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Abstract

The scattering by the perfectly electric conducting (PEC) half-plane and PEC zero thickness
disk placed on parallel planes is considered. The fields are represented in the spectral domain,
i.e. in the domain of Fourier transform. The operator equations with respect to the Fourier
amplitudes of the scattered field are obtained. The kernel functions of these equations contain
poles. After regularization procedure, which is connected with the elimination of the poles,
operator equations are converted to the system of singular integral equations. The convergence
of the solution is based on the corresponding theorems. The scattered field consists of the
plane wave, reflected by the infinite part of the half-plane, cylindrical waves, which appear
as a result of scattering by the edge of the half-plane, and spherical waves, which appear as
a result of scattering by the disk and multiple re-scattering by the disk-half-plane. The
total near-field distribution and far-field patterns of cylindrical waves are presented.

Introduction

Circular disk and half-plane are canonical scattering objects. One can find classical solutions
for scattering by the half-plane based on the method due to D. S. Jones, factorization of the
kernel function of the dual integral equations and integral equations [1–5]. In [6], scattering
of an arbitrary two-dimensional (2D) wave beam is analyzed. In [7], inhomogeneous plane
wave and in [8] the Gaussian beam incidence is considered. In [8], special attention is paid
to the shadow region. In [9], high-frequency asymptotic for the solution of scattering of an
arbitrary 2D field is obtained. In [10, 11], the solution for the half-plane is used to obtain
the asymptotic expressions for the antenna modeling.

The analysis of scattering by zero-thickness perfectly electric conducting (PEC) disk in free
space or layered media with the guaranteed-convergent methods has represented an interesting
electromagnetic problem for decades. In [12, 13], scattering by the circular disk or hole in the
plane is considered with the method of moments. The Fourier amplitudes are expressed in
terms of the series of hypergeometric polynomials, which are obtained as a result of integra-
tion of the Bessel functions. In [14, 15], the power series expansion and spheroidal wave func-
tion is used. In [16], the dual integral equations are obtained and solved with the use of the
method of Kobayashi potentials.

In [17–19], one-dimensional electric-field integral equation in the scalar Hankel transform
domain for the zero-thickness PEC circular patch resonator in multilayered media and
zero-thickness PEC disk buried in a lossy half-space are discretized by means of Galerkin
method.

In [20], scattering by an arbitrarily oriented zero-thickness PEC disk buried in a lossy half-
space is formulated as electric-field integral equations in the vector Hankel transform domain
and discretized with the use of Galerkin method. The matrix coefficients are converted to the
rapidly converging integrals. In [21], the authors perform analytical regularization and discret-
ization within one procedure, namely Galerkin projection on the set of judicious expansion
functions, which are the eigenfunctions of the singular (static) part. The method of analytical
regularization which leads to the Fredholm integral equation of the second kind is successfully
applied to the analysis of the scattering by the finite-thickness thin PEC disk, dielectric disk,
and graphene disk in [22–24]. The problem for the lens based on the disk inside the dielectric
sphere excited by the dipole is reduced to the second-kind Fredholm matrix equation in [25].

Half-plane is an infinite object with an edge. From the mathematical point of view, it results
in the appearance of poles in the kernel function of the integral equations. This requires the
integration over contour in the complex plane. The edge can give us some interesting physical
effects. For example, the PEC disk being not illuminated by the incident wave directly or being
in the node of the standing wave can scatter the waves, which appear due to the edge of the
half-plane.
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In [26], we consider half-plane and disk placed on the same
plane. In this paper, we consider plane wave scattering by PEC
half-plane and disk in more general case, when they are placed
on parallel planes. Here, an additional domain appears, a domain
between the half-plane and the disk. From a mathematical point
of view, this means that we need additional equations to describe
the fields in this domain. From a methodological point of view,
since the number of equations is increased as compared to [26],
we need to introduce new operators which will allow us to write
final equations in a concise form.

In this paper, we express scattered fields in the spectral domain
in terms of the Fourier amplitudes (spectral functions), which are
the Fourier transform of the currents density on the metal. The
total scattered field can be represented as a sum of the fields of
every isolated scatterer and the field which appears as a result
of mutual coupling or re-scattering by the objects [27]. In case

the Fourier amplitudes of the field scattered by the isolated half-
plane and the disk are known, or, in other words, their scattering
operators are known, one can write operator equations for the
scattered field of the whole structure. Since the kernel functions
of these equations can have singularities in the form of poles of
the integrands, some additional mathematical manipulations are
needed to convert them to the solvable integral equations. The
convergence of the solution is based on the corresponding theo-
rems. This approach is successfully applied to the gratings of
the infinite PEC or graphene screens in [28–30]. In [31], scattered
fields consist of the fields of either plane waves or cylindrical
waves, or both. Here, we are going to use this approach to the
structure where scattered field consists of plane, cylindrical, and
spherical waves. The rigorous solution for such a geometry is
obtained for the first time. Potentially, it can be used in ring
resonators and antenna design [32, 33], as well as to study the
influence of the edge-effect.

Problem statement

Let us consider PEC half-plane y < 0, z = 0 and zero thickness
PEC disk of radius r, x2 + ( y− Δ)2 < r, placed in the plane z = h,
h > 0, where Δ is the shift of the disk along the y-axis. The
plane wave with the Fourier amplitude q = (qx, qy)* is incident
from the “upper” half-space z > h and the plane wave with
the Fourier amplitude p = ( px, py)* is incident from the
“lower” half-space z < 0, where “*” means transpose. Since we
assume h > 0, to simulate the case of the disk placed below the
half-plane, we introduce second incident wave with the Fourier
amplitude p.

In the considered problem, all components of the electromag-
netic field can be expressed via the independent tangential electric

components Ex and Ey. The incident field is

Ei
x

Ei
y

( )
= qx

qy

( )
exp (−ik(Ax + By + g(A, B)z))+ px

py

( )

× exp (ik(Ax + By + g(A, B)z)), (1)

where k = 2π/λ is the wavenumber, g(A, B) =
��������������
1− A2 − B2

√
with

Re g ≥ 0, Im g ≥ 0, A = cosα, B = cosβ, are cosines of the incident
angles γ1, α, and β with respect to the z, x, and y axis. The time
dependence exp(−iωt) is omitted.

In the spectral domain, i.e. in the domain of Fourier transform,
we seek scattered field as Fourier integrals with unknown ampli-
tudes AQ, BQ, CQ, DQ, Θ = x, y:

The structure geometry and directions of wave propagation are
shown in Fig. 1. Total field is the sum of the incident and scat-
tered fields.

Let us introduce reflection and transmission operators of the
isolated half-plane y < 0, z = 0, R1, T1, and disk x2 + y2 < r,
which center coincides with the origin, R2, T2. Their action on
arbitrary Fourier amplitude g is described by the integrals

(Rjg)Q(jx , jy) =
∑
J=x, y

∫+1

−1

∫+1

−1
R j,QJ(jx , jy, zx , zy)gJ(zx , zy)dzxdzy ,

(3)

(Tjg)Q(jx , jy) =
∑
J=x, y

∫+1

−1

∫+1

−1
T j,QJ(jx , jy, zx , zy)gJ(zx , zy)dzxdzy ,

Q = x, y, j = 1, 2. (4)

Kernel functions of the scattering operators Rj,QJ(jx , jy, zx , zy),
Tj,QJ(jx , jy, zx , zy) are supposed to be known. The reflection
operators of the half-plane can be found by the factorization of
the kernel of dual integral equations [5]. The reflection operators
of the disk can be found by the method of moments [12, 13]. In
[12, 13], the problem is considered only for case the wave vector
of the incident field is in the plane XOZ, the scattered field is
represented in the cylindrical coordinate system. The case of arbi-
trary incidence can be obtained with the use of the affine trans-
formation of rotation. In our analysis, we need scattered fields
to be represented in the Cartesian coordinate system as a super-
position of the plane waves which propagate under real and com-
plex angles. For this purpose, we use representation of the Bessel

Es
Q(x, y) =

�+1

−1

�+1

−1
AQ(jx , jy) exp (ik(jxx + jyy + g(jx , jy)z))djxdjy , z . h,

�+1

−1

�+1

−1
(BQ(jx , jy) exp (ikg(jx , jy)z)+ CQ(jx , jy)× exp (ik(jyD− g(jx , jy)(z − h)))

× exp (ik(jxx + jyy))djxdjy, 0 , z , h,

�+1

−1

�+1

−1
DQ(jx , jy) exp (ik(jxx + jyy − g(jx , jy)z))djxdjy , z , 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)
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function Jm(x) in the form of superposition of plane waves:

Jm(x) = (−i)m

2p

�w
w−2p

exp (i(x cosc−mc))dc.

Operator equations

As we have mentioned in the Introduction, scattered field can be
represented as a sum of the field scattered by the isolated half-
plane and the disk, and the field re-scattered by them. If we
denote the Fourier amplitude of the field of re-scattered waves,
which propagate to the positive direction of the z-axis as B, and
which propagate to the negative direction of the z-axis as C (2),
then one can write the following operator equations:

A = e−s−T2e
+s+B+ e−s−R2e

−s+q, (5)
B = R1e

+s−C + T1p, (6)
C = R2e

+s+B+ T2e
−s+q, (7)

D = T1e
+s−C + R1p, (8)

where action of the operators s± and e± is reduced to multiplica-
tion by exp(±ikξyΔ) and exp(±ikγ(ξx, ξy)h). They describe the
phase variations if the coordinate system is shifted in the positive
or negative direction of the y- and z-axis.

Let us notice first that reflection and transmission operators
are connected as follows: Tj = I + Rj, j = 1, 2, where I is unit oper-
ator. Also let us subtract the Fourier amplitude of the incident
plane wave (which is proportional to the delta-function) from
the Fourier amplitude of the scattered field. Introduce new func-
tions C1, B1 as follows:

B1 = B− p, C1 = C − e−s+q. (9)

Then one can rewrite (5)–(8) as follows:

A = B1 + e−s−R2e
+s+B1 + e−s−R2s

+(e+p+ e−q), (10)

B1 = R1e
+s−C1 + R1(p+ q), (11)

C1 = R2e
+s+B1 + R2s

+(e+p+ e−q), (12)
D = e+s−C1 + R1e

+s−C1 + R1(p+ q)+ p. (13)

If C1 and B1 are determined from (11), (12), then from (10),
(13) A and D also can be determined. Therefore, our purpose is
to reduce (11) and (12) to solvable integral equations.

Integral equations

Kernel functions of the reflection operator of the half-plane have
poles at the point which correspond to the propagation constant
of the reflected plane wave. Kernel functions of the reflection
operators of the half-plane and disk have integrable inverse square
root singularity at the points which correspond to the waves
which propagate along the XOY plane (sliding waves).

Let us represent the reflection operator of the disk as product
of the singular and regular terms, also we subtract that part, which
contains poles and gives plane wave in the reflected field.
Introduce new functions which do not have singularities:

R2,Q,J(jx , jy, zx , zy) = RQ,J(jx , jy, zx , zy)
�������������
1− j2x − j2y

√
, (14)

B2,x(jx , jy) = B1,x(jx , jy)+
i
2p

�����������������������
1− A2

√
− B

√
������������������������
1− A2

√
− jy

√ qx + px
jy − B

below

⎛
⎜⎝

⎞
⎟⎠

×
�������������
1− j2x − j2y

√
, (15)

B2,y(jx , jy) = B1,y(jx , jy)−
i
2p

A��������
1− A2

√
(

× qx + px�����������������������
1− A2

√
− B

√ ������������������������
1− A2

√
− jy

√

+ i
2p

������������������������
1− A2

√
− jy

√
�����������������������
1− A2

√
− B

√ qy + py
jy − B

below

⎞
⎠ �������������

1− j2x − j2y

√
, (16)

C2,Q(jxjy) = C1,Q(jx , jy)
�������������
1− j2x − j2y

√
. (17)

Notation “below” (“above”) means that the poles should be
bypassed from below (above). The Fourier amplitudes B2 and
C2 describe only field of spherical waves.

After substitution of (14)–(17) as well as an explicit form of
the reflection operator of the half-plane into (11), (12), one can
obtain the integral equations. To write them in a more concise
form first we introduce the following notations:

(F1g)(jx , jy) =
i
2p

����������������������
1− j2x

√
+ jy

√ ∫1

−1

g(jx , zy)����������������������
1− j2x

√
+ zy

√ dzy
zy − jy

below

,

(18)

Fig. 1. Structure geometry.
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(F2g)(jx , jy) =
i
2p

����������������������
1− j2x

√
+ jy

√ ∫1

−1

g(jx , zy)�������������
1− j2x − z2y

√ jx�������
1− j2x

√

× dzy����������������������
1− j2x

√
− zy

√ , (19)

(F3g)(jx , jy) =
i
2p

�������������
1− j2x − j2y

√ ∫1

−1

����������������������
1− j2x

√
− jy

√
����������������������
1− j2x

√
− zy

√ g(jx , zy)�������������
1− j2x − z2y

√

× dzy
zy − jy

below

, (20)

F4g =
∫1

−1

∫1

−1

g(zx , zy)�������������
1− z2x − z2y

√ dzxdzy , (21)

F5g = − i
2p

�����������������������
1− A2

√
− B

√ ∫1

−1

g(A, zy)������������������������
1− A2

√
− zy

√ dzy
zy − B

above

,

(22)

F6g = i
2p

A��������
1− A2

√ 1�����������������������
1− a2

√
− B

√
∫1

−1

g(A, zy)dzy�����������������������
1− a2

√
− zy

√ , (23)

F7g = − i
2p

∫1

−1

������������������������
1− A2

√
− zy

√
g(A, zy)�����������������������

1− A2
√

− B
√ dzy

zy − B
above

, (24)

F8g = g(A, B). (25)

Then integral equations are

B2,x = F1e
+s−C2,x , (26)

B2,y = F2e
+s−C2,x + F3e

+s−C2,y , (27)

C2,Q =F4e
+s+(R2,Q,xB2,x + R2,Q,yB2,y)+ (qx + px)F5e

+s+R2,Q,x

+ (qx + px) · F6e+s+R2,Q,y + (qy + py)F7e
+s+R2,Q,y

+ F8(R2,Q,xs
+(e+px + e−qx)+ R2,Q,ys

+(e+py + e−qy)),
Q = x, y. (28)

Integrands in (18), (20), (22), (24) have non-integrable singu-
larities on the real axis. To eliminate the singularities the regular-
ization procedure is needed.

Regularization procedure

To calculate integrals (18), (20), (22), (24) first we transform the
integration path so that it coincides with the real axis everywhere
except the pole. The pole is bypassed from above or below. Then
we add and subtract such a function from the integrand that their
sum has no singularities. The integral from this function itself can
be calculated analytically. Taking into account that [34]

∫1

−1

1
z− j

below

dz = pi, (29)

∫1

−1

1
z− j

above

dz = −pi, (30)

obtain

∫1

−1

g(z)
z− j

below

dz =
∫1

−1

g(z)− g(j)
z− j

dz+ pig(j), (31)

∫1

−1

g(z)
z− j

above

dz =
∫1

−1

g(z)− g(j)
z− j

dz− pig(j). (32)

Integrals on the right-hand side of (31), (32) are convergent.
The integrands have no singularities. Thus we can understand
them as Cauchy principal value integrals (notation PV). Taking
into account that PV

�1
−1 dj/j = 0, finally obtain

∫1

−1

g(z)
z− j

below

dz = PV
∫1

−1

g(z)
z− j

dz+ pig(j), (33)

∫1

−1

g(z)
z− j

above

dz = PV
∫1

−1

g(z)
z− j

dz− pig(j). (34)

Representation of (31), (32) in the form of Cauchy principal
value integral (33), (34) is essential for us for discretization. In
this case we can apply appropriate quadrature rule.

After regularization of (18), (20), (22), (24) as it is done in
(33), (34), integral equations (26)–(28) can be discretized with
the use of the quadrature rule. Equations (26)–(28) actually are
the system of singular integral equations of the second kind on
the infinite interval of integration.

Remark. In general, there is no need to explicitly express
inverse square root singularity with the help of (14). However
in this paper to solve integral equations (26)–(28) numerically
we convert them to the system of algebraic equations with the
help of quadrature rule. To build rapidly convergent discretization
scheme, we should take into account singularities and thus to take
proper quadratures.

For discretization of (26)–(28), we exchanged the infinite
interval of integration by the bounded one (−a; a). After that
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we divide segment [−a; a] into N sub-segments and take single
node point at the center of every sub-segment. Thus we use the
compound midpoint rule for singular integrals.

After discretization, the linear matrix equation can be
written as

B̂2 = M1Ĉ2, (35)

Ĉ2 = M2B̂2 + qxM3 + pxM4, (36)

where B̂2 and Ĉ2 are vectors which consist of unknown values of
B2,x, B2,y, C2,x, C2,y at the nodes, Mi, i = 1, …, 4, are matrices and
vectors which correspond to the right-hand side of (26)–(28) after
discretization.

To solve (35), (36) we use the iterative procedure

Ĉ0
2 = qxM3 + pxM4, (37)

B̂j
2 = M1Ĉ

j
2, (38)

Ĉ j+1
2 = M2B̂

j
2 + qxM3 + pxM4, j = 0, 1, . . . , L, (39)

where superscript j means the number of iteration and L is the
total number of iterations.

Numerical results

Let us study the convergence. Three parameters affect the error of
the solution: number of nodes N, length of the truncated interval
of integration a, and number of iterations L. We introduce error
as follows:

1(N) = |Asw(N)− Asw(2N − 1)|/|Asw(2N − 1)|, (40)

1(a) = |Asw(a)− Asw(F)|/|Asw(F)|, (41)

d(L) = |Asw(L)− Asw(L+ 1)|/|Asw(L+ 1)|, (42)

where Asw =
����������������������������������������������������
(Asw

x (jx = 0, jy = 0))2 + (Asw
y (jx = 0, jy = 0))2

√
is

amplitude of the spherical wave in the orthogonal direction, Φ =
10 is sufficiently large constant value.

The convergence of the presented scheme is based on the cor-
responding theorems about approximation of singular and regular
integrals by quadrature rule [35]. However, the actual rate of con-
vergence should be studied. Figure 2 shows dependences of the
error on the number of interpolation nodes N, length of the inter-
val of integration a, and the number of iterations L. Starting from
the certain value of parameter, the convergence is monotone.
Equations (26)–(28) contain exponentially decaying term, which
is described by the operators e±. As a result, ε(a) decays

Fig. 2. Error of the solution: (a) ε(N ); (b) ε(a); and (c) δ(L).
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exponentially (see Fig. 2(c)), if a→∞. Here rate of convergence
depends on kh. For larger values of kh, a faster convergence is
observed.

Far field scattered by the structure can be represented as a sum
of three summands:

Esc = E pw + Eerr + Esw, (43)

where Epw is the field of the plane wave reflected (or transmitted)
by the infinite part of the half-plane. It does not decay, if kρ→∞,
where ρ is the distance. The second summand in (43) Eerr is
expressed in terms of the error function. It describes the field of
cylindrical waves except the plane y = 0, where it provides the con-
tinuity of the asymptotic representation of the far field. Finally Esw

is the field of spherical waves. It decays as 1/(kρ), if kρ→∞. It
describes the mutual coupling of the half-plane and the disk,
since Epw and Eerr are exactly the same as in the case of the iso-
lated half-plane.

The saddle-point method gives us the expression for the dif-
fraction patterns of the spherical waves with amplitudes Asw

Q (if

z > 0), Dsw
Q (if z < 0)

|Esw
Q (r cosf sin u, r sinf sin u)|

�
2p
kr

Asw
Q ( cosf sin u, sinf sin u), z . 0,

2p
kr

Dsw
Q ( cosf sin u, sinf sin u), z , 0,

⎧⎪⎪⎨
⎪⎪⎩

(44)

where Θ = x, y, (ρ, θ, f) are coordinates of the spherical coord-
inate system, θ is the polar angle, w is the azimuthal angle, Asw

Q
and Dsw

Q are that parts of the Fourier amplitudes AQ and DQ,
which correspond to the spherical waves. They can be obtained
from (10), (13) after regularization of integrals.

Figures 2–7 show far field of spherical waves. We study scat-
tered fields for two values of the radius kr = π/2 (r = λ/4) and
kr = π (r = λ/2), two values of the distance between the plane
and the disk along the z-axis kh = π/2 and kh = π, and several
values of the shift Δ along the y-axis. The considered values
of the radius correspond to the resonant cases. Near them the
maxima and minima of the total scattering cross section of the
isolated disk are observed [12]. All diffraction patterns are nor-
malized by the global maximum. In the XZ plane, w = 00, the

Fig. 3. Far-field patterns of spherical waves, non-zero electric-field components Aswx and Aswy (solid lines), Dsw
x and Dsw

y (dashed lines) for kΔ = 2π (black lines), kΔ = 0
(red lines), kΔ =−π (green lines), kΔ =−2π (blue lines), w = 900, kr = π, kh = π/2, normal incidence α = β = 900: (a) qx≠ 0, qy = px = py = 0; (b) qy≠ 0, qx = px = py = 0;
(c) px≠ 0, qx = qy = py = 0; and (d) py≠ 0, qx = qy = px = 0.
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patterns are symmetric with respect to θ = 00, since the structure
is symmetric with respect to the y-axis.

In the case of the infinite PEC plane, value kh = π/2 corre-
sponds to the maxima (hot-spot) and value kh = π corresponds

to the minima (node) of the electric field of the standing wave
formed by the superposition of the incident and reflected plane
waves. In the case of infinite PEC plane, if we place PEC disk
of zero thickness in the plane kh = π there will be no scattering.

Fig. 4. Far-field patterns of spherical waves for kΔ = 2π (black lines), kΔ = 0 (red lines), kΔ =−π (green lines), kΔ =−2π (blue lines) w = 00, kr = π, kh = π/2, normal
incidence α = β = 900, qx≠ 0, qy = px = py = 0: (a) Aswx (solid lines), Aswy (dashed lines) and (b) Dsw

x (solid lines), Dsw
y (dashed lines).

Fig. 5. Same study as in Fig. 3, but for kh = π.
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However, in our situation, in the case of the half-plane, non-zero
field of cylindrical waves exists due to the presence of the edge. As
a result, Esw is also non-zero. At the same time, because of the
presence of the standing wave, if y < 0, the amplitude of spherical
waves for kh = π/2 (see Figs 3(a) and 3(b)) exceed the amplitude
of spherical waves for kh = π (see Figs 5(a) and 5(b)).

We study the scattered field for different shift Δ of the disk
along the y-axis. For Δ > 0, the disk is mainly placed in the field
of the incident plane wave with small contribution of the field
of the edge of the half-plane. The far-field shows almost the
same behavior for kh = π/2 and kh = π. Consider first the case
qx ≠ 0 or qy ≠ 0 (incidence from “above”) and px = 0, py = 0. If
one moves the disk toward the negative values of the y-axis, the
far-field behavior significantly depends on the distance h. For
kh = π/2, the disk is placed in the hot-spot of the standing wave.
As a result, the amplitude of spherical wave growths toward
some constant value when the influence of the cylindrical wave
is neglected as compared to the standing wave. For kh = π, the

disk is placed in the node of the standing wave. As a result, the
amplitude of spherical wave decreases if the disk is moved far
from the edge of the half-plane, but |Esw| > 0 due to excitation
of cylindrical waves. In the case px≠ 0 or py≠ 0 (incidence
from “below”) the value of h does not influence significantly,
since the disk is not illuminated by the plane wave at all for
Δ <−r.

Figures 8–10 show total field distribution in the vertical
plane, x = 0, for different position of the disk. We consider the inci-
dence from “above” (Figs 8 and 11) and from “below” (Figs 9 and
10). The patterns are normalized by the amplitude of the incident
wave.

The reflected plane wave exists only in the domain y < 0.
Except the rigorous theory, this is confirmed by the geometrical
optics. The half-plane is the semi-infinite structure placed in
the domain y < 0. Thus, in the domain y < 0 (in the case of
orthogonal incidence) the plane wave is reflected, and in the
domain y > 0 the plane wave is transmitted. The field of the

Fig. 6. Far-field patterns of spherical waves Aswx (solid lines), Dsw
x (dashed lines) for kΔ = π (black lines), kΔ = 0 (red lines), kΔ =−π (green lines), kr = π/2, kh = π/2,

normal incidence α = β = 900, qx≠ 0, qy = px = py = 0: (a) w = 00 and (b) w = 900 (here Aswy = Dsw
y = 0).

Fig. 7. Same study as in Fig. 6, but for kh = π.
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reflected plane wave in the domain y < 0 as well as the hot-spots at
kh = π/2 + πn and nodes at kh = πn, n = 0, 1, 2, … of the standing
wave are clearly seen in Figs 8–10. Near the disk, the tangential
components of the electric field vanish, Ex = Ey = 0. The minima
of the tangential components of the electric field and spherical
wave with hot-spots of the field near the disk are also seen in
Figs 8–10.

Near the plane y = 0, the boundary between two domains
appears: domain y > 0, where reflected plane wave does not
exist, and domain y < 0, where reflected plane wave exists. The
field scattered by the isolated half-plane at the boundary is
described by Eerr (see (43)). Plane y = 0 acts as a shadow boundary

or transition region. The transition region also appears in other
infinite structures with the edge, for example, in the semi-infinite
strip gratings [31, 36].

Fig. 9. Total field distribution |Ex| for x = 0, kr = π, kh = π/2, px≠ 0, qx = qy = py = 0, nor-
mal incidence: (a) kΔ = 2π; (b) kΔ = 0; and (c) kΔ =−π.

Fig. 8. Total field distribution |Ex| in the plane x = 0 for kr = π, kh = π/2, qx≠ 0, qy = px =
py = 0, normal incidence: (a) kΔ = 2π; (b) kΔ = 0; and (c) kΔ =−π.
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For Δ < −r, if qx = qy = 0 and px = 1, the disk is not illuminated
by the plane wave, since it is situated totally “above” the half-plane
(the incidence from “below”). Here, the disk is placed in the field
of cylindrical wave excited as a result of scattering by the edge of

the half-plane. In Fig. 9(c), the field disturbance caused by the
disk is slightly seen. Thus to illustrate better the field of the cylin-
drical wave scattered by the disk, in Fig. 10 we present pattern for
lager value of the radius kr = 3π.

For full analysis, it is also necessary to show the field distribu-
tion in the horizontal plane. In Fig. 11 we present the near-field
distribution in the plane z = 2h (“above” the structure) which cor-
responds to the minimum of the amplitude of the standing wave.
The graphs are symmetric with respect to the line x = 0, since the
structure is symmetric. The field of the spherical wave is notice-
able in the domain y < 0 especially for Ey. It is interesting to com-
pare our results with results for an isolated disk (without
half-plane). See, for example, [12]. In the case of the isolated
disk in the plane perpendicular to �Ei (x = 0), electric field has
one maxima on the radius at the center of the disk.

Conclusion

In this paper, rigorous solution of the plane wave scattering by the
circular PEC disk and PEC half-plane is obtained for the first
time. The operator equations with respect to the Fourier ampli-
tudes of the scattered field are reduced to the system of singular
integral equations of the second kind. After discretization, the
matrix equations are obtained, which are solved with the use of
the iterative procedure.

The field scattered by the structure consist of plane wave,
cylindrical waves, and spherical waves. The influence of the edge-
effect of the half-plane on the disk is highlighted.

Conflict of interest. The authors declare none.
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