 1, then the desired equality is a special case of the fact that if
0p,i,1 € J, then ¢ Crys(A /Rps1)7) = u'” ePF(l) , 8o assume ep > 1. If Oy ;c,-1 ¢ J, then

el so uFie;ll Fr(e:m)’ whose preimage under ¢ ., is defined to be FT(Z‘;II), SOy ., maps
2)

G =yt @D o gl F(e”) . Finally, 1f Gp i.ep-1 € J, then we defined G (e")l as the

T,n+l T, n+1 T,n+l

Tn+l(

preimage of F_) (e 1~ This completes the proof of the claim, which implies that the restriction of z,b il

defines a surject1on GT( w1 — F ie"ll F. (e") ®w, RnJr 1, where as usual G ( denotes the preimage

of G inH lrys(A /Ryi1)-. We thus obtaln an isomorphism

T,n+l

P/ — ’(ep) /F’(ep 1) N P(P

0,n+1 * ‘[' n+l/ " 7,n+l1 00,0

®r Ryt (4.11)
exactly as in the construction of £;(z,), and we define F ( , so that

F’(“’p 1) C F’(ep) C G,(ep)

T,n+l T,n+l T,n+l

and F/) /F/(ep D corresponds under (4.11) to L(p H o ®F Rn+1. Note that F_ (e") is free of rank e,

T,n+l1

over R,,41, and lifts F;(,ff) since (4.11) lifts £, (z,).

We have now defined an R, [u]/uc-submodule F;(fl)ﬂ of Hclryq(A;/RnH)T lifting F;E{;) C

HéR(A;l/Rn)T = H! (A, /Rp)rforallT =1p,;, j =1,...,ep. Furthermore, each F;(fl)ﬂ is free of rank

crys
Jjover R,41, and corresponds to F_ (] ) under lﬁT el if 7 ¢ Xg 0, so to complete the proof of the lemma,
it suffices to show that the followrng hold forall 7 = 7 ; € T o:

o Theinclusions (4.10) hold with successive quotients annihilated by «, and hence (by the Grothendieck—
Messing Theorem, as explained at the end of §2.4) determine data A’ | corresponding to a point of
Y (Rn+1) lifting A/ so that (4.10) corresponds to the Pappas—Rapoport filtration under the canonical
isomorphism Hdrys(A;,H_l /Rn+1) = R(A +1 /Rn+l)

o If1 <j<epandfy;; ¢ J(resp. 6y, ; €J), theny* . sends F, (J) to FY™D (resp. G’V - =

T,n+l T,n+l
’lF;(fl +1) to F ) nel)s SO that Y, extends (again by the Grothendleck —Messing Theorem) to an
isogeny ¥4 and (A Wn+1) corresponds to a point z,+1 € Z(Ry,41) lifting z,, (where A

é QF n+l)-

—n+1> n+1’ Ape1 =
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. . ’ ’ -1 1 —1
o Ifr € A (i.e., Op i e, and Oy ;41,1 are both in J), then FT(,Z:-)I/FT(,(:IZ-I ) corresponds to (F;O)T’O)(” ) @
Ryi1 under £7(Zp41), 50 that 2,41 € ZY° (Ry41).

We start with the second assertion, which is immediate from the definition of F;(f; )+1 if Op;; ¢ J,
so suppose that § = 6, ; ; € J. Recall we proved that if 6, ;; € J, then n+1(HC1rys(An/Rn+1)T) =

.
= FD oo it follows that
T,n+1

% 1 % _ 1
1707""-}.1 (G;-(’n)_'_] = Ir//-r,n.}.] (uep ngrys(An/Rn+l)T) c F7(-,3H_1'

Therefore, the assertion holds for j = 1. ‘Note also that if j > 1 and o190 € J, then the assertion
is immediate from the definition of G;(Jn) 1 However, if j > 1 and o719 ¢ J, then 6 € J', so

— u—lF(j_z)

ol el and therefore,

(B -1 G- 1k -150-2)
G‘r,n+1_u F‘r,n+1 =u (¢T,n+1) (F‘r,n+1)

— (% 10, -150U=2)\ _ ()% 1)
- (l’b‘r,n+l) (M F‘r,n+1) - (¢T,ﬂ+1) (Fr,n+1)'
For the first assertion, we need to show thatif 1 < j < e,, then

uf'D Ul pr) (4.12)

T,n+1 T,n+1 T,n+l"°

Suppose that 6 = 6,,; ; & J, so FY) = (/s nﬂ)’](F(j*l)). In particular, if j = 1, then F;(L)H =

T,n+1 T,n+1
ker(yr .,) C G’V sowe may assume j > 2.If =10 ¢ J, then (4.12) is immediate from the fact that

T,n+1’
ufFY™Y c FU2 « FU-D and if o=10 € J, then we have shown that u™' F'Y~2 = g'U~1 = ')
T,n+1 T,n+1 T,n+1 ) T,n+1 7,n+1 T,n+1
so the inclusions in (4.12) are precisely the ones in the definition of F;(fl ::) However, if 6 = 6, ; ; € J,
then (4.12) is immediate from the definition of F;(‘,"l )+1 if either o6 ¢ J or j = ey, so suppose that

6,06 € Jand j < ep. Since G/T(,Qﬂ = (1//*’n+1)_1(F(€>+1) for £ = j, j + 1, we have

T T,n

F'(]) _ uG’(j"’D c G’(]) c G’(j+1)

T.n+l 7,n+1 T,n+1 T,n+1°

which in turn implies (4.12).

Finally, the third assertion is immediate from the definition of F;(Z‘fl and the fact that (4.11) is
identified with £;(z,+1) via the canonical isomorphism

Hérys(An/RnH) = ngys(AnH /Rn+]) = HéR(AnH/RnH)-

4.5. Local structure

We now use the results of the previous sections to prove a generalization of [DKS23, Lemma 7.1.6],
describing the local structure of the fibres of the projection m; : S; — 7T+ at geometric points. As
before, we let z € S; (F), x = n;(z) € Ty (F), and Z denote the (geometric) fibre of 7, at x.

Lemma 4.8. There are isomorphisms
Oz =F[[T1,....Ts, Xts oo Xl | /(TP ..., T?) and Oy, . = F[[X1,.... Xml],

where m = |J'| = |J”| and § = |A|. In particular, Z.eq is smooth of dimension m over F. Moreover, the
closed immersion Zq — Z identifies Tan, (Zeq) with Tan,(Z)""°.
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Proof. First, consider the morphism y; = Z’;p R : P(Jp IR Ss, where ; is the morphism of
Lemma 4.2; thus y is finite, flat, and bijective on closed points. Let W denote the fibre of 7; o y; at
x, so that the fibre of y; at x is a finite, flat morphism W — Z which is bijective on closed points, and
letw =&,(z)P ) denote the unique element of W (IF) mapping to z. Since the completion of W at w is
the same as its completion at the fibre of y; at z, the resulting morphism 62, z— @W,W is finite, flat,
and in particular injective. Furthermore, choosing parameters on P; g at y := £7(z) = wP) so that the
morphism on completions induced by the projection P; — T takes the form

@ley]p,x = ]F[[Ym+1’ .. 9Yd]] — IF[[Yvh e 7Yd]] = @Pjy]}‘,y7

we see that @W,W = F[[Yll/p, e Ygll/p]]/(YmH, ..., Yy). Note in particular that @rv‘f,d’w is a domain of

dimension m and that if r is in the nilradical of (/D\W,W, then r? = (. It follows that the same assertions
hold with Ow ,, replaced by Oz ;.
Now we apply the results of §4.4 to obtain a surjective F-algebra morphism

Oz, — R=F[[X1,...,Xum]]. (4.13)
More precisely, by Lemma 4.7 there exists an element of
. uno : —
@Z (Rn) C @Z(Rn) =Z(R)

lifting the morphism (4.9), whose surjectivity implies that of the morphism (4.13) induced by
Spec (R) — Z. Since the morphism (4.13) factors through (9“"‘12, which is a domain of dimension

m, the resulting morphism (5rZEdZ — R must be injective, and hence an isomorphism. Furthermore, since
Z is Nagata, it follows that

Oz = 058 = F[[X1,.... Xn]]

is formally smooth of dimension m, and hence, Z™¢ is smooth of dimension m. Note also that the image
of Tan, (Zeq) in Tan, (Z) is the same as that of the tangent space of Spec (R) at its closed point under
the morphism induced by (4.13), which is Tan, (Z)"™ by construction of (4.9).

Turning to the task of describing 52,2, let m denote its maximal ideal and n its nilradical, and
consider the exact sequence

0 — n/(nNnm?) — m/m?> — m/(n, m?) — 0.

Recall that m/m? has dimension m + & (over F) by Lemma 4.5, and we have just seen that m/(1n, m?)
has dimension m, so n/(n N m?) has dimension 6. We may therefore choose elements ry,...,rs €
and s1,...,5, € msothat (r,...,7s,51,...,Sy) lifts a basis of m/m?, and consider the surjective
F-algebra morphism

ﬂ : F[[TI9--~aT(3’X19~-~7Xm]] - 62,2

sending T; to r; fori = 1,...,6 and X; to s; fori = 1,...,m. Note that the kernel of the composite
F[[Ty,....Ts, X1, ..., Xm]] 5 @Z,Z - (7)}2‘3?Z contains [ := (T}, ...,Ts), so must in fact equal 7, and
therefore, ker(u) c I. However, from the first paragraph of the proof, we have rl.p =0fori=1,...,6,
so 1(P) :=(TP,...,T¥) C ker(u). We have now shown that

Oz =F[[T1,....Ts, X1, ... Xml1/J

for some ideal J of F[[T},...,Ts, X1, ..., X;n]] such that ‘P cJcl.
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It remains to prove that J = I(P). To that end, consider the morphism Op Ry Os 77,z induced
by &;. As it is a morphism of regular local F-algebras of the same dimension, namely d, and its
image contains that of the Frobenius endomorphism, it is (by [KN82, Cor. 2]) finite flat of degree p”
where 7 is the dimension of the kernel of the induced map on tangent spaces, which by Lemma 4.4 is
#{ (p,0) | Op.i.e, € J }. It follows that the induced morphism

6Y,y — @Z,z
is also finite flat of degree p”, where Y = (PIIF)’” is the fibre of P over x. Similarly, the composite
@Y,y — 52,1 — 52@,2

is also a morphism of regular local F-algebras of the same dimension (now m) whose image contains
that of the Frobenius endomorphism, so it is finite flat of degree p” where n’ is the dimension of the
kernel of the composite

Tan; (Zgeq) < Tan,(Z) — Tany (Y) < Tan,(Py).

Since the first inclusion identifies Tan, (Z;q) with Tan, (Z)""° c Tan,(Z), it follows from Lemmas 4.4
and 4.6 that n” = n — §. Now consider the commutative diagram:

F[[Y1,..., Y]] ————— Oy,

—~
—
-
-
—~
—~

QHF[[TI""7T(59X1""7Xm]]/‘];>62,2

l |

F[[T1.....Ts. X1,.... X1/l —— Oz, .

where Q = F[[Ty,...,Ts,X4,..., Xm]]/I(P) and the dashed arrow is any F-algebra morphism lifting
F([Y1,..., Y]] — F[[T1,...,Ts,X1,...,Xm]]/J. Note that gr ;Q naturally has the structure of a
finite 6Zre 1.z = Q/1Q-algebra, compatible with its structure as an @y, y-algebra. Furthermore, gr ; Q is
free of rank p° over (’9\2re ..z and hence free of rank p" p = p" over 6y’y; therefore, Q is also free of

rank p" over C”)\y,y. Since the rank is the same as that of @Z, 2, it follows that the surjection O — 52, z
is an isomorphism. O

Remark 4.9. 1t would in fact suffice for our purposes to know that (7)\2, . 1s isomorphic to
F[[Ti,...,Ts,X1,...,Xm]]/J for some J such that IP) c J c I, and the equality J = I1P) would
follow from later considerations, but we find it interesting and satisfying to recognize it also as a con-
sequence of the tangent space calculations via the commutative algebra argument in the proof of the
lemma.

4.6. Reduced fibres

In this section, we give a complete description of Z.q, the reduced subscheme of the fibre Z of
ny Sy — T at any geometric point x of 7. This generalizes Theorem 7.2.2 of [DKS23], where it is
assumed p is unramified in F. With the ingredients put in place in the preceding sections, we may now
proceed by an argument similar to the one in [DKS23, §7.2].
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Recall from §4.2 that we have a morphism

E1:8;— Py = l_[ Pr,, (Po)
geJ”

which is bijective on closed points, where the product is a fibre product over 7;.. Taking fibres over
x € T/ (F) therefore yields such a morphism

Zia— [ | P(Po0), (4.14)
oeJ”

where the product is over F, Pg o = G(T’})/Fgo_l) = u‘lFT({O_l)/Fffo_l), 0 =0y, T =Tp; and Fy is the
Pappas—Rapoport filtration in the data associated to x. We saw, however (in the proof of Lemma 4.8,
where the target is denoted Y) that (4.14) may not be an isomorphism, but is in fact finite flat of degree
p" where n’ = #{ (p,i) | 0p,i,1 €J” }. We will use the approach in [DKS23, §7.2.2] to remove a factor
of Frobenius from the relevant projections Zq — P!. We will, however, need the following slight
generalization of the crystallization lemma stated in [DKS23, §7.2.1], now allowing p to be ramified
in F and requiring only an inclusion relation (rather than equality) between images of components of
Dieudonné modules. We omit the proof, which is essentially the same as that of [DKS23, Lemma 7.2.1].

Lemma 4.10. Suppose that S is a smooth scheme over an algebraically closed field F of characteristic
D, A, By and By are abelian schemes over S with O -action, and T € Xp 0. Leta; : A — B, fori=1,2
be O p-linear isogenies such that

o ker(a;) NA[p®] c A[p] fori=1,2, and
© aT’SD(BI,S [p=]- C a;’SD(BZ,S [p*=])z for all s € S(F)

Then there is a unique morphism H‘liR(Bl /S): — HéR(Bz/S)T of Os[u]/(u)-modules whose fibres
are compatible with the injective maps

D(B1,s[p™])r = D(Ba,s[p™]r

induced by (a; S)_l&’f  Jor all s € S(F). Furthermore, if j : Spec (Ry) = S1 — S denotes the first
infinitesimal neighborhood of s, then the morphism is also compatible with the isomorphisms

Hip(Bis/F) ® Ry = Hi (j*Bi/R1)

induced by their canonical isomorphisms with Hclrys(Bi,s/Rl ) fori=1,2.

Now let (A, A’, ) denote the restriction to Zq of the universal triple, and suppose that 7 = 1, ; is
such that 6 = 6y ; ., € J. Then for any closed point z of Zeq, we have

-1 ’ * ’
Ver' (Hig (AL F)e) = FL%) =yt (GR)) c g L(HR(AL/F)o), (4.15)

where as usual, we write A, for the fibre of A at z (or x) and F T(jg for (the sections of) F? , and similarly

A for the fibre of A’, F1 for 719 and G'Y) = u='F/Y™" . We may therefore apply Lemma 4.10
—~1 -1

With S = Zeea, Bi = AL ) X Ziea, B = A, @2 = ¢ and a1 = Ver XzZeq (where Ver : Ag — A )

to obtain an Oz, [u] /u®?-linear morphism

:8 : (HfliR(AO/P)qSOT)(p_I) ®F OZred = ,HéR(Bl/Zred)T — H(liR(A,/Zred)T

which at closed points is compatible in the evident sense with the injective morphisms induced by ¢
and Ver on Dieudonné modules and with the isomorphisms over first-order thickenings provided by
crystalline-de Rham comparisons (cf. diagrams (39) and (40) of [DKS23]). In particular, the fibre S, at
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each closed point z is given by the reduction mod p of the unique injective homomorphism /352 of free
rank two W (FF) [u]/(E;)-modules making the diagram

D(Ao[p™]) e, a D(AL[p™])s

v 2
D(Ao[p™ D

commute. It follows from (4.15) that the image of ﬁz is the preimage 5;(;") of G'T(,ezf’) under reduction

mod p, and therefore that of 8, is G'T(,e;’). Since this holds for each closed pont z, the image of § is g;(“"),
and hence, it induces an isomorphism

(HL (Ao/F)gor [uH L (Ao /F)por) P @5 Oy —— G JF™) =y (4.16)

uele/g

1
P(P ) ®]F OZ

g6,0 red
We can thus define the morphism
Koot Zred — P(P(p ))

such that the tautological line bundle pulls back to the subbundle corresponding to £}, under (4.16).
The commutativity of the diagram

7(1 -1 ~ o -1 ~ =t ~
(Goor)? 4 DA™, — Fr s G1Y

uZ;,o,,zw‘[ szZ:,Z

(1 -1 ~ N ~ (ep)
(G¢oro)¢ %D(AO[p ])qﬁo-r 1% FT,S

implies that on the fibre at z, the line L:‘),z in P;)’Z corresponds under (4.16) to the image of the morphism

) P -1
W " i PG — Pl

(ct. the proof of [DKS23, Thm. 7.2.2.11). If 06 = @y ;11,1 € J, then this image is L7 )for all z, 50 Uoo

is a constant morphism. However, if 06 ¢ J, so 08 € J”, then the composite of ¢ Wlth the Frobenius
morphism

B(PP)) — B(Pyo,0)

is precisely the factor indexed by o8 in (4.14).
Now forany 6 =6, ; ; € Z, let

P(n;‘) _ Pépo ) ifj=1;
0.0 Pgo, ifj>1.
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Replacing the 6-factor in (4.14) with ug for each 6 = 6, ; ; € J” such that j = 1 therefore yields a
commutative diagram

I | (ngh
Zred P(P(;’lg )
oeJ”

(4.14) /

[ ] ®Poo)

0eJ”

where the right diagonal map is the Frobenius morphism (resp. identity) on the factors indexed by
6 = 6, such that j = 1 (resp. j > 1). Since the schemes are all smooth over F and the diagonal
morphisms are finite flat of the same degree (namely p™), it follows that the horizontal map is an
isomorphism.

In order to obtain the above isomorphism, we factored out a power of Frobenius in each component
of the form 6, ;; by describing the corresponding morphism to P! in terms of the data associated to
A’ (i.e., pull-backs via m, of vector bundles on ?U,F). We can similarly describe the other components
of the isomorphism in terms of the bundles associated to A’, again with a shift in the index, but the
relation is easier to obtain since no Frobenius factor intervenes. To that end, suppose that T = 1, ; and
0 =6y, ; € Jfor some j < ep, and consider the Oz, [u]/(u®)-linear morphism

f-*r : pOF,p ®0r ., H(;R(A/Zred)r = ,H(]jR((gBil ®0p A)/Zed)r — ,H(ljR(A,/Zred)‘r

induced by the unique isogeny & : A’ — P! ®p; A such that &€ o i is the canonical isogeny A —
B! ®0, A. Since the image of G,/ under y* is F, it follows that the image of POF p ®0p, FY
under &7 is F97Y We thus obtain an Oz,.,-linear isomorphism

*

[ /
PO'H,O ®]F Ozred = PU’Q u]~—>pOF,D ®Op‘p Pa'@ ("‘:T]r\/HPe’ (417)

under which L7, corresponds to the image of the morphism P, , — P4 induced by ¢. Recall that if
o0 ¢ J (i.e., 06 € J), then this is precisely the subbundle of P,g = P ¢ ®r Oz, defining the factor
indexed by o6 in the morphism (4.14). However, if 6, 00 € J, then this subbundle is L,¢,0 ®r Oz

red *

Theorem 4.11. For § = 0, ; ; € £ such that o' € J, let

(ngh

6.0 ®r O — P’

red o-lo

5gZP

denote the isomorphism defined by (4.16) or (4.17), according to whether j = 1 or j > 1 (and applied
with o' in place of 6), and let

( -1
Mo - Zred — P(Pgrjg ))

denote the morphism such that the tautological line bundle pulls back to the subbundle corresponding
to L' _,, under 69. Then

1. the resulting morphism
(1) (ngh
Zred _9’0 l_[ P(P(:g )
oeJ”
is an isomorphism,

-1
2. and if 0710, 0 € J, then the morphism g is the projection to the point corresponding to L(gng ).
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Remark 4.12. The theorem above is asserted in [ERX 17a, §4.9(1)] for fibres of E J at geometric generic
points of T;.. There is, however, a serious error in their argument (as already noted in [DKS23, §7]),
specifically in the unjustified claim in the paragraph after [ERX17a, (4.9.3)] that one can rearrange the
choices of local parameters. .. Theorem 4.11 thus fills the resulting gap in the proof of Proposition
3.19 of [ERX17a]. We note also that the latter is a cohomological vanishing result, a stronger version of
which follows from the results in this paper (see Remark 5.10), and its application in [ERX17a] (as well
as [DW20]) is to the construction of Hecke operators, which is ultimately achieved in greater generality
in §5.4 of this paper.

4.7. Thickening

We will now give a complete description of Z, generalizing [DKS23, Thm. 7.2.4]. Our approach is based

on that of [DKS23]: we will use the isomorphism of (4.16), for @ = 6y ; ., € J such that 06 € J, in order

to extend the isomorphism Theorem 4.11(1) to one between Z and a suitable thickening of the target.
To that end, let T denote the fibre product

(ngh)
T — ]_[ P(Pyq))

o10,0e]
l l
SpecF — l_[ P(Pg.0),
o-l0,0e]

where the bottom arrow is defined by Ly ¢ and the right vertical arrow is defined by the Frobenius

morphism Mg — M ép ) on the factors indexed by 6 such thatng = p. (Recall that these are the 6 = 6y, ; ;
such that j = 1, and note that we could have omitted the other factors from the definition, but we
maintain them for the sake of uniformity in later formulas.)

We then let Zed =Zed XpT,and let i : Zieq — Zed denote the resulting divided power thickening
(i.e., the unique section of the projection ¢ : Zed — Zred)- We thus have canonical isomorphisms
o Fea [u]/(u®)-linear morphisms

(R]S(,:rys,*OA’,Crys)Z ot o q*H(ljR(AI/Zred)r

re:

for all T = 7,; € Xy (where we continue to let (A, A’,y) denote the universal triple over Zq4, and
s’ 1 A’ = Z,eq is the structure morphism). Furthermore, recall that to give a lift of the closed immersion

Zied — Z to amorphism Zed — Zisequivalent to giving a lift of}";(j) (foreacht =7y ;,j=1,...,¢ep)
toan Oz [u]/(u?)-submodule F9) of q"H g (A Ziea)r such that

o FUD ¢ FD and X9 FLU7Y s a line bundle on Zyeq annihilated by u;
o the morphism

GVs @ Hig (A Ziea)e — q*Hig(A/Zrea) = Hig (Ao/F)r ®r O
sends ]?'(j) to FY) ®p O5 if > d le(j) =V FUD FY Os5 if6,; ;€ J, and
T Lo ®r 0z T & 2,0, sends G77 == u T 0F ") ®F o 10y €J,an

Z;
sends .Y to FT(]O_U Qr O

> otherwise.
red

We construct such a lift by setting ./ = ¢* F/') unless j = e, and 16,0 € J, where § = 0 1111 € J,

in which case we define f";(e”) so that

Ly i= FO YT cGED 1T = Py

https://doi.org/10.1017/fms.2025.13 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.13

Forum of Mathematics, Sigma 59

corresponds to the pull-back of the tautological line bundle on P(P(gp 0_ D ) under ¢*& . Note that i* £ g =
C ’

-1 ~, (i
| -1 since each corresponds to Lgp 0 ) @z Oz, under 4. The fact that the resulting sheaves FiD,
including those with j = ey, satisfy the required properties is immediate from their definition and

the corresponding properties of the ]-';(j ). The Grothendieck—Messing Theorem thus yields a triple

(g, E, ) over Zyeq such that i*A’ = A’ and F'* corresponds to the Pappas—Rapoport filtration under
the canonical isomorphism

H;R(Z,/Zred) = (R] Sérys,*(QA’,crys)Zred = q*H(]jR(A,/Zred)'
We claim that the resulting morphism
Zdred —Z

is an isomorphism. We first note that the induced morphism is injective on tangent spaces at all
closed points 7 = (z,1) in Ziea(F) = Z(F) x T(F) — Z(F). Indeed let R; = F[e] and suppose that
71 = (21,11) € Zied(R1) XT(Ry) = Zieq(R) corresponds to an element of the kernel of the induced map

Tang(Zed) = Tan, (Zeq) X Tan, (T) — Tan,(Z)

(i.e., that the triple (2_( 1 g |- ¥1) associated to z; is (isomorphic to) the pull-back of the triple (A,,, A, ¥o)
corresponding to z). The fact that Zy < Z is a closed immersion then implies that z; is trivial,
and the fact that F;(T”)

IR

corresponds to F;(g”) ®p R; under the canonical isomorphism H(;R(Zi /R1)

H) (A} /F)®g R, implies that L

R

(™" . . 5y
o1 correspondsto L 0.0 CF R under the isomorphisms P;_l

-1
P, ®F Ri = Pépo ) ® Ry, and hence that 7, is trivial.

Since Zeq —> Z is injective on tangent spaces, it is a closed immersion, and the same argument as in
the proof of [DKS23, Lemma 7.2.3] shows that it is an isomorphism. Alternatively, note that the diagram

0,1

Zieq — Z
al )

Zrea — l_[ P(PF),O)
deJ”

commutes, where the right vertical map is the fibre of 3 7 over x and the bottom horizontal arrow
is its restriction (i.e. (4.14)). Recall from the proof of Lemma 4.8 that these morphisms are finite
flat of degree p™ and p’, respectively. Since ¢ is finite flat of degree p?¢, the composite morphism
Zed — Z — [lges» P(Po,o) is finite flat of degree p”, and since Zed — Z is a closed immersion, it
follows that it must be an isomorphism.

Note in particular that the above construction extends the isomorphisms 64 of (4.16) and (4.17) to
isomorphisms
ﬁ/

ole

(”71) ~ * ~
Pyo © 0z, —4q Plig =

over Zed =~ Z for all # € J. We thus obtain the following extension of Theorem 4.1 1, maintaining the

same notation except that now we write L, C P, for the vector bundles Q;(j ) / ]-';(j 1 associated to the
data A’, where T = 7, ;, 6 = 6, ; ; and (A, A’, ) is the universal triple over Z, and we let

- ol
£0: P, 1, —> Pyt @0z (4.18)

denote the inverse of the isomorphism just constructed over Z.

https://doi.org/10.1017/fms.2025.13 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.13

60 F. Diamond

Theorem 4.13. The morphism

7 —> I—[ P(P(n9 ),
olges

defined so the tautological line bundle on ]P’(P( ¢ )) pulls back to e9(L’
identifying Z with the fibre over (Lg 0)ges-J’ ofthe morphism

[T ey — [ 2Poo

olges oeJ-J’
(Mg)o b (M),

_19), is a closed immersion,

We remark that the constructions in the proof of the theorem are independent of the quasi-polarizations

in the data, and hence compatible with the action of O F.(p).+ OO the various schemes and vector bundles.

One therefore obtains an identical description of the geometric fibres of the morphism Yo(B); — Y/

for sufficiently small U, with £’(r g C P;r,l 0 (resp. Lg,0 C Pg o) replaced by restrictions (resp. fibres)

of descents to 70(513) J.F (resp. Y J.F). Furthermore, the resulting descriptions are compatible with the
action of GLZ(A(p f) in the obvious sense. Since we will not make use of this, we leave it to the
interested reader to make precise, and simply record the following cruder, more immediate consequence
of Theorem 4.13, generalizing Theorem D of [DKS23].

Corollary 4.14. Every geometric fibre of the morphism Yo(B); — Y j: is isomorphic to
(Pp)™ x (Spec (F[T1/T7))°

where mand 6 are as in Lemma 4.8, i.e., m = |J'| = |J"|and 6 = |A| = #{7 = 1p,i | Op.i e, Op.iv11 €J }.

5. Cohomological vanishing
5.1. Level U|(B)

One of our main results will be the vanishing of the higher direct images of both the structure and
dualizing sheaves of Yy, () under the projection to Yy;. We will prove this also holds with Uy (*B)
replaced by its open compact subgroup U; () := {g € U | gp € I;(p) for all p|*P }, where

Il(p)z{ (" z) € GLy(Or )

c, d—lepOFp}

We first recall the definition of suitable integral models for Hilbert modular varieties of level U; (B),
following [Pap95]. We consider the functor which, to a locally Noetherian O-scheme S, associates
the set of isomorphism classes of data (4, A’, ¥, P), where (A, A", ¢, P) corresponds to an element of
YUo(%) (S),and P € A(S) is an (O /P)-generator of ker(w) The functor is represented by an O-scheme
which we denote YUl () and the forgetful morphism f YU] ) — YUO(‘B) is finite flat.

The scheme YUl () can be described explicitly as follows in terms of H = ker(y), where (A, A’, )
is the universal triple over § := ?Uo(qg). Firstly, the same argument as when p is unramified in F shows
that H is a Raynaud (Op /B)-module scheme (in the sense that H [p] is a Raynaud (O /p)-vector space
scheme for each p|®B). The correspondence of [Ray74, Thm. 1.4.1] thus associates to H an invertible
Os-module R, for each 7 = 7, ; € g o, together with morphisms

i REP — Rpor and 1 : Rpor — REP
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such that s, o 1 = w, for a certain fixed element w, € pO*. We then have
H = Spec((Symy, R)/T),

where R = P, ey Rv> @ € OF acts on R, as the Teichmiiller lift of 7(a), and 7 is the sheaf of

ideals generated by the Og-submodules (s — DREP fort Yg,0. The comultiplication on H is given
via duality by the scheme structure on the Cartier dual

H" = Spec((Symy, RY)/T),

where RY = EBTE&B . R7!, and J is generated by (1 — 1)(R;)®? for T € X o, where . is regarded

as a morphism (R;')®” — R! . The same argument as in [Pap93, 5.1] then shows that Yy, () can be
identified with the closed subscheme of H defined by the sheaf of ideals generated by the

(sp = D| Q) RV

TEZno

R?(P—l)

for p|B, where s := ®T€Zw s is viewed as a morphism (X) — 0.

TEZ 0
Note that the scheme Yy, () is equipped with a natural action of (O /%) over Yy, (g), defined by
a- (A A, ¢, P) =(A,A’, ¥, aP). Furthermore, we may write

f*O?ul(SB> - @RX (5.1)
X

where y runs over all characters (O /PB)* — O, and each summand may be written as

R/\/ - ® Rfmx.-r

TEZmﬁ

where the integers m ., are uniquely determined by the conditions

o 0<my,<p-1lforall v € Zg;
o my r < p—1forsome 7 € X, o for each p|P;
o y(a)=[1;7(a)™ forall a € (Op /PB)*.

Since fis finite flat, we may similarly decompose the direct image of the dualizing sheaf as

FiKsy, @10 = Homog (F.O, . Ksjo) = D Hom(Ry. Ksjo). (5.2)
X
Assuming as usual that U is sufficiently small, and in particular @ — 1 € P for all @ € U N F*, the

action of O Fo(p).+ O0 Yy, (p) via multiplication on quasi-polarizations factors through a free action of
C)X

/(U N FX)?, and we let Yy denote the quotient scheme. The morphism f descends to a
F.(p)+ 1(B)

finite flat morphism f : Yy, () — Yu,(®)» 50 Yu, () is Cohen-Macaulay and quasi-projective of relative
dimension d over O. Furthermore, for sufficiently small U, U’ of level prime to p and g € GL; (Ag’;)
such that g~'Ug < U’, we obtain a finite étale morphism jg : Yy, () — 7U1'(£B)7 descending to
Pg : Yu, ) — Yu;(p) and satisfying the usual compatibilities.

Note that the assumption on U implies that the canonical isomorphism v*A = A over ?Uo(qg) is the
identity on H for all v € (U N F*)?, so H descends to a Raynaud O /PB-module scheme on Yu, ()
which we also denote by H. Furthermore, the line bundles R ; and morphisms s, 7, all descend to give
the same descriptions of H, H" and Yy, () as spectra of finite flat OYUO(‘B)-algebras (with (Of /PB)*-
actions) over Yy, (), and we obtain analogous decompositions of f.Oy,, o and fiy, 4 j0-
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5.2. Dicing

We will use the method of ‘dicing’, introduced in [DKS23, §6.2], to reduce the proofs of the cohomo-
logical vanishing results to consideration of line bundles on irreducible components™ of the special
fibre of Yy, (), or equivalently of the schemes denoted S ;.

Recall from §4.1 that for any subset J C Xg, the closed subscheme S of S = ?Uo(‘l‘)),k is defined by
the vanishing of

(Vo ml0e} Ulyy lo¢T},
where iy : A — A’ is the universal isogeny over S and
Yo m : My — M, Vo Ly— Lo

are the morphisms induced by ¢ on the indicated subquotients of de Rham cohomology sheaves of A
and A’.
Following [DKS523, §6.2], we consider the sheaves of ideals Z; c Oy corresponding to the closed

subscheme of S defined by the vanishing of

{ Qv

0eJ

J C Iy, |J|=j},

or equivalently the image of the morphism
B(®eic) — os
|J|=j\6eJ

induced by the ¢, .. We thus have

OEZI()DI] DIQD ”'Id‘B DII+dsB =0,

where dg = |Zg| = 2, epfp- Letting iy denote the closed immersion §; — S and Z; the sheaf of
ideals on S defining the vanishing locus of (X) ., ¥/}, ., we see exactly as in [DKS23, §6.2.1] that Z; is
invertible and the proof of [DKS23, Lemma 6.2.1] carries over mutatis mutandis to give the following:

Lemma 5.1. The natural map grj(9§ — @IJIZJ iy 1Ly is an isomorphism for all j =0, ..., dg.

Similarly, letting 7; denote the (invertible) sheaf of ideals on S; defining the vanishing locus of?°
X 027 Vo rqo the same argument as in [DKS23, §6.2.2] yields the following description of the graded

pieces of the induced filtration Fil / K5 k= ;K5 /k on the dualizing sheaf:

Lemma 5.2. The natural map grjICE/k — @Illzj ij,*(JJ’]ICSJ/k) is an isomorphism for all j =
0,...,dsp.

Furthermore, letting El = YUI (), k- the decompositions (5.1) and (5.2) restrict to give the decompo-
sitions

= N e
05, =PR, and fiK5 . = PR Kspe (5.3)

X X
19We could alternatively have used ¥ o () and Y o (%), as in [DKS23], but for the purpose of proving the desired vanishing

results, we can replace them by étale covers.
208Since y 4, 1 My — My is an isomorphism for € ¢ Tg, we may view the tensor product as being over either X — J or

Y — J, and we write simply 6 ¢ J.
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where we again write f: S1 — S for the natural projection and R, for the Raynaud bundles associated

to H = ker(y) over S. Note also that we may now view the decompositions as being over characters
X (Op/PB)C — k.

Following the method of [DKS23, §7.3] will reduce the proof of the desired cohomological vanishing
to a computation involving the line bundles Z;, J;, Ks, /x and (the pull-back of) the R, over S;. We
will now describe all of these in terms of the line bundles Lg, L}, Mg and M.

We start with the Raynaud bundles R, over S; for v = 73, ; € X 0. Suppose first that 0 := 0y ; o, € J,
so that /. , vanishes on Sy, and therefore

lﬂ: : H(ljR(A//S.I)T — H(ljR(A/SJ)

maps .7-";(6") onto .7-'?’_1 (where we are now writing (A, A’, y) for the universal object over S ). It follows

that the cokernel of (s”Q!, 15,07 = ( 5.Q4 /s, ) is isomorphic to the invertible sheaf L = Flewplel)
on Sy, so

Lie(H/Sy): = ker(Lie(A/Sy)r — Lie(A’/Sy):)

is isomorphic to E‘Hl, and therefore, i, R = L (as in the proof of [DKS23, Lem. 5.1.1]).
Similarly, if 6 = 6,;., € J, then g;(e") is the preimage of F;ep) under ¥, so the kernel of

R's.Oa — R's.04 is isomorphic to M/, = Gl ) 7)1t follows that
Lie(H" [Sy). = ker(Lie((A")/S;)e — Lie(AY/S1)c)

is isomorphic to M7, and therefore so is i, R . Summing up, we have constructed a canonical isomor-
phism

Lo, if0¢J.

iRe = {M;, ifoeJ, (5-4)

where 7 =7y ; € Zgoand 0 = Oy ; ¢,
Next, considering Z, its definition (and invertibility) imply that X) , ., ¥,  induces an isomorphism

X) Loy — I, (5.5)
6eJ
Similarly, we have that (X) oes Vo _rq induces an isomorphism
QR MM, = J), (5.6)
o¢J

but we will need to further relate the M7, (for 6 € Zq — J) to other line bundles on S;.
Let 6 = 0y, ; for some p|*P, and let 7 = 7, ;, and suppose first that 6, ol ¢ J. If j > 1, then
consider the commutative diagram
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Note that the image of u : Py — 77('7 is E:rl 0 = ker(wtr*le) (since 0=16 ¢ J), so the image of Wy

-1g
is contained in the kernel of u : Py — P14, whichis M -1y = GV /FY™V  Since each is a rank
one subbundle of P -1, it follows that

M1 =im(yy) = Py/ker(yy) = Py /Ly = M.

Similarly, if j = 1, then we consider instead the commutative diagram

w
'Pé —_— Po

|

1(p) Yorlor(y (p)
,Po"l 0 o1’
where the vertical maps are defined by the partial Hasse invariant (see (4.1) and (4.2)). The same
reasoning as above then shows that M, is isomorphic to the kernel of

hg i Py — LP)

oo’

p)

which in this case is isomorphic to MET_ 1> via the morphism induced by the restriction of Frob™ to

_ -1
Gy )P = w (FETH P — M (A)S)e[u] = Po.
Suppose, however, that § ¢ J, but o190 € J,s0 60 € J”. Since A" corresponds to an element of
Tj»(Sy), we have that the kernel of
Ry : Py — L)

ole
is E’g, and hence that M’e is isomorphic to E'('ff) .
Summing up, we have shown that if § € Zq — J, then there is a canonical isomorphism

MU it glg ¢ g
My = ae 5.7
o {ﬁg’}f;, ifo'0 e J. 67

Finally, although we will not need the following description of the line bundles Kg, ;x, we provide
it for completeness and coherence with the theme of Kodaira—Spencer isomorphisms. Recall that the
isomorphism of Theorem 3.5 arises from a canonical isomorphism

K?ann)/@ = ® (MV’H_IZH)

fex

(using ™~ for universal data over ?Uo(‘B))' However, the proof of Lemma 5.2 (see [DKS23, §6.2.2]) also
gives a canonical isomorphism

ICS_]/k = Ijjjl?}]CE/k

Combining these with (5.5) and (5.6), we obtain a canonical isomorphism

Ks,jx = (@ M61£9)®(®M;,‘£;,). (5.8)

0ex-J oeJ
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(Recall that for 6 ¢ Zgs, we have Ly = £}, and My = M}, so these factors could just as well have been
included with 6 € J instead of 6 € X — J.)

We remark that (5.8) can also be proved more directly using a deformation-theoretic argument, which
furthermore produces a filtration on QS . analogous to the one on QY /0 defined by Reduzzi and Xiao
in [RX17, §2.8] (or more precisely [Dlaﬂ §3.3] for the current setup)

We remark also that the various isomorphisms of line bundles established in this section should be
compatible in the usual sense with descent data and Hecke action, but we will not need this for the
purpose of proving the desired cohomological vanishing theorems.

5.3. Vanishing, duality and flatness results

We are now ready to prove the main result, which is a generalization of Theorem E of [DKS23]. Indeed,
all the ingredients are now in place to apply the same argument as in [DKS23, §7.3]. Recall that U is
any sufficiently small open compact subgroup of GL,(OF ), ‘B is the product of any set of primes of
OF dividing p, and

f i
Yu,¢p) — Yuoep) — YU

are the natural degeneracy maps induced by the forgetful morphisms f 17U1 p) — 17U0(gp) and 7 :
YUo(‘B) — YU We will write 51mply Y (resp. Yo(*B), Y1 (*B)) for Yy (resp. Yy, (p), YU1 (¢p)) when Y is
fixed, and similarly abbreviate YU, etc. We let ¢ (resp. ¢) denote the composite 7} o f (resp. my o f).

Theorem 5.3. The higher direct image sheaves

R'o.Ky,(p)j0 and R'¢.Oy, (g
vanish for all i > 0.

Proof._First, note that since Y — Y is étale and ¥, (P) = ¥ Xy Y, (P), we may replace Y (resp. Y; (*B),
@) by Y (resp. Y1 (), ¢). Next, note that since ¢ is projective and ¢k is finite, we may replace these in
turn by their special fibres. Furthermore, since f is finite, we have

Ri@@gl = Riﬁl,*(ﬁ@§l) and R"[ﬁ*lcgl/k = Ri;ls*(ﬁ]ca/k)

(where we again let S| = Y1 (P)x and suppress the subscript k from the notation for the morphisms).
Using the decompositions given in (5.2) and the filtrations whose graded pieces are described in
Lemmas 5.1 and 5.2, we are therefore reduced to proving the vanishing of

Riny.(Z;i%Ry) and  R'my (J7i5Ry) " Ks, k)

forall i > 0,J Cc Z¢ and x : (Op/P)* — k*, where i, is the closed immersion S; — S and
ny Sy — Ty is the restriction of 7.

Let us now fix J and y, and write y = [ 77, where the product is over 7 € Zp0,0<m; <p-1
for each 7, and m, < p — 1 for some 7 € X, o for each p|*P. We now apply the results of the preceding
section to write the line bundles Z,, J; and i}, R on S, in terms of Lo, Mg, L}, and M7,

Firstly, by formula (5.4), we have

= X come (@M'f’“ﬂ), (5.9)

Oep—J 6eJ

where mg =m, it =0y ., and 7 =1, ;, and mg = 0 if 6 = 6, ; ; for some j < e,,. Combining (5.9)
with (5.5) and the isomorphisms £}, ® M/ = N = Ny = L§ ® Mg (see Remark 3.4), we obtain an
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isomorphism

LRy = X) L5 ®(®(M;®""H‘”®Mg)). (5.10)

6eZp—J oeJ

However, combining (5.9) with (5.6) and (5.7) gives

GiRy=| @ M e com ®( ® M;ILZ?’”“)

0,00€xpy-J 0¢J,oc0e]
I@meg I®@N oo /Q@mg
®( Q) My e Ly >)®(® My )
0el,o0¢J 0,00¢e]

Combined with the isomorphisms Ny = N} and Ng"7 = N (see the last paragraph of [Dia23,
§4.1] for the latter), this simplifies to

jfinX ~ ® E?(me—"aﬁ+l) ®( ® ﬁ?(me*'l))

9,0‘9621}—] 0¢J,00¢e] (51])
1®(me—ngg) '®mg
& @ wmzmr)g| @ mie)
0ed,o0¢] 0,00¢€]

Since 7 is flat and projective, it suffices to prove the vanishing of cohomology of fibres, that is, that
H'(Z, j*(Z;i5Ry)) =0 and  H'(Z, j*(J1i3Ry) "' Ks,/x))) =0

forall x € TJI(E,), where j : Z — S is the closed immersion of the fibre of 7; over x. Furthermore,
since 7r; is Cohen-Macaulay, we have j*Kg,;x = K, /- Since the line bundles j*Lg = Lg ®Fp Oy
and j*Mg = Mg ®Fp Oy are trivial on Z, the isomorphisms (5.10) and (5.11) give

F @R = Q) My and (TR = ()M, (5.12)
OeJ OeJ

where €g =ngy9 —mgif o ¢ Jand €y = —mg if 00 € J.
We now appeal to the description of Z in Theorem 4.13, which provides an isomorphism

Z = SpecCx [ ] ¥
feJ”

for a finite (Gorenstein) Fp—algebra C, such that if € J, then j* M, corresponds to the pull-back of
O(1)¢ (resp. an invertible C-module) if 08 ¢ J (resp. o0 € J). It therefore follows from (5.12) that

H'(Z, j(T;i}Ry)) = Hl‘( [ 12 & 0tmg16-10|e5, C.

0eJ” 0eJ”

which vanishes since m -1y > 0 for all § € J”. Similarly, since K, /F, corresponds to the dualizing
sheaf of Spec C X [~ P', which is isomorphic to ®ge;»O(-2)g, we have

H'(Z, j (T5i5R) ' Ks, 1)) = Hl'( [TP. & oy1o- 2)9) ®z, C.

oeJ” oeJ”

which vanishes since £ ,-1y =ng —m -1 > 1 forall§ € J”. O
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Corollary 5.4. The higher direct image sheaves
Rz Kyypo and R'r;.Ox )

vanish for alli > 0 and j = 1,2.

Proof. As in the proof of the theorem, we may replace 7; by 7; : Yo(P) - Y. By formula (5.1), the
line bundle (’)570(%) is a direct summand of f, 071 () SO the vanishing of

R'¢.05, ) = K71 (.0 ()

for all i > O implies that of Ri%I,*O%(m). Similarly, the vanishing of Rifl,*K%(;B)/o follows from (5.2)
and the theorem.

For the analogous assertions for 7, note that there is an automorphism wg of Yo(B) such that
7y = m o wyp. Indeed, define wy by the triple (A", B! ®0, A, £), where (A, A’, ) is the universal
triple over Yo(B), B! ®o, A denotes P! ®p,. A endowed with the evident auxiliary data, in particular
quasi-polarization

w% ®1: P 80, A— P, A = (B ®0, A),

and & : A’ — P! ®p,. A is such that & o i is the canonical isogeny A — P! ®0,. A. The desired
vanishing of higher direct images under 7, therefore follows from the corresponding assertions for |
and the identifications wy . Oy ) = O ) and w Ky )10 = K7 g/ 0- O

Remark 5.5. We caution that the automorphism wg of Yo(P) does not lift to an automorphism of
Y1 (B), so the argument handling the case of 7, in in the proof of the corollary cannot be used to deduce
of vanishing of higher direct images under 7, o f from the theorem.

Corollary 5.6. The direct image sheaves ¢.Ky, ()0 and ¢.Oy, ) are locally free over Oy, of rank
[Tom (p*» = 1). Furthermore, there is a perfect Hecke-equivariant®' pairing

Ky, (910 ®0y ¢:O0y,(p) — Kyjo.

Proof. We apply Grothendieck-Serre duality to the proper morphism ¢. Since R'¢, Oy, (p) vanishes for
all i > 0, the duality isomorphism of [StaX, §0AU3(4c)] (taking K there to be Oy, () [d]) degenerates to

Re. Ly, pyj0 — RHomoy (¢.Ov, ), Ky /o).
In particular, we obtain an isomorphism
¢:-Kymyjo — Homoy (9.0 ) Ky o). (5.13)

Furthermore, since R’ ¢, Ky, (g)/0 vanishes foralli > 0, it follows that so does Sxt’by (0+O0v, (), Ky 0),
and hence,

5xtégy (‘P*OYI (P)» Oy)=0

for all i > 0. Since Y is regular, it follows that ¢, Oy, () is locally free, with rank given by the degree of
the finite morphism g — namely,

[U: Ui (®)] = [ [IGL2(OF ) : L0 = [ [(P*F - 1).
RIRY PP

21In the sense that diagram (5.15) in the proof commutes.
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The same argument with the roles of Ky, ()0 and Oy, (p) exchanged shows that ¢. Ky, (/0 is locally
free of the same rank.

Furthermore, it follows from the construction of the duality isomorphism that (5.13) is induced by
the trace morphism denoted Tr , i, Jo I [StaX, §O0AWG], which may be viewed as a morphism

Tr : (p*/Cy] P)/O — /Cy/o (5.14)
since R"ga*ICY1 (B)/o vanishes for all i > 0.

Suppose then that U and U’ are sufficiently small and that g € GLz(A(Fp 2) is such that g~'U’g c U’,
giving étale morphisms p, : Yy» — Yy and pg : Yy () — Yu,(p) such that the diagram

Pg
Yy ) — Yu, ()

1, )

Yy LA /A

is Cartesian, and identifications p; Ky, /0 = Ky, /0 and p;‘ICyU] /0 = ICYUI /0 The commutativity
of the resulting diagram

. pg(Tr) ;
PeLyy, @10 PeKyy 0
l?
r o1 o Tr’
‘p*pg ,CYUI (PO " ‘P*ICYU“‘B)/O > ’CYUr/(’)

then follows from [StaX, Lemma 0B6J] and implies that of

P;‘P*’CYU] /0 — HomOyU, (P;SD*OYUI(q;) ’prSD*K:YU](sB)/O) — HomOyU, (P;SD*OYUIOB) ’prICYU/O)

| |

SD;K:YU]/(\B)/O E— HomOYU, (p;(p*OYU] (P)° SDLICYU“;B)/O) E— HomOYU, (pZ'SD*OYU] () ’CYU//O)

| |

’ ’ ’ ’
(p*,CYU]r(xB)/O I HOWLOYU/ (‘p*OYUi(‘B) > QD*’CYU{(;B)/O) —_— Homoyu, (‘p*OYU{(\B) P ’CYUr/O)y

where the vertical maps are base-change isomorphisms, the horizontal maps on the left are the canonical
morphisms, and the ones on the right are composition with pg (Tr) or Tr ’. This in turn gives the Hecke-
equivariance of the pairing — that is, the commutativity of

pZIQD*ICYUl(sB)/O ®OYU’ pZ:QD*OYUI(sB) %p;KYU/O 5 (515)

|

’ ’
QO*ICYU{(%)/O ®OYU’ QD*Oyui(‘B) — ICYU//O

where the top (resp. bottom) horizontal arrow is induced by Tr (resp. Tr”’) and the vertical maps are the
canonical isomorphisms. O
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Recall that for sufficiently small U, the finite flat Raynaud (Op /¥8)-module scheme H over Yo(B)
descends to Yy (*B), and hence so do the decompositions (5.1) and (5.2), giving

£Ovm =P R,y and  f.Kyvw)0 = DR Kvwyjo;
X X

where the line bundles R, (now on Yy(%B)) are indexed by the characters y : (Or/P)* — O*.
Theorem 5.3 thus implies the vanishing of R'm R, and Ri7r1,*(7€)_(lle0(q;)/@) for all i > 0 and
characters y, and Corollary 5.6 implies that 71 R, and ﬂly*(R/;IICYO(ip) o) are locally free, now of
rank [T, ( p% + 1). Furthermore, the same argument as in the proof of its Hecke-equivariance shows
that the pairing defined in the corollary is compatible with the natural action of (Op /) on Y;(B),
and hence respects the decompositions and restricts to perfect Hecke-equivariant pairings

71 (R L Kxyyj0) ®0y m14Ry — Ky jo

for all characters y. We record this in the case of the trivial character:

Corollary 5.7. The direct image sheaves 71,:Kyyp)j0 and m1,.Oy,p) are locally free of rank
[Top (pP + 1) over Oy, and there is a perfect Hecke-equivariant pairing

71Ky, )70 ®0y 11,0y, — Kyjo.

Remark 5.8. The same argument as in the proof of Corollary 5.4 shows that we can replace m; by 72
in the statement of Corollary 5.7. (In fact, the automorphism ws descends to an automorphism wsg of
Yo(*B) such that m, = 71 o wgs.) Note, however, that this argument does not allow one to replace 7| by
72 in the assertions for the twists by the bundles R, (cf. Remark 5.5).

Suppose now that R is any (Noetherian) O-algebra and consider the base extensions from O to R of
the schemes Y and Y;(B) for i = 0, 1 and morphisms ¢, r; for j = 1,2, which we denote Y, etc. We
then have the following:

Corollary 5.9. For £ = Oy, () and Ky, (p),0, the base-change morphisms
(R'@.E)r = R'or . (ER)

are isomorphisms for all i > 0. In particular, Ripr.(ER) =0foralli > 0, pr .(ER) is locally free over
Oyy of rank [Ty 5 ( p*P — 1), and there is a perfect Hecke-equivariant pairing

PR Ky, (B)r/R B0y, ROy, — Kyr/r-

Furthermore, analogous assertions hold with U1 (B) replaced by Uy (B) and ¢ replaced by r; for j = 1
and 2.

Proof. Since Y and Y, (*B) are flat over O, the schemes Yg and Y| (‘B) are Tor independent over Y (in the
sense of [StaX, Defn. 08IA]). The assertions in the case of U; () are then immediate from [StaX, Lem.
08IB], Theorem 5.3, Corollary 5.6, and the compatibility with base-change of formation of dualizing
sheaves for Cohen—Macaulay morphisms (see [Con00, Thm. 3.6.1] or Lemmas OE2Y and OE9W of
[StaX]). The same argument applies for Uy (*B), but using Corollaries 5.4 and 5.7 and Remark 5.8. O

Remark 5.10. Our method also yields an improvement on the cohomological vanishing results asserted
in [ERX17a, Prop. 3.19]. More precisely, suppose that k,m € Z* and consider the automorphic line
bundle Ak m on Y (as defined in §5.4). Applying the same analysis as above to the line bundle 75 Ak m

on YUo(‘B) instead of R, , one obtains a filtration on ﬁ;ﬂk,m, x for which the graded pieces have fibres
(relative to ;) described exactly as in the first formula of (5.12), but with the exponents?? m ¢ replaced

22Note that the mg in (5.12) are not the constituents of the weight vector m appearing in §5.4.
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by ny9koo — ke¢. (This refines a similar analysis carried out in [ERX17a, §4.9] for reduced fibres at
generic points, whose description is completed by our Theorem 4.11; see Remark 4.12.) The same
argument as in the proof of Theorem 5.3 therefore shows that if ny9kse > kg for all 6 € Zg,
then R'7 . (ﬁ;ﬂk,m) vanishes?® for all i > 0. Furthermore, the same argument as in the proof of
Corollary 5.9 shows that, for such k, the base-change morphism (ﬁl,*ﬁ;Zk,m)R — ;fl,*(;f;lk,m, R) is
an isomorphism and Riﬁl,*(ﬁgzk,mﬂ) = 0 for all i > 0. It follows also that if [T, 8(u)*¢*>™ has
trivial image in R for all u € U N OF, then Rinl,*(ﬂ;Ak,m,R) = 0 for all i > 0, and the base-change
map (71 . (75 Akm,R))R" — 71 (75 Ak m,r’) is an isomorphism for all Noetherian R-algebras R’. (Note,
however, that the proof of Corollary 5.6 does not carry over, as it would require analogous results for
AE,]m’C% (B)/0° for which the corresponding inequalities do not necessary hold.)

We may also use the results above to construct integral models for Hilbert modular varieties of levels
of Up(*B) and U, (*B) which are finite and flat over the smooth models of level U. Indeed, consider the
Stein factorizations

Yi(P) > Y{(P) =Y and Yo(P) - Y (P) - Y,

where Y/ (B) := Spec(¢.Oy, (p)) and Yj(B) := Spec(n; .Oy,(yp)). Note that ¥;(B)x = ¥/ (P)x for
i = 1,2 and that Corollaries 5.6 and 5.7 immediately imply the following:

Corollary 5.11. The schemes Y[ (*B) and Y () are finite and flat over Y; in particular, they are Cohen—
Macaulay over O.

Note that the same conclusions apply to Y’ (B) := Spec(r2,.Oy,sp)); in fact wy induces an iso-
morphism Y'(B) 5 Y;(*B) over Y. Note also that the natural map Y{(P) — Y factors through

Y;(*B). Furthermore, if U, U’ are sufficiently small and g € GLZ(A;’?) is such that g~'U’g c U,
then (with the obvious notation) the morphisms p, : Yui) — Yu ) for i = 0, 1 induce morphisms

Pg Y[, o YL’,.(;B) satisfying the usual compatibilities.
Finallly, we note the following consequence of Corollary 5.11, pointed out to us by G. Pappas.
Corollary 5.12. The normalization of Y in Yo(B)k relative to my (or to ny) is flat over Y.

Proof. First, recall that Y, () is normal, since, for example, it is regular in codimension one and Cohen—
Macaulay. Therefore, it follows from [StaX, Lem. 035L] that Y (®B) is normal. Since Y (*B) is also finite
over Y, it is the normalization of Y in Y (B)x = Yo(*P)k (relative to 1), and its flatness over Yy, follows
from Corollary 5.11.

The same argument applies with 7y (resp. Y (*B)) replaced by 7 (resp. Y;'(B)). O

5.4. Hecke operators

We now specialize to the case of ¥ = p and consider the morphisms
m, o Yo(p) =Y,

Y (resp. Yo(p)) for Yy (resp. Yy, (p)) when U is fixed.
The pairing of Corollary 5.7 thus defines an isomorphism

71Oy, (p) — Homoy (m1.Kyy)/0. Ky o), (5.16)
under which the image of the unit section is the trace morphism
Tr : 71'1,*ICY0(;J)/O — /Cy/o (5.17)

23The assertion in [ERX17a] is that the codimension of its support is at least i + 1; stated in these terms, the codimension is in
fact infinite.
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(defined as in (5.14) since Rinl,*leo(p)/@ = Oforalli > 0). However, we have the morphism 77 Cy ;0 —
Ky, (p)jo defined in (3.8), which by Proposition 3.7 extends the canonical isomorphism over Yo (p)k . It
follows that the composite of its direct image with Tr,

71,71 Ky 10 — 11,:Kyy (970 — Ky /0, (5.18)

extends the trace morphism over Yk (associated to the finite flat morphism n; g ). Thus, if F is any
locally free sheaf over Y, we obtain an extension of the trace over Yx to a morphism

trr i F — F

by tensoring (5.18) with IC;} o ® F and applying the projection formula.

Recall that we have the Kodaira—Spencer isomorphism Ky ;o = 6 1w®? on Y, and that Theorem 3.5
gives Ky, (pyjo = mjw ® ﬂ;(é‘lw). Recall also that the universal isogeny on Yy(p) induces an isomor-
phism 756 — p»7:5 which descends to Yo(p), so composing with multiplication by p~# yields an
isomorphism 736 = 7}, or equivalently 711‘6" = néd‘l. We may therefore view (5.16) as giving rise
to an isomorphism

1140y () — Homo, (m1,: (0 ®oy, 7367 w)), 6 'w®?)

— Homo, (m1, (7} (67 w) ®0y, ) THW), 51 w®?)

- | ) (5.19)
— Homo, (07w ®p, 715w, 6~ W ®p, W)
— Homp, (771,*7130), w),
and we call the image of the unit section the saving trace
St: MMy THw — . (5.20)
It follows from Proposition 3.7 and the definition of the saving trace that the diagram
ﬂl,*n;wﬁm,*n’fw 5.21)

stJ J{tr w
pfp

W w

commutes, where the top arrow is the direct image of the descent of the morphism over ?Uo(v) induced
by the universal isogeny.

More generally, consider the morphisms 7y, 7, : Yo(p)g — Ygr for any (Noetherian) O-algebra R
(omitting the subscript R from the notation for the degeneracy maps). It follows from Theorem 3.5 and

Corollary 5.9 (for & = Ky, (p)/0 and i = 0) that (71 .mw)R S 175 (wR) so the base-change of (5.20)
defines a saving trace over R:

Str ﬂl,*ﬂ;(a}R) —> WR.

Note also that Theorem 3.5 and Corollary 5.9 imply that Rz . (mjwr) = wg' R/ Ky, (p)e/r = 0 for
all i > 0. More generally, it follows that if F is any locally free sheaf on Yg, then

Rim,*(n’f}" ®Oy, THWR) = F @0y, RiJTL*?T;a)R =0
for all i > 0, and hence that

H (Yo(p)r, 7} F ®0y, (g TAWR) = H'(Yr, F ®0y, M1 +T30R). (5.22)
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For (k,m) € ZZ, we let Ay m denote the line bundle (X) g(ﬁgke ® N;™?) on Y. Recall that if

pk2m = 11, 6(u)ke*>mo has trivial image in R for all u € U N O%., then .Zk,m,R descends to a line
bundle on Yg which we denote Ak m r. We will now explain how to use the saving trace to construct a
Hecke operator T}, on H' (YR, Ax.m.r) for suitable k,m € Z* (and in particular whenever k¢ > 1 and
mg = 0 for all 8). Our main interest is in the case i = 0 and F # Q, in which case

Mym(U; R) == H° (YR, Axm,R)

is the space of Hilbert modular forms of weight (k, m) and level U with coeflicients in R.
Recall that the universal isogeny ¢ : Ay — Aj over Yy(p) induces morphisms 7, : 75Pg — 7, Py,

and in turn 75 Lg — 7} Lg and /\21,//*9 : m5Ng — 7j N such that

O(wp)T Lo CYy(ToLe) CT Lo and A2y (TNp) = (@) T No.

Since vo (6(w@y)) is independent of 6 € %, and trivial for 6 ¢ X, it follows that if

Z min{meg,mg + kg — 1} > 0, (5.23)
0exy

then ¢, induces a morphism ﬁ;ﬂk_l,m - 7 ;(k_l,m. Furthermore, its base-change to Yo(p)R descends
to a morphism

15 Ak-1,m,R = T Ak—1,m,R (5.24)

over Yg.
For (k, m) satisfying (5.23), we define the endomorphism T}, of H' (Yg, Ak.m.r) as the composite

, 5o |
H'(Yr, Akmr) — H' (Yo(P)r, 73 Ak-1,m,R ®0y, ), THWR)
— Hl (YO(p)R7 n-)lkAk—l,m,R ®OYO(D>R ﬂ;wR)

— H'(YR, Ak-1,m,R ®0y, T1+T,WR)

1®str .
— H'(Yr, Akm,R):

(5.25)

where the second arrow is induced by (5.24) and the third is (5.22).
It follows from the construction that the operator T}, is compatible with base-change, in the sense that
if R — R’ is any homomorphism of O-algebras, then the resulting diagram

H' (YR, Ak m,r) ® R" —— H' (Yr/, Ak m.r’)

Tp®ll lTp

H'(Yr, Akm,r) ® R" —— H' (Yg/, Axm,r")

commutes. Furthermore, it is straightforward to check that T}, is compatible with the action of g €

GLZ(A(FP g), in the sense that if U and U’ are sufficiently small and g~'Ug c U’, then the resulting
diagram’

H (Y, A g) — H (YR, py Ay @) — H (YR, Akm,R)

H (Y, A g) — H (Yr, py A g) —— H (YR, Akm.R)
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commutes, where pg : Yg — Y} = Yy g and pgAl’( m.R N Ak m,r are defined in §2.3. Finally, the
commutativity of (5.21) implies that T, coincides with the classical Hecke operator so denoted on the
space H(Yx, Ax.m.x) of Hilbert modular forms of level U and weight (k, m) over K.

‘We record the result as follows:

Theorem 5.13. For sufficiently small open compact subgroups U C GLy (A ¢) containing GLy (OF ),
Noetherian O-algebras R, and k,m € Z* such that 1***™ has trivial image in R for all u € U N OF and

Z min{mg,mg + kg — 1} > 0,
6ex,

the operators T, defined on H' (Yy g, Ax.m.r) by (5.25) are compatible with base-change and the action
of GL, (A(p ) ), and coincide with the classical Hecke operator T, if R is a K-algebra and i = 0.

Remark 5.14. The inequality (5.23) is needed to ensure integrality, but results for more general k, m
follow from twisting arguments. Indeed, for fixed k and varying m, the modules H'(Yy g, Ax.m.r) are
isomorphic for sufficiently small U. The isomorphisms are not canonical, but one can keep track of its
twisting effect on the action of GLZ(A;”’ 2) (see, for example, [DS23, Lemma 4.6.1] and [Dia23, Prop.
3.2.2]), and the same considerations apply to its effect on T},. In particular, if R has characteristic zero (so
k + 2m is parallel), then we recover the same integrality conditions as in [FP23] if p is unramified in F.

However, if R has finite characteristic, then there is no restriction on k and m, and the critical case for
i = 0 becomes m = 0. Note that the hypothesis (5.23) is then equivalent to k¢ > 1 for all § € X, which
is known to hold in the cases of primary interest thanks to the main result of [DK23] and [DDW24,
Prop. 1.13] (see also [Dia23, Thm. D]).

Note also that if m = 0, then the inequality (5.23) becomes an equality. By contrast, if the inequality
is strict one finds that 7}, = 0 if R is a k-algebra, and more generally that 7}, is nilpotent if p"R = 0.

Remark 5.15. Interchanging the roles of m; and m,, one can similarly define a saving trace st’
72+ jw — w (without using the isomorphism 736 = 776). A construction analogous to the one above
then defines an operator T;; on H' (YR, Ax,m,r) Whenever ZQEZ» max{mg,mg + kg — 1} < 0, and the
analogue of the commutativity of (5.21) is then that of the diagram

b9 *ﬂzw —_— T, *7r w (5.26)

DN, A

where tr{, extends the trace relative to 7 .
Note that if k = 1 and m = 0 (or more generally kg = 1 forall € X and } 5, mg = 0), then both
T, and T}, are defined. Using the commutativity of (5.21) and (5.26), it is straightforward to check that 7y,

is the composite of 7, with the automorphism of H '(Yg, wg) induced by the map o : ¥ — Y obtained
by descent from A — A ®¢,. p~', together with the isomorphism opw = Nmp o(p) ®z w = w defined
by p~5.

Remark 5.16. The main results of this paper, in particular Theorem 3.2.1 and Theorem 5.3.1 (and its
corollaries), are extended in [Dia24, §5] to toroidal compactifications. Furthermore, the effect of the
saving trace on g-expansions is given by Proposition 5.3.1 of [Dia24], leading to that of T}, in Proposition
6.8.1. In particular, this implies the commutativity of the Hecke operators T}, (whenever defined) on
H°(YR, A m.r) for varying p in Sp.

By contrast, checking this directly from their construction leads to a formidable diagram whose
commutativity ultimately seems to require analogues of some of the results in §5.3 for direct images
under the projections Yy (pp’) — Yo(p’). While these might follow from arguments along similar lines
to those for direct images under Yy(p) — Y or from their compatibility with more general base-changes
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than we considered (more precisely, with respect to Yy(p) instead of ©), we have not carried these out.
Consequently, we have not shown the commutativity of the operators T3, on H* (Yg, Ax,m,r) fori > 0.
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