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Abstract

We examined a Late Holocene sea-level stillstand using phreatic overgrowths on speleothems (POS) recovered from Medvjeđa Špilja [Bear
Cave] (northern Adriatic Sea) from −1.28 ± 0.15 m below present mean sea level. Different mineralogical analyses were performed to char-
acterize the POS and better understand the mechanisms of their formation. Results reveal that the fibrous overgrowth is formed of calcite
and that both the supporting soda straw and the overgrowth have very similar trace element compositions. This suggests that the drip-water
and groundwater pool from which the POS formed have similar chemical compositions. Four subsamples were dated by means of uranium-
series. We found that ca. 2800 years ago, the relative sea level was stable for about 300 years at a depth of approximately −1.28 ± 0.15 m
below the current mean sea level. This finding roughly corresponds with the end of a relatively stable sea-level period, between 3250 and
2800 cal yr BP, previously noted in the southern Adriatic. Our research confirms the presence of POS in the Adriatic region and establishes
the Medvjeđa Špilja pool as a conducive environment for calcite POS formation, which encourages further investigations at this study site.
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INTRODUCTION

In paleo sea-level research, various indicators, including sedimen-
tological, geomorphological, archaeological, biological, and his-
torical sources are used and often combined (e.g., Faivre and
Fouache, 2003; Faivre et al., 2013; Shennan et al., 2015). In coastal
caves, hiatuses in speleothem growth signal a switch between
vadose and phreatic conditions. Gascoyne et al. (1979) and Li
et al. (1989) are among the first researchers who documented
mineralogical changes on the surfaces of such hiatuses.
Furthermore, investigations on previously submerged speleo-
thems that contain marine biogenic overgrowths and marine bor-
ing organisms (e.g., Alessio et al., 1992, 1994; Antonioli and
Oliverio, 1996) provide an additional tool to assess past sea-level
positions in littoral caves (Onac et al., 2012; van Hengstum et al.,
2015). The study of submerged speleothems in sea-level recon-
structions has contributed significantly to the understanding of
regional and global sea-level changes, especially for the western
(Antonioli et al., 2002, 2004a, 2021; Bard et al., 2002; Stocchi
et al., 2017) and the eastern Mediterranean basin (Surić et al.,
2005, 2009; Surić and Juračić, 2010). Based on the age of marine

overgrowth on speleothems, segments of the relative sea-level
curve for the last 220 ka, which have been constructed for
the eastern Adriatic coast (Surić and Juračić, 2010), are in general
agreement with the global sea-level curve. The Early Holocene
sea-level rise reached −41.5 m at ca. 9.2 ka and −10 m at ca.
7.8 ka and rose to −1.5 m by ca. 3.4 ka (Surić and Juračić, 2010).

Sea-level studies based on phreatic overgrowths on speleo-
thems (POS) have been conducted since the early 1970s (Ginés
and Ginés, 1974). Unlike the submerged speleothems and bio-
genic encrustations, POS allow precise sea-level reconstructions
(Vesica et al., 2000; Tuccimei et al., 2010; Polyak et al., 2018;
Onac et al., 2022). POS are secondary depositional structures (car-
bonate encrustations) that precipitate in coastal caves at the water
table around pre-existing vadose speleothems in favorable geochem-
ical conditions (Ginés et al., 1981; Fornós et al., 2002). POS grow at
sea level and within the tidal range for as long as sea level remains
at the same elevation (Dumitru et al., 2021) (Fig. 1). These over-
growths are composed of aragonite and/or calcite, with the latter
being more common. Each POS has an exact geographic location,
its elevation can be measured with high precision, its morphology
provides an indicative meaning (mean sea level), and it is datable
byuranium-seriesmethod.These characteristicsmakePOS ideal sea-
level index points (van de Plassche, 1986), and thus excellentmarkers
of sea-level change with local and global significance.

In Mediterranean littoral caves (within ∼300 m from the
coastline), the hydraulic gradient between location and the sea
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is insignificant, so the cave water table is coincident with sea level,
and was in the past (Dorale et al., 2010). Uranium-series
(U-series) dating has shown that POS normally behave as closed
systems, thus providing reliable ages (Tuccimei et al., 2006, 2011;
Dorale et al., 2010). This allows precise constraint to be placed on
the timing of sea-level change, assuming that sea level remained at
the same elevation for ca. 300 years or more (Polyak et al., 2018;
Dumitru et al., 2021).

According to Ginés et al. (2012), the first description of car-
bonate encrustations (later defined as POS) refers to speleothems
from Coves del Drac (Mallorca) by Rodés (1925) and de Joly
(1929), who assumed that their formation was related to drown-
ing events associated with past water-table elevations. The first
thorough studies of POS as sea-level indicators in littoral caves
of Mallorca began in 1972 when Ginés and Ginés (1974) pro-
posed to relate subaqueous crystallization of speleothems from
Cova de sa Bassa Blanca with past Pleistocene sea stands.
Besides Mallorca, POS have been used for sea-level reconstruc-
tions in Sardinia (Tuccimei et al., 2012), Japan (Miklavič et al.,
2018), and Cuba (De Waele et al., 2017, 2018). POS also have
been identified and described in Bermuda (Harmon et al.,
1978) and Mexico (Jenson et al., 2018). So far, POS-based
research has contributed greatly to the study of sea level, in par-
ticular to precisely characterize the Late Pleistocene highstands,
and to improve the glacial isostatic adjustments for the western
Mediterranean (Tuccimei et al., 2012; Polyak et al., 2018; Onac
et al., 2022). However, some POS that formed during the Late
Holocene (Tuccimei et al., 2010, 2011; Miklavič et al., 2018)
and, during the last 2800 years in particular, show sea-level stabil-
ity throughout that period (Onac et al., 2022).

Considering the abundance of karst forms in Croatia, including
anchialine caves (Surić et al., 2010), one of the goals of the
SEALeveL project (HRZZ IP-2019-04-9445) was to find POS in
the Adriatic that would enable more robust relative sea-level change
studies and to combine these results with results from othermarkers.
The research presented herein is based onmineralogical andU-series
analyses of the first POS discovered in the Adriatic Sea. Our aim is to
characterize the POS and the environment of its formation, and to
define the period of relative the sea-level stability related to its growth.

STUDY SITE

POS were found in Medvjeđa Špilja [Bear Cave] on Lošinj Island
(Kvarner region, northern Adriatic; Fig. 2), which is located in the

complex contact zone between Adriatic foreland, Istrian
Peninsula, and the external Dinarides (Korbar, 2009; Schmid
et al., 2020; van Hinsbergen et al., 2020). According to Špelić
et al. (2021), this area is dominated by an alternation of structural
lows and highs, mainly oriented N–S, NNW–SSE, and NW–SE
(Fig. 2). A comprehensive overview of the eastern Adriatic tec-
tonic setting is given in Korbar (2009). The area is mainly com-
posed of Carboniferous to Eocene carbonate rocks that were
deposited in shallow-marine environments (Vlahović et al.,
2005). Prevalent strata on Lošinj Island are carbonate deposits
of Cretaceous age, as well as Eocene foraminiferal limestone
and Quaternary loess deposits (Korbar, 2009).

Formation of caves in karst is predominantly controlled by
structural characteristics of the area, as is the case with
Medvjeđa Špilja (Fig. 2b). Tectonics and favorable climatic condi-
tions, along with Pliocene and Pleistocene sea-level fluctuations,
caused carbonate areas to emerge, leading to the karstification
of today’s eastern Adriatic coast (Surić et al., 2010, 2014).
During the Late Pleistocene–Holocene marine transgression,
karst features such as caves became submerged. The speleothems
within these caves now provide a potential record for reconstruct-
ing Quaternary relative sea-level changes.

Medvjeđa Špilja is an anchialine cave developed in Cretaceous
limestone and situated in the central part of the Lošinj Island,
∼55 m from the sea and 17.5 m asl (Fig. 1). The entrance to
the cave is through a narrow opening formed along a vertical fis-
sure that extends perpendicular to the coast (Malez and Božičević,
1965). The entrance leads to a bell-shaped chamber with a lake at
the bottom. The rest of the cave is a mostly submerged channel
with a total length of 245 m stretching along a NNE–SSW trend-
ing fissure (Jalžić, 2007) parallel to the coast (Fig. 3) The cave is
linked to the sea throughkarstified fractures. The connectionbetween
fresh groundwater and the sea is rather direct, as often documented
along the eastern Adriatic coast (Bonacci and Roje-Bonacci, 2003).
Short time in-situ measurements (see Methods) revealed a tidal
range of 44 cm, whereas the long-term average in the area is 48 cm
(Faivre et al., 2011b). The existence of cave bear (Ursus spelaeus)
remains (Malez et al., 1979) and collapse material in the seaward
part of the cave, as observed in recent diving explorations, suggest
an open horizontal connection to the coast in the past. The cave is
rich in speleothems, which are mostly submerged. Salinity increases
with depth. The halocline was observed at a depth of approximately
−2 m during dive prospecting.

MATERIAL AND METHODS

Sampling and depth measurement

We conducted detailed cave diving explorations in March and
October 2021, resulting in the recovery of suitable speleothems
from all submerged parts of the cave. Sample MLp1 is a stalactite
found at Little Lake passage rooftop (Fig. 3a) and collected in
growth position at the uppermost part, at a depth of −1.28 ±
0.15 m. The speleothem is ∼8 cm long, tapering from 0.5 cm at
the top to ∼2.0 cm at the base. This widening towards the base
gives the speleothem a rounded shape, which is consistent with
the morphology of POS. Its surface is light yellowish (Fig. 4).
After collection, the sample was cut in half by diamond disc
attached to a rotary drill mounted to a special constructed slider.

Sampling depth was measured on several occasions with the
pressure depth-meter built in the Suunto EON steel diving com-
puter, which has an accuracy of ± 1% and resolution of ± 0.1 m.

Figure 1. Conceptual model of phreatic overgrowths on speleothem (POS) formation
(after Dumitru et al., 2021); msl = mean sea level.
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All measurements revealed the same depth. To establish the depth
of measurements, the uppermost part of the soda straw was cho-
sen as reference point. The elevation of POS paleo-levels pre-
sented here is the sum of the depth at which the sample was
taken and length of the sample, referenced to the current mean
sea level (MSL).

To confirm the connection between groundwater and open
sea, as well as the tidally induced oscillation within the cave
pool, both sea-level and groundwater-level fluctuation were
recorded using a HOBO U20-001-02 TI water level logger. The

device measures pressure and converts it to water elevation
using the HOBOware-Pro software package with a typical accu-
racy of 0.3 cm (Onset, 2022). The logger was deployed during
the spring tide period between October 8 and October 11. One
logger was placed inside the cave in Little Lake (Fig. 3), whereas
the second one was placed in the sea at same depth. A high-
resolution (10-min) recording was set in order to eliminate the
possibility of a false signal caused by waves. The measurements
recorded a spring tide range of 44 cm, and the high tide occurred
on 9 October 2022 at 20:55 (CMHS, 2022). To account for

Figure 2. Study site and geologic setting (based on the Geological Map of the Republic of Croatia, scale 1:300 000, Croatian Geological Survey); MNE = Montenegro.

Figure 3. Medvjeđa Špilja (Bear Cave) longitudinal profile. (a, b) Cross-sectional and plan maps, (c) position in relation to the sea.
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atmospheric pressure, we used data from the Croatian
Meteorological and Hydrological Service Weather Station of
Mali Lošinj.

X-ray diffraction (XRD) analysis

The mineralogy of the phreatic overgrowths was determined
by XRD. The analysis was performed at the Department of
Geology, Faculty of Natural Sciences and Engineering, University
of Ljubljana (FNSE-UL), Slovenia, using a Philips X-ray diffrac-
tometer generator PW 3830. About 1–3 g of sample was drilled
from the outer part of the POS (Fig. 4) with a dental drill and sub-
sequently crushed in an agate mortar.

Scanning electron microscopy–energy dispersive spectroscopy
(SEM–EDS) analyses

The analyses focused on characterizing the structural and chem-
ical differences between the supporting soda straw and over-
growth at the macroscopically visible boundary between the two
units. Analyses were performed at FNSE-UL by ThermoFisher
Scientific Quattro S with Schottky effect field-emission gun
SEM (FEG–SEM) with an Oxford Instruments UltimMax 65
energy-dispersive spectrometer (EDS) on the polished surface of
the POS longitudinal section. Structural etching (Herwegh,
2000) was used to reveal the fabric structure and helped distin-
guish this boundary on SEM images. Elemental mapping and
spot analyses were used for chemical characterization of the afore-
mentioned parts of the POS. Spot analyses targeted individual
crystals on both sides of the boundary.

X-ray fluorescence (XRF) analysis

XRF analysis aimed to geochemically characterize the POS and to
determine if there is any difference in trace element composition
between the support and the overgrowth. Special attention was
paid to Mg since it was reported in previous studies to be higher
in overgrowths (Vesica et al., 2000; Ginés et al., 2005; Csoma

et al., 2006). MLp1 was analyzed with a Thermo Scientific
Niton XL5+ XRF instrument having a 3-mm analyzing spot
size at FNSE-UL. Nearly pure and partly dolomitized limestone
standards (NIST-1d and NIST-88b, respectively) were used for
calibration to obtain good accuracy of trace elements in a
CaCO3 matrix. We conducted three spot analyses on the support
(#1–3), and five spot analyses on the overgrowth (#4–8; three on
the cut surface [#4–6] and two on the outer surface [#7, #8] where
the natural surface was abraded off by a dental drill—the resulting
powder was used for XRD analysis) (Fig. 4).

U-series dating

To obtain the deposition time of our POS, four subsamples were
taken across the thickest part of the phreatic overgrowth. To docu-
ment the age when the cave became submerged, the first subsam-
ple was drilled 1 mm away from the pre-existing soda straw. The
second and third subsamples are located between the vadose soda
straw and POS’s external surface, while the last subsample comes
from the outermost part of the POS (Fig. 4). The pre-existing soda
straw was also dated. All subsamples were dated by means of
U-series disequilibrium method on a Thermo Neptune
Multi-Collector Inductively Coupled Plasma Mass Spectrometer
(MC-ICPMS) at the Department of Earth and Planetary
Sciences, University of New Mexico, USA. Details on this method
are available in Asmerom et al. (2006).

Since all four POS subsample dates are within a few hundred
years of each other (using the often-assumed atomic ratio value
of initial 230Th/232Th to be 4.4 ppm based on the bulk Earth
232Th/238U value of 3.8 [Cheng et al., 2013]), we calculated
232Th/238U–234U/238U–230Th/238U isochron age that represents a
more robust overall age for the POS. The isochron was con-
structed using IsoplotR (Vermeesch, 2018), which yielded a mea-
sured initial 230Th/232Th atomic ratio of 9.7 ± 0.86 ppm, which is
double the value traditionally used in calculating U-series ages
(4.4 ± 2.2 ppm). With the measured initial 230Th/232Th atomic
ratio value, we re-calculated all four POS ages (at 1, 4, 6, and

Figure 4. (a, b) External morphology and longitudinal section
of phreatic overgrowth on speleothems (POS) sample MLp1,
showing locations of samples for U-series dating (black
marks); note the ∼1-mm thick overgrowth layer immediately
around the support (a pre-existing stalactite). (c) XRF spot anal-
yses (red) on the halved and outer surface of the POS.
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8 mm). The zero datum for all ages is AD 1950 and all ages are
reported with absolute 2σ uncertainty (Table 1). Then we weight-
averaged those ages and uncertainties to produce an overall robust
time of deposition for the POS.

RESULTS

Diving expeditions resulted in discovery of the first POS located in
the Adriatic Sea. The sample MLp-1 is an 8-cm long calcite soda
straw with a phreatic overgrowth (Fig. 4). The overgrowth has an
uneven deposition pattern over a regularly shaped soda straw,
widening towards the bottom and terminating in a rounded
base (Fig. 4), a feature commonly observed in Mallorcan caves
(Ginés et al., 2012). An ∼1 mm thick darker overgrowth layer
immediately around the pre-existing support is easily visible
(Fig. 4).

XRD, XRF, and SEM–EDS analyses

Calcite was the only mineral detected phase in the POS. The
etched surface revealed the shapes of the crystals. The support
crystals tend to be smaller and etch differently than the over-
growth crystals, which gives them a fuzzier appearance (Fig. 6a).
The overgrowth crystals often show epitaxial growth on top of
the soda straw support crystals (Fig. 6b), which differs from pre-
viously observed boundaries between the support and the over-
growth (Ginés et al., 2012; Miklavič et al., 2018). Zoning can be
observed in both support and overgrowth crystals, although it is
more common in overgrowth crystals. The ∼1-mm thick, dark
overgrowth layer that is easily visible with the naked eye (Fig. 4)
is much more difficult to identify on SEM images. The crystals
are larger and more elongated with the long crystallographic
c-axis being perpendicular to the support surface away from the
boundary. Macroscopically, this gives a fibrous appearance to
the crystals. The results of XRF analysis indicate that the concen-
tration of Mg in calcite is equally low in the support and the over-
growth (Fig. 5), ranging between 0.44 and 0.62 wt%. Other
detected elements (Si, Al, Fe, Sr, and Ba) also were present in
all sampled areas of the POS and, just as Mg, they did not
show any clear trend in their distribution across the POS (Fig. 6c).

EDS elemental mapping and spot analyses showed the pres-
ence of Mg, Si, Al, Na, Cl, and S. Mg content is uniformly

distributed across the POS. The occurrence of Si in clusters or
associated with Al, as shown on elemental maps, indicates that
these elements are related to quartz and clay particles incorpo-
rated in the POS (Fig. 6d); they are present in the support as
well as the overgrowth. Na and Cl are always closely associated,
suggesting the presence of halite (NaCl). They were detected
along grain boundaries around a pore. In summary, the SEM–
EDS analyses show there is no unequivocal difference in trace
element content between the POS support and overgrowth and
that the difference between the two parts of the POS is only
structural.

U-series chronology

U-series ages were derived from five subsamples of sample MLp1
(Fig. 4). Detailed uranium–thorium data for sample MLp1 (Fig. 4)
are provided in Table 1. The soda straw stalactite, which repre-
sents growth above the water table, has an age of 5948 ± 228 yr.
The stalactite grew when sea level was lower.

The U-series data for the four POS subsamples at 1, 4, 6, and
8 mm away from the stalactite (see Fig. 4) are all of similar age, if
considering their error (Table 1). We used these results to produce
a 232Th/238U–234U/238U–230Th/238U isochron that yielded an age
of 2795 ± 88 yr. IsoplotR offers a routine, which assumes that ana-
lytical uncertainties are not representative of the true uncertainties
and applies an overdispersion term that reduces the mean square
weighted deviation (MSWD) to unity (Vermeesch, 2018), with
the interpretation that the larger uncertainties assigned by the
program are due to geologic scatter. In our case, three of the four
analyses produced an isochron age of 2852 ± 270 yr (MSWD= 9)
without any assumptions. Applying the 4-point isochron-based
detrital thorium correction, we use the weighted average age from
the four U-series dates for the POS of 2759 ± 140 yr (Fig. 7).

DISCUSSION

POS formation

Morphology of the overgrowth depends on the tide-controlled
daily groundwater level fluctuation, substrate shape, length of
growth, and the degree of immersion of the substrate at the
time of formation (Vesica et al., 2000). The development of

Table 1. Summary of the U-series measurement results for the phreatic overgrowth of speleothems sample MLp1.

Lab. label 238U (ng/g) 232Th (pg/g)

230Th/232Th
(AR)

230Th/238Th
(AR)

δ234Um

(‰)
δ234Ui

(‰)
Age uncorr.

(yr)
Age corr.

(yr)

MLp-1
stalactite

166.6 ± 1.0 5533 ± 7 7.2 ± 0.1 0.0777 ± 0.0012 102 ± 4 103 ± 4 7895 ± 128 5948 ± 228

POS-MLp-1
1 mm

388.5 ± 2.4 5521 ± 7 7.6 ± 0.1 0.0340 ± 0.0006 104 ± 4 104 ± 4 3453 ± 65 2624 ± 104

POS-MLp-1
4 mm

388.5 ± 2.4 4230 ± 9 9.7 ± 0.2 0.0348 ± 0.0006 102 ± 2 103 ± 2 3430 ± 63 2760 ± 89

POS-MLp-1
6 mm

448.65 ± 0.9 5440 ± 9 8.9 ± 0.1 0.0355 ± 0.0005 93 ± 3 94 ± 3 3522 ± 55 2880 ± 90

POS-MLp-1
8 mm

460.5 ± 0.4 11051 ± 9 5.4 ± 0.1 0.0423 ± 0.0005 95 ± 2 96 ± 2 4222 ± 57 2808 ± 151

Weight average age of four POS subsamples = 2759 ± 140

Subsample powder sizes range from 60 to 120 mg; 1–8 mm labels reflect the distance from the stalactite outer surface. Initial 230Th/232Th atomic ratio used to correct ages is 0.0000097
(activity ratio = 1.8) ± 10% based on a 4-point isochron. The 232Th/238U–234U/238U–230Th/238U isochron age = 2.80 ± 0.09 yr was calculated using IsoplotR (Vermeesch, 2018). All errors are
absolute 2σ. AR = activity ratio; δ234Um =measured value and δ234Ui = initial value. Zero datum for all ages is AD 1950. Weight average is calculated from the four POS samples.
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phreatic overgrowth (MLp1) around a regularly shaped pre-
existing vadose soda straw is linked to tidal fluctuations, as
depicted in Figure 1. The MLp1 overgrowth (Figs. 4 and 6)
grew over a pre-existing soda straw that was not long enough to
capture the lowest tidal range. In such a case, POS deposition
does not coincide with the full sea-level fluctuation range but
likely records only the upper part of that range (Vesica et al.,
2000; Ginés et al., 2012). Based on the morphology of the
MLp1 overgrowth, it is apparent that the POS deposition records
fluctuations between mean sea level (± 0.15 m) and the high tide,
which is 24 cm above current mean sea level, given the average
tidal range. We presumed that the asymmetric, almost flat-
bottomed shape of the POS indicates its closeness to the mean
sea level, as described in Tuccimei et al. (2010) and Ginés et al.
(2012).

XRD analysis of MLp1 shows that the fibrous overgrowth is
made of calcite. Such overgrowths are also known from
Mallorca, although the majority of the POS with fibrous crystals
on this island are aragonite (Ginés et al., 2012). The calcite over-
growths on Mallorca, however, showed higher Mg concentrations
than the calcitic support, which was attributed to the Mg-richer
brackish water from which the overgrowth calcite precipitated
(Vesica et al., 2000; Ginés et al., 2005; Csoma et al., 2006). The
absence of any distinct difference in trace element content
between the support and the overgrowth in MLp1, as revealed
by XRF and SEM-EDS analyses, therefore indicates that the
drip water and pool water from which the calcite precipitated
must have had a similar composition. In other words, the top-
most layer of the cave pool water column was probably pure
fresh groundwater unmixed with marine water. The
often-observed epitaxial growth of the crystals in POS over the
supporting soda straw (Fig. 6b) indicates a transitional phase in
which the crystals were growing in alternating conditions (i.e.,
as support [while emerged during low tide] and overgrowth
[when submerged during high tide] crystals). This may in turn
explain the occurrence of the distinct dark overgrowth layer
observed with the naked eye around the support (Fig. 4). This
layer might have formed during this transitional period.

Time of deposition and regional relative sea-level context

Studies on Holocene relative sea-level changes in the northern
Adriatic have a long history. This research began with the first evi-
dence of submerged archaeological structures, as documented by
Gnirs (1908) and Degrassi (1955). Subsequent investigations in
Istria, including work by Antonioli et al. (2007), Faivre et al.
(2011a), and Florido et al. (2011), have provided detailed insights
into the last 1600 yr of relative sea-level changes in this region
(Faivre et al., 2019) (Fig. 8). Recent high-resolution relative sea-
level studies have further enriched our understanding of this com-
plex phenomenon (Faivre et al., 2019; Kaniewski et al., 2021).
New paleoenvironmental reconstructions are now available from
Cres Island covering the Late Pleistocene and Holocene
(Brunović et al., 2019, 2020) and from the more distant island
of Pag (Ilijanić et al., 2022). However, data during the period of
POS formation reported here are sparse. Thus, POS can provide
new evidence, which can supplement and improve existing data.

Previous studies of speleothem deposition in Medvjeđa Špilja,
as well as in other Croatian coastal caves (e.g., Surić et al., 2007;
Surić and Juračić, 2010), revealed hiatuses in submerged stalag-
mites that can be used in studies of relative sea-level change.
According to those records, ca. 7000 yr ago, sea level was
∼10 m lower than present, while ca. 3350 yr ago sea level rose
to around −1.5 m (Surić et al., 2007). Speleothem L-1 of Surić
et al. (2007) is a stalactite that had broken off from the roof
and was found in an upside-down position. Detailed analysis
revealed that calcite deposition continued in the new position,
in the form of needle-like deposits, around a previously deposited
stalactite, indicating alternating freshwater/brackish conditions.
Consequently, Surić et al. (2007) and Surić and Juračić (2010)
proposed that the sea level ca. 3350 years cal yr BP had not yet
reached −1.5 m.

The supporting soda straw in the MLp1 sample is 5948 ± 228
years old, indicating vadose conditions during its formation. The
four ages of the POS are slightly reversed, but within their errors
they are essentially the same. Brackish water has to remain stable
for a length of time to become saturated with enough calcite for

Figure 5. Trace element content in the analyzed spots indicated in Figure 4 (red circles).
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deposition that would be recognized as a POS (Polyak et al.,
2018). Therefore, we estimate that around 2759 ± 140 yr sea
level was relatively stable for about 300 years at −1.28 m ±
0.15 m below current mean sea level. Based on our new findings
of POS deposition, we also presume that the needle-like deposits

of L-1 described by Surić and Juračić (2010) represent POS that
formed within the tidal range.

According to isotopic records of eastern Adriatic speleothems,
the Holocene is characterized by many and sudden environmental
changes, whereas the Late Holocene primarily is characterized by

Figure 6. (a) The three parts of the POS as seen macroscopically (left) and under SEM (rigth; the area is indicated by white rectangle on the macroscopic picture).
(b) The boundary between the support and the overgrowth with visible epitaxial crystal overgrowth in the inset picture. (c). SEM image showing the boundary (red
dashed line) between the support and the dark overgrowth layer, and the EDS spot analysis at the support–overgrowth boundary (1 mm dark layer), showing Mg
content. Observe the crystal zoning near spot #3. (d) EDS elemental map of the area shown in (a) showing a uniform distribution of Mg in the calcite across all three
layers, and localized concentration of Si and Al.
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drier conditions (Surić et al., 2021), which were occasionally
interrupted by wet stages (Lončar et al., 2017, 2019). Periods of
relative sea-level stability have been documented along the eastern
Adriatic coast using different RSL markers such as tidal notches
(e.g., Fouache et al., 2000; Antonioli et al., 2004b; Benac et al.,
2004; Marriner et al., 2014) and algal rims (e.g., Faivre et al.,
2019, 2021a, b). Eastern Adriatic tidal notches are interpreted to
have formed during two main periods (Late Antique Little Ice
Age and Little Ice Age) of relative sea-level stability, similar to
findings in other parts in the eastern (e.g., Boulton and Stewart,
2015), central (e.g., Faivre et al., 2013, 2021b), and western
Mediterranean (e.g., Vacchi et al., 2022). The northern Adriatic
notches formed during the Late Antique Little Ice Age (Faivre
et al., 2019), whereas central Adriatic notches formed during
the Little Ice Age, about 500 years ago (Faivre et al., 2013,

Faivre and Butorac, 2018). These periods of relative sea-level
stability have also been observed in the southern Adriatic
(Faivre et al., 2021a, b). Such intervals could be related to periods
of drop in global mean sea level connected to the Northern
Hemisphere global mean cooling noted by Mann et al. (2008),
Ljungqvist (2010), and PAGES 2k Consortium (2013, 2019),
which offset the glacial isostatic adjustment effects (Faivre et al.,
2023).

A period of relative sea-level stability during the Late Bronze
Age and the transition to the Iron Age between 3250 and 2800
cal yr BP was already documented in the southern Adriatic
based on the presence of algal rims on Lopud Island (Faivre
et al., 2021a). Thus, POS data from the Medvjeđa Špilja (formed
around 2.8 ka) provide possible indications of RSL stability in the
northern Adriatic Sea at the end of this period. Dry conditions
during that period were inferred from different proxies through-
out the Mediterranean, including the SPD-1 stalagmite from the
island of Dugi otok. SPD-1 shows that the entire period between
ca. 3.3 and 2.7 ka was dry, although it was interrupted by short
wet events, and true wetter conditions only followed after 2.7 ka
(Lončar et al., 2019). Particularly prominent dry conditions
around ca. 3300 cal yr BP were also observed in lake sediments
from Albania and Montenegro (Zanchetta et al., 2012).

This dry period can also be associated with the cooling phase
in the Aegean Sea, also around 3300 cal BP (Rohling et al., 2002),
and with the severe long-term drought in the Eastern
Mediterranean, which dramatically affected agriculture and trig-
gered societal collapse in the Late Bronze and Iron ages, generally
between 3150–2800 cal yr BP (Kaniewski et al., 2010; Kagan et al.,
2015; Langgut et al., 2015). Overall, the formation of our POS
could be roughly related to the end of the longest Holocene cool-
ing phase in the Mediterranean associated with the 3.2-ka event
characterized by cooling of −0.38 ± 0.19°C, over ca. 320 years
(Marriner et al., 2022).

The above studies directly indicate that relative sea-level
change during the Late Holocene was not linear and provide evi-
dence for the existence of periods of relative sea-level stability that
are likely related to climate conditions (Faivre et al., 2023).
Overall, our new results from Mali Lošinj Island POS correspond
well to the nearby 5000-yr composite relative sea-level curve from
Istria (Faivre et al., 2011a, 2019; Kaniewski et al., 2021), suggest-
ing a similar trend of subsidence in Istria and along the eastern
coast of Lošinj during last 2800 years of ∼0.46 mm/yr (Fig. 8).
The general agreement of the results obtained from POS with pre-
vious local and regional results from the Adriatic and the eastern
Mediterranean confirm POS as a reliable sea-level indicator.

CONCLUSIONS

Speleothem-based research into Pleistocene and Holocene relative
sea-level changes along the eastern Adriatic has traditionally
focused on biogenic encrustations, identified hiatuses, and miner-
alogical shifts within submerged speleothems. Our research in the
Medvjeđa Špilja (Lošinj Island, northern Adriatic) reveals that the
cave hosts a pool environment favorable for phreatic overgrowths
on speleothems (POS) precipitation during sea-level stillstand
conditions. Mineralogical analysis confirmed that speleothem
MLp-1 is made up of calcite and has a typical morphology of
POS, which makes it the first POS found in the Adriatic. The
XRF and SEM–EDS analyses showed that there is no difference
in trace element composition between the support and the over-
growth. Obtained results suggests that the drip water from which

Figure 7. The 232Th/238U–234U/238U–230Th/238U isochron age for the phreatic over-
growth of samples MLp1. (a) The over dispersion routine provided in IsoplotR
(Vermeesch, 2018) produces an age and 2σ absolute uncertainty of 2794 ± 88 years.
(b) The isochron produced from three of the four subsamples yields an age of
2852 ± 270 years.
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the support (calcite soda straw) formed and the upper part of
the water column in the cave pool (from which the overgrowth
precipitated) had the same chemical composition. Based on
uranium-series dating, we conclude that the relative sea level
at ca. 2.8 ka must have remained stable for ca. 300 years at a
depth of approximately −1.28 ± 0.15 m below the current
MSL. Patterns of relative sea-level changes along the eastern
coast of Lošinj Island align with trends seen along the Istrian
coast. This suggests a general subsidence rate of ∼0.46 mm/yr
during the Late Holocene in the study area. Further research
of POS at this study site will enable recording more sea-level
index points, which will enable the development of longer and
more precise curves of relative sea-level change in the northern
Adriatic.
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