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Different conventions are used to write binary ex­
change reactions between cations of unlike charges 
(Sposito 1984). There is often a "seemingly arbitrary" 
use of cation equivalent fractions rather than cation 
mole fractions in the selectivity constant expressions 
(McBride 1994). The intent of this Note is use config­
urational entropy calculations in the cation-exchange 
process to obtain an apparent equilibrium constant that 
1) is consistent with configurational entropy calcula­
tions, 2) eliminates the confusion on using end-mem­
ber mole fractions versus cation equivalent fractions, 
3) predicts the observed change in the conventional 
selectivity constant favoring more site occupancy of 
the higher valence cation as its site occupancy increas­
es (McBride 1994) and 4) is consistent with the 2-
parameter Langmuir power-exchange function used to 
fit experimental data (Langmuir 1997). 

BINARY CATION EXCHANGE 

In the literature, binary exchange reactions involv­
ing divalent and monovalent cations are usually writ­
ten between end-member solid-solution components 
with unequal numbers of exchange sites (McBride 
1994, Equation [3.21]): 

M2+ + 2BSed = 2B+ + MSed2 [1] 

The end members BSed and MSed2 form the solid so­
lution and they contain 1 and 2 negative exchange 
sites, respectively. The selectivity constant for Equa­
tion [1] is usually defined following the Gaines-Tho­
mas convention, which uses cation-equivalent frac­
tions (X) on the exchange sites (Gaines and Thomas 
1953) (McBride 1994, Equation [3.23]): 

[2] 

where a is an aqueous activity and KGT is the Gaines­
Thomas selectivity constant. In practice, the aqueous 
activity is often approximated by the molality or mo-

larity in Equation [2] (Stumm and Morgan 1981, 
Equation 45). 

An alternative selectivity constant for Equation [1] 
follows the Vanselow convention, which uses cation 
mole fractions (X) on the exchange sites to define a 
selectivity constant Kv (Vanselow 1932). Equation [3] 
uses the mole fractions of MSed2 and BSed, which are 
identical to the mole fractions of M2+ and B + on the 
exchange sites: 

Kv = [(aB+)2/aM2+][XMsed/(XBsed)2] [3] 

The thermodynamic eqUilibrium expression of 
Equation [1] can be written in terms of activities, a, 
for the aqueous components and the ideal activities, 
aO, and activity coefficients, >-, for the end-member sol­
id solution components: 

K. = [(aB-)2/aM2+][OOMSed/(aOBSed)2][>-Msed/(>-ssed)2] [4] 

in which K., the thermodynamic equilibrium constant 
of Equation [1], is dependent upon the standard states 
of the components. The activity a of a solid compo­
nent is related to aO by: 

a = a°>- [5] 

where >- accounts for deviations from ideal mixing 
such as steric effects on the placement of cations. The 
term aO is usually assumed to equal the mole fraction 
in the solid solution. As reiterated below, aO is com­
puted from .1.Sconf, the increase in configurational en­
tropy due to ideal mixing on the lattice sites. 

The question arise as to which selectivity constant, 
Equation [2] or [3], is consistent with the thermody­
namic eqUilibrium expression, Equation [4]. The activ­
ity ratio of the solid components in Equation [4] can 
be combined with' the thermodynamic eqUilibrium 
constant to make an apparent eqUilibrium constant, 
K.[(>-BSed)2l>-MSed,]. If this apparent eqUilibrium constant 
is equal to K GT, then: 
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[6] 

And if the apparent equilibrium constant is equal to 
K", then: 

[aOMSed/(aOBSed)2] = [XMSed/(XBSed)2] [7] 

aSconf is calculated for different mixing scenarios to 
determine aOMsed/(aOBScd)2 to validate Equations [6] and 
[7] . 

By definition of an ideal mixture for a 2-component 
lattice: 

aSCOnf = -R(X I In a OI + Xz In a 02) [8] 

where R is the gas constant and X is a mole fraction 
(equal to the moles of the component divided by the 
total moles in the mixture). Boltzmann's relation, ap­
plied to random mixing on the lattice sites, is: 

aSCOnf = (RIA,,)ln[Om;/(O 102)] [9] 

Av is Avogadro's number, Om;x is the number of distin­
guishable permutations in the mixture and 0 1 and Oz 
are the number of distinguishable permutations in the 
pure end members. The permutations are based on the 
assumptions defining ideal mixing and are computed 
using the multinomial coefficient and Stirling's ap­
proximation. Following the procedure of Temkin 
(1945), Equation [9] is recast in the form of Equation 
[8], and the ideal activity terms are obtained by com­
parison (Stoessell 1979, 1984). The computation of 
configurational entropy of mixing is covered in stan­
dard thermodynamic textbooks (Denbigh 1981), and 
only the results are given below. In this study, the 
same assumptions used in the mixture to define mixing 
on the lattice sites were also used in the pure end 
members. 

The solid solution is formed by mixing N end-mem­
ber components of MSed2 and BSed in which N MSed, 
+ N BSed = Av. The exchange sites can be filled with or 
without maintaining local electrostatic balance. The 
absence of local electrostatic balance implies random 
mixing of NM, + cations and N B+ cations with NE empty 
sites on the lattice. Equation [9] can be shown to be: 

aSconf = -R[XMsed,ln(XM)2 + XBSedln(XB)] [10] 

leading to: 

[11] 

The maintenance of local electrostatic balance re­
quires random mixing of M2+ as part of a unit of 2 
sites in which 1 site is empty. Equation [9] can be 
shown to become: 

aSCOnf = -R[XMSed,In(XMSed,) + XB5edIn(XBSed)] [12] 

leading to: 

aOMSed/(aoBSed)2 = XMSed/(XBSed)2 [13] 

Neither Equation [11] nor [13] is equal to Equation 

[6] ; however, Equation [13] is equal to Equation [7]. 
Hence, for cation exchange between monovalent and 
divalent cations involving solid-solution end members 
with unequal numbers of exchange sites, the assump­
tion of local electrostatic balance leads to the use of 
cation mole fractions on the exchange sites (Vanselow 
convention) in Equation [3]. No mixing scenario leads 
to the use of cation equivalent fractions (Gaines-Tho­
mas convention) in Equation [2]. 

An alternative to Equation [1] is to use end mem­
bers in the solid solution with equal numbers of ex­
change sites. The resulting reaction for cation ex­
change of B+ with M2+ follows the Gapon convention 
(Gapon 1933) with integer subscripts: 

M2+ + B2Sed2 = 2B + + MSed2 [14] 

Each of the end-member components (B2Sedz and 
MSed2) forming the solid solution contain 2 lattice 
sites. 

The thermodynamic equilibrium expression of 
Equation [14], written in terms of a for the aqueous 
components and aO and l\ for the end-member com­
ponents in the solid solution, is : 

Kt> = [(aB+ )2/aM ,· ][a"MSed/a"BzSed,][AMSed,/l\B,Sed,] [15] 

in which Kb is a thermodynamic equilibrium constant 
dependent upon the standard states of the components. 

The solid solution is formed from mixing N end­
member components of MSed2 and B2Sed2 in which 
N MSedz + NB2Sed2 = Av. Cations could be mixed on the 
lattice sites with or without maintaining local electro­
static balance. The presence of local electrostatic bal­
ance implies exchange of units of 2 adjacent sites, con­
taining 1 M 2+ cation and an empty site with 2 B + cat­
ions. Under these conditions, Equation [9] can be 
shown to become: 

aSconf = -R[XMSed,]n(XMSedz) + XB,sed,ln(XB,sed,)] [16] 

leading to: 

a OMSed/aoBzsed, = [XMsed,iXB,Sed,] = [XM/XB ] [17] 

where the cation-equivalent fractions were substituted 
for the end-member mole fractions because they are 
identical . 

Substituting Equation [17] into Equation [15] gives: 

[18] 

The expression for Kb in Equation [18] assumes stan­
dard states for the end-members having local electro­
static balance. 

An apparent equilibrium constant, K app' can be de­
fined from Equation [18], equal to Kb[AB,Sed/AMSed2]' 
making: 

[19] 

Kapp, like KOT and K" in Equations [2] and [3], predicts 
the observed increase in site occupancy by the higher 
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valance cation upon dilution of the aqueous phase (the 
concentration-charge effect). 

Kapp can be rewritten in terms of KGT in Equation 
[2] as: 

[20] 

Assuming the ratio of activity coefficients of the solid 
components does not vary significantly, KGT has to in­
crease if XM increases, to offset the decrease in XB• 

This is consistent with the observed increase in KGT 
(McBride 1994) as XM increases. 

Cations could have been mixed on the lattice sites 
without maintaining local electrostatic balance. The 
scenario is covered in the next section as a special case 
of the Langmuir power exchange function. The equa­
tion corresponding to Equation [17] is Equation [23] 
below. However, the apparent eqUilibrium constant de­
fined from the process predicts a decrease, not the ob­
served increase (mentioned above) in KGT as X M in­
creases. Consequently, the cation-exchange process for 
Equation [14] appears to favor maintaining local elec­
trostatic balance. 

LANGMUIR POWER EXCHANGE FUNCTION 

Langmuir (1997) reports a compilation of 25°C and 
atm data on binary cation exchange, including 

monovalent and divalent cations, in terms of an em­
pirical power-exchange function (Langmuir 1981). In 
terms of Equation [14], the function is: 

[21] 

in which n varies from 0.8 to 2 and Kex and n are 
constant over a particular aqueous composition range. 
Note that Langmuir's data compilation is for the re­
verse of Equation [14], making his tabulated exchange 
constants the reciprocal of that in Equation [21]. 

Kex in Equation [21] reduces to Kapp in Equation [19] 
if n is 1. A nonunit value of n could have been in­
cluded in Kb in Equation [18], and consequently in Kapp 

in Equation [19], by using different mixing assump­
tions over the 2 moles of exchange sites in a solid 
solution formed from Av units of MSed2 and B2Sed2. 
The value of 1 arises from the assumption of local 
electrostatic balance. 

Without local electrostatic balance, N M ,+ cations and 
N B + cations are randomly mixed with NE empty sites 
on 2 moles of exchange sites. Equation [9] can be 
shown to become: 

~Sconf = -R[XMsed,ln(XM)2 + X B,sed,ln(XB)2] [22] 

leading to: 

[23] 

in which n is 2. 
Partial maintenance of local electrostatic balance 

constrains the mixing process between these 2 ex­
tremes, producing values of n between 1 and 2. Con-

sider the case where half the sites are mixed assuming 
local electrostatic balance and half the sites are mixed 
with random cation placement. For computational pur­
poses, the average composition over each set of sites 
has to be assumed to be the same. Because an indi­
vidual M2+ cation and an empty site can be mixed 
randomly or as a unit, the assumption has to be made 
that they mix the same way in both the mixture and 
in the MSedz end member. Equation [9] can be shown 
to become: 

~Sconf = - R[XMSed,ln(XM )15 + XB2sed,ln(XB)1.5] [24] 

leading to: 

[25] 

in which n is 1.5. 
Values of n below 1 arise from assuming that not 

all sites are available for exchange. Consider the re­
moval of one tenth of the sites from mixing but main­
taining local electrostatic balance over all sites. Again, 
for computational purposes, the average cation com­
position on each set of sites has to be assumed the 
same. Equation [9] can be shown to become: 

Mconf = -R[XMsed,ln(XM)o.9 + X B,sed,ln(XB)O.9] [26] 

leading to: 

[27] 

in which n is 0.9. 
For the sake of consistency, the same assumption 

needs to be used for all binary exchange reactions, that 
is, mixing over all lattice sites, using units of equal 
charge on groups of adjacent sites of equivalent 
charge. Deviations from this assumption are accounted 
for in the activity coefficients in Equation [18] and the 
difference from unity in the exponent in Equation [21]. 

SUMMARY 

Binary exchange reactions between divalent and 
monovalent cations can be written to end-member 
components having unequal numbers of exchange sites 
(Equation [1]). The conventional selectivity constants 
are based on such a reaction. Increases in configura­
tional entropy of mixing due to cations mixing on the 
exchange sites are consistent with the use of cation 
mole fractions (Equation [3]), not cation equivalent 
fractions (Equation [2]), in the selectivity constant. 

Binary exchange reactions between divalent and 
monovalent cations can also be written to end-member 
components having equal numbers of exchange sites 
(Equation [14]). The end-member mole fractions are 
equal to the cation equivalent fractions. The assump­
tion of local electrostatic balance produces an apparent 
eqUilibrium constant (Equation [19]) that predicts ob­
served changes in the Gaines-Thomas selectivity con­
stant (Equation [2]) favoring site occupancy by a high­
er valence cation as its site occupancy increases. The 
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apparent equilibrium constant is also identical to the 
exchange constant in the Langmuir power-exchange 
function having an exponent of 1. Nonunity exponents 
in the Langmuir power-exchange function are ex­
plained by deviations from maintenance of local elec­
trostatic balance and by removal of sites from mixing. 
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