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Abstract. The quantum effect on the Weibel instability in an unmagnetized plasma
is presented. Our analysis shows that the quantum effect tends to stabilize the Wei-
bel instability in the hydrodynamic regime, whereas it produces a new oscillatory
instability in the kinetic regime. A novel effect called the quantum damping, which
is associated with the Landau damping, is disclosed. The new quantum Weibel
instability may be responsible for the generation of non-stationary magnetic fields
in compact astrophysical objects as well as in the forthcoming intense laser–solid
density plasma interaction experiments.

The Weibel instability [1] arises in a variety of plasmas including fusion plasmas,
both magnetic and inertial confinement, space/astrophysical plasmas, as well as
in plasmas created by high-intensity free-electron X-ray laser pulses. The Weibel
instability is of significant interest since it generates quasi-stationary magnetic
fields, which can account for seed magnetic fields in laboratory [2] and astrophysical
plasmas [3]. The purely growing Weibel instability in a non-Maxwellian plasma
is excited by the anisotropy of the electron distribution function. The linear and
nonlinear aspects of theWeibel instability in classical electron–ion plasmas are fully
understood [4].
However, in dense plasmas, such as those in compact astrophysical objects (e.g.

the interior of the white dwarfs, neutron stars/magnetars, supernovae), as well
as in the next-generation intense laser–solid density plasma experiments [5], in
nanowires and in micromechanical systems, one notices the importance of quantum
electron tunneling effects [6] at nanoscales. In dense quantum plasmas, the de
Broglie wavelength associated with the plasma particles is comparable to the inter-
particle spacing, and one uses either the Wigner–Maxwell equations [7] or quantum
hydrodynamical models [8] to investigate numerous collective interactions [5]. To
study quantum effects in plasmas, Klimontovich and Silin [9] derived a general
kinetic equation for the quantum plasma, and linearizing that equation they ob-
tained linear dispersion relations for transverse electromagnetic (EM) as well as
longitudinal waves. The latter have also been studied by Pines [10], who reported
the dispersion of electron plasma oscillations involving the Bohm potential [6] that
causes electron tunneling.
In this letter, we present new aspects of theWeibel instability in an unmagnetized

quantum plasma. For our purposes, we use the dispersion relation k2c2/ω2 = εtr
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for the EM waves, with the following transverse dielectric permeability [9,11]

εtr = 1 −
∑
α

ω2
pα

ω2 +
∑
α

2πq2
α

�ω2 ·
∫

d3p

ω − k · vv2
⊥

[
f0α

(
p+

�k
2

)
− f0α

(
p− �k

2

)]
, (1)

where k is the wavevector, c is the speed of light in vacuum, ω is the wave frequency,
ωpα is the plasma frequency of the particle species α, qα is the charge, � is the
Planck constant divided by 2π, f0α is the equilibrium distribution function, pα is
the momentum. In the non-relativistic limit, we have pα = m0αv, wherem0α is the
rest mass and v is the velocity vector. Using the notation v+ �k/2m0α → v in the
first integral and v− �k/2m0α → v in the second, (1) is rewritten in the form

εtr = 1 −
∑
α

ω2
pα

ω2 +
∑
α

2πq2
α

�ω2

×
∫

d3v v2
⊥f0α (v)

(
1

ω + �k2/2m0α − k · v − 1
ω − �k2/2m0α − k · v

)
. (2)

Let us choose an anisotropic distribution function

f0α = n0αAα exp
(

−m0αv2
⊥

2Tα⊥
−

m0αv2
‖

2Tα‖

)
, (3)

where n0α is the equilibrium density, Tα⊥ (Tα‖) is the temperature transverse
(parallel) to k. The above distribution function can also be expressed as

f0α = n0αfα (v2
⊥)δ(vz ) or f0α = n0αfα (v2

⊥)δ(vz − u0z ), (4)

where u0z is the equilibrium drift along the z-axis in a Cartesian coordinate system.
Focusing on transverse EM waves propagating along the z-axis, we can take

k = (0, 0, k) and k · v = kvz , and introduce

1
2
m0α

∫
d3v v2

⊥fα (v⊥, vz ) = m0αn0α

〈
v2

⊥
2

〉∫
dvz f0α (vz ), (5)

to rewrite (2) as

εtr = 1 −
∑
α

ω2
pα

ω2 +
∑
α

ω2
pα

ω2�

m0α 〈v2
⊥〉

2

∫
dvz f0α (vz )

(
1

ω+ − kvz
− 1

ω− − kvz

)
, (6)

where ω± = ω ± �k2/2mα0 . We note that in the case of the Maxwellian distribution
we would have (1/2)m0αn0α 〈v2

⊥〉 = n0αTα⊥.
We now consider some special cases for an electron plasma, with fixed ion back-

ground. First, choosing f0α = δ(vz ), we obtain

k2c2

ω2 = 1 −
ω2
pe

ω2

(
1 +

k2〈v2
⊥〉

2(ω2 − η2)

)
, (7)

where ωpe = (4πn0ee
2/m0e)1/2 is the electron plasma frequency and η = �k2/2m0e.

Supposing that ω2�η2 , we obtain from (7)

ω2 = k2c2 + ω2
p

(
1 − k2〈v2

⊥〉
2η2

)
. (8)

Equation (8) predicts a purely growing quantum instability if 2〈v2
⊥〉m2

0e > �
2k2(1+

k2c2/ω2
pe). It should be stressed that if in the expression (6) f0(vz ) is the Maxwellian
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distribution function of the form f0(vz ) = (m0e/2πTe‖)1/2 exp(−m0ev
2
z /2Te‖), then

by assuming |ω − kvz |��k2/2m0e in the integral of (6), one would obtain the
dispersion relation (8), which shows that this expression does not depend on the
parallel electron temperature.
Equation (7) indicates that the quantum effect can stabilize theWeibel instability

for short wavelengths. We observe that (7) has four roots, two of which are the low
frequencies (ω�ωpe). From (7) we obtain

ω2 = η2 −
ω2
pek

2〈v2
⊥〉

2(ω2
pe + k2c2 − η2)

. (9)

In order to estimate the wavelengths for which the quantum effect can stabilize
the Weibel instability, we suppose that ω2

pe ∼ k2c2 . This leads to a condition of
stabilization from (9)

�
2k2

m2
0e

> 〈v2
⊥〉 or

Te⊥
2m0e

.

Next, we study the kinetic quantum effect in plasmas. In the following, we assume
that the distribution function f0(vz ) is of the form

f0(vz ) =
1

v‖
√

π
exp

(
−v2

z

v2
‖

)
, (10)

where v‖ = (2Te‖/m0e)1/2 . Introducing the dimensionless quantities

u =
vz

v‖
, z± =

ω ± η

kv‖
,

we can express (6) as

εtr = 1 −
ω2
pe

ω2 +
ω2
p

ω2

〈m0ev
2
⊥/2〉

�kv‖

1√
π

∫ +∞

−∞
du e−u2

(
1

z+ − u
− 1

z− − u

)
. (11)

Here the integral (1/
√

π)
∫

(z − u)−1 du exp(−u2) = −i
√

πw(z), where

w(z) = exp(−z2)
(

1 +
2i√
π

∫ z

0
exp(t2) dt

)
. (12)

The function w(z) is related with the function I+(z) through

I+(z)
z

= −i
√

πw(z), (13)

and the asymptotes of I+(z) are

I+(z) =

⎧⎨
⎩

1 +
1

2z2 +
3
z4 + · · · − i

√
πz exp(−z2) for |z|�1 and |Im z|�1,

−i
√

πz(1 − z2) + 2z2 for |z|�1.
(14)

We now rewrite the expression (11) as

εtr = 1 −
ω2
pe

ω2 +
ω2
pe

2ω2

m0e〈v2
⊥〉

�kv‖

(
I+(z+)

z+
− I+(z−)

z−

)
. (15)
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Consider the case z±�1, so that (15) can be written as

k2c2

ω2 = 1 −
ω2
pe

ω2

(
1 +

k2〈v2
⊥〉

2(ω2 − η2)

)
+ 2i

√
πω2

pe

ω2

m0e〈v2
⊥〉

2�kv‖
sinh

(
�ω

2Te‖

)
exp

(
−ω2 + η2

k2v2
‖

)
.

(16)

We specifically note here that if sinh(�ω/2Te‖) � 1, then we obtain the result which
we call the quantum damping. In the opposite case, that is, �ω/Te‖�1, we obtain
the classical damping.
In the low-frequency limit, namely ω2�ω2

pe, (16) admits solutions of the form
ω = ωr + iωi, where the real and imaginary parts of the frequency are given by,
respectively,

ωr =
(

η2 −
ω2
pe

2(ω2
pe + k2c2)

〈v2
⊥〉k2

)1/2

, (17)

and for the quantum Landau damping (QLD)
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√

π
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pe

ω2
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)2
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)
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‖

)
. (18)

Next, for z±�1, we have I+(z) = −i
√

πz(1 − z2) + 2z2 , and for the last term in
(15) we obtain z−1

+ I+(z+) − z−1
− I+(z−) = (2η/kv‖)+ 2i

√
π(η/kv‖)ω/kv‖. In such an

approximation, we obtain

εtr = 1 −
ω2
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ω2

(
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⊥〉
2Te‖

)
+ i

√
π
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2Te‖

ω2
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ωkv‖
,

or

k2c2 + ω2
pe

(
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)
− i

√
π
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⊥〉

2Te‖

ω2
peω
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which admits the solution

ω = −i
2√
π

Te‖

m0e〈v2
⊥〉

kv‖

ω2
pe

[
k2c2 + ω2

pe

(
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2Te‖
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. (20)

Equation (20) admits a purely growing instability if

m0e〈v2
⊥〉

2Te‖
>

k2c2 + ω2
pe

ω2
pe

. (21)

Finally, we consider the range of frequencies ω+�kvz �ω− (Fig. 1), or |z+ |�1 and
|z−|�1. Clearly such situation can be realized in a quantum case alone. In this case,
(15) reduces to

εtr = 1 −
ω2
pe

ω2 +
ω2
pe

ω2

m0e〈v2
⊥〉

2�kv‖

(
1
z+

− 2z− + i
√

π

)
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which yields, in the first approximation,

εtr = 1 −
ω2
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ω2

(
1 − i

√
π
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⊥〉

2�kv‖

)
. (23)
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Figure 1. Ranges of interactions of the electrons with a wave for a distribution over
velocities.

Accordingly, in this case, the dispersion relation reads

ω2 = ω2
pe

(
1 − i

√
π

m0e〈v2
⊥〉

2�kv‖

)
+ k2c2 . (24)

As is well known, the classical Weibel instability is a purely growing instability.
We now show that the quantum effect leads to a new type of Weibel instability,
which we refer to as the Weibel oscillatory instability. To this end, we rewrite (24)
as

ω = ±
√

ω2
pe + k2c2(1 + Q2)1/4

(
cos

ϕ

2
− i sin

ϕ

2

)
, (25)

where ϕ = arctg Q and

Q =
√

πω2
pe

(ω2
pe + k2c2)

m0e〈v2
⊥〉

2�kv‖
.

Let us consider two cases. First, for Q�1 and ϕ ∼ Q the real and imaginary
parts of the frequencies, deduced from (25), are

ωr ≈ ±
√

ω2
pe + k2c2 , (26)

ωi = ±
√

πω2
pe√

ω2
pe + k2c2

m0e〈v2
⊥〉

2�kv‖
. (27)

More vigorous effect is obtained when Q�1. Namely, in this case ϕ ∼ π/2, and
we have

ωr = ωi = 0.7
√

ω2
pe + k2c2Q1/2 . (28)
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To summarize, we have investigated the quantum mechanical effects on the
Weibel instability in an unmagnetized plasma containing electron energy aniso-
tropy. It is shown that the quantum effect stabilizes the Weibel instabilities, but
a new type of Weibel instability, the quantum Weibel instabilities, are found.
These instabilities describe the quantum wave excitation with slow damping by
the quantum Landau mechanism. We have demonstrated the possibility of a novel
oscillatory Weibel instability, which is not found in [12,13]. The Weibel instability
reported here may be responsible for the generation of non-stationary magnetic
fields in dense astrophysical objects, as well as in the next-generation intense
laser–solid density plasma experiments. The random walk of the electrons in non-
stationary magnetic fields can produce anomalous electron transport at quantum
scales in dense plasmas.
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