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WEAK CONVERGENCE TO
DERIVATIVES OF FRACTIONAL

BROWNIAN MOTION
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MORTEN ØRREGAARD NIELSEN

Aarhus University

It is well known that, under suitable regularity conditions, the normalized fractional
process with fractional parameter d converges weakly to fractional Brownian motion
(fBm) for d > 1

2 . We show that, for any nonnegative integer M, derivatives of order
m = 0,1, . . . ,M of the normalized fractional process with respect to the fractional
parameter d jointly converge weakly to the corresponding derivatives of fBm. As an
illustration, we apply the results to the asymptotic distribution of the score vectors
in the multifractional vector autoregressive model.

1. INTRODUCTION

The p-dimensional fractionally integrated process of Type II (e.g., Marinucci and
Robinson, 1999) is given by

�−d
+ ξt = (1−L)−d

+ ξt =
t−1∑
n=0

πn(d)ξt−n =
t∑

n=1

πt−n(d)ξn, t = 1,2, . . . . (1)

This expression defines the operator �−d
+ = (1 − L)−d

+ as a finite sum, and the
fractional coefficients πn(d) are defined by the binomial expansion of (1 − z)−d.
That is,

πn(d) = (−1)n

(−d

n

)
= d(d +1). . . (d +n−1)/n!∼ cnd−1

with “∼” denoting that the ratio of the left- and right-hand sides converges to 1.
The parameter d is called the memory parameter, which we assume satisfies d > 1

2 .
Throughout, ξt is a p-dimensional linear process,

ξt = C(L)εt =
∞∑

j=−∞
Cjεt−j, (2)
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for some p × p coefficient matrices Cj and a p-dimensional innovation sequence,
εt, which is independently and identically distributed (i.i.d.) with mean zero and
variance matrix � (precise conditions will be given in Section 3).

We define the normalized process Z�Tr�(d) = T1/2−d�−d
+ ξ�Tr� for d > 1

2 and
r ∈ [0,1], where �·� denotes the integer part of the argument. The functional
central limit theorem1 for Z�Tr�(d) was proved by Akonom and Gourieroux (1987)
for autoregressive moving-average processes ξt, and by Marinucci and Robinson
(2000) for linear processes ξt with coefficients satisfying a summability condition
(see Assumption 1). In particular, these authors showed that

Z�Tr�(d) = T1/2−d
�Tr�−1∑

n=0

πn(d)ξ�Tr�−n ⇒ �(d)−1
∫ r

0
(r − s)d−1dW(s) = W(r;d),

(3)

where �(·) is the Gamma function, W is Brownian motion with variance matrix
C(1)�C(1)′, C(1) = ∑∞

j=−∞ Cj, and “⇒” denotes weak convergence in the
space of càdlàg functions on [0,1] endowed with the Skorokhod topology (see
Billingsley, 1968, for a general treatment). That is, the normalized process Z�Tr�(d)

converges weakly to fractional Brownian motion (fBm), W(r;d), which is also of
Type II (see Marinucci and Robinson, 1999, for a detailed comparison of Types I
and II fBm).

In fact, the results in Marinucci and Robinson (2000) also imply weak con-
vergence of the derivative of �−d

+ ξt, suitably normalized. We use Dm
d to denote

the mth-order derivative with respect to d. Differentiating term by term, we find
Ddπn(d) = πn(d)

∑n−1
k=0(k+d)−1 (see Appendix A of Johansen and Nielsen, 2016,

for additional details on the fractional coefficients and their derivatives). With this
notation, Marinucci and Robinson (2000) proved that

Z∗
�Tr�(d) = T1/2−d(logT)−1Dd�

−d
+ ξ�Tr�

= T1/2−d(logT)−1
�Tr�−1∑

n=1

πn(d)

n−1∑
k=0

(k +d)−1ξ�Tr�−n ⇒ W(r;d). (4)

Thus, because of the factor
∑n−1

k=0(k + d)−1 ∼ logn, a different normalization is
needed, but the weak limit is still fBm.

Related to (3) and (4), Hualde (2012) showed the limit result2

H�Tr�(d) = T1/2−d
�Tr�−1∑

n=0

πn(d)

(
−

T∑
k=n

(k +d)−1

)
ξ�Tr�−n ⇒ A(r;d), (5)

1Even earlier results were available for the so-called Type I process (e.g., Davydov, 1970; Taqqu, 1975).
2There is a missing minus sign in either (6) or (8) in Hualde (2012). Of course, this is irrelevant for the marginal
distribution of A(r;d) because A(r;d) is a zero-mean Gaussian process. However, the sign is critical when considering
the joint distribution of A(r;d) and W(r;d), for example.
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WEAK CONVERGENCE TO DERIVATIVES OF fBm 861

where A(r;d) = �(d)−1
∫ r

0 log(r − s)(r − s)d−1dW(s) was denoted a “modified
fBm.” The derivation of (5) was motivated by a regression analysis of so-called
“unbalanced cointegration,” where the process A(r;d) enters in the asymptotic
distribution theory (see Hualde, 2012, 2014). Note, however, that A(r;d) =
�−1(d)Dd(�(d)W(r;d)) is not the derivative of fBm.

In this paper, we prove related results for weak convergence of the derivatives
with respect to d of Z�Tr�(d) to corresponding derivatives of fBm. Differentiating
term by term as in (4), we find

DdZt(d) =
t−1∑
n=0

Dd(T
1/2−dπn(d))ξt−n = T1/2−d

t−1∑
n=0

(
− logT +

n−1∑
k=0

1

k +d

)
πn(d)ξt−n.

(6)

In the general case, the coefficients in the linear representation of Dm
d Zt(d) will be

calculated by recursion (see Section 4 and Lemma 1). Note the relation

DdZt(d) = (logT)(Z∗
t (d)−Zt(d)). (7)

In recent work, Johansen and Nielsen (2021) generalize earlier work on sta-
tistical inference in the fractionally cointegrated vector autoregressive model
(Johansen and Nielsen, 2012b) to allow each variable in the multivariate process to
have its own fractional parameter (integration order). They call this the “multifrac-
tional” cointegrated vector autoregressive model. One interpretation of this model
is a generalization of Hualde’s (2012) bivariate unbalanced cointegrated regression
model to a multivariate system framework. Johansen and Nielsen (2021) show
that, in this setting, the derivative DdZ�Tr�(d) and its weak limit DdW(r;d) play an
important role in the asymptotic distribution theory for the maximum likelihood
estimators of the fractional parameters. We present some details of this analysis in
Section 5 to motivate and apply our results.

In Section 3, we show that the result (5) of Hualde (2012) can be generalized
to allow for weights (−∑T

k=n(k + d)−1)m for any integer m ≥ 0. In Section 4, we
use this result together with (3) of Marinucci and Robinson (2000) to show weak
convergence of Dm

d Z�Tr�(d) to derivatives of fBm. The application of our results to
the multifractional cointegration model is given in Section 5, and some concluding
remarks are given in Section 6. In the next section, however, we first consider
m = 1, because the arguments simplify substantially in that case.

2. WEAK CONVERGENCE OF THE DERIVATIVE DdZ�Tr�(d)

In this section, we apply the results of Marinucci and Robinson (2000) in (3) and
Hualde (2012) in (5) to show that the first derivative of the fractional process, i.e.,
DdZ�Tr�(d), converges weakly to DdW(r;d). Precise conditions under which the
results hold will be stated in Section 3 before we give the general results.
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The derivative DdZ�Tr�(d) is rewritten, using (6) and
∑n−1

k=0(k+d)−1 = ∑T
k=0(k+

d)−1 −∑T
k=n(k +d)−1, as

DdZ�Tr�(d) =
�Tr�−1∑

n=0

(DdT1/2−dπn(d))ξ�Tr�−n

=
�Tr�−1∑

n=0

T1/2−dπn(d)

(
− logT +

T∑
k=0

(k +d)−1

)
ξ�Tr�−n

+
�Tr�−1∑

n=0

T1/2−dπn(d)

(
−

T∑
k=n

(k +d)−1

)
ξ�Tr�−n

=
(

− logT +
T∑

k=0

(k +d)−1

)
Z�Tr�(d)+H�Tr�(d). (8)

Here, Z�Tr�(d) ⇒ W(r;d) and H�Tr�(d) ⇒ A(r;d) by (3) and (5), respectively.
Strictly speaking, (3) and (5) need to hold jointly, but that is a consequence of
Theorem 1.

To evaluate the factor − logT + ∑T
k=0(k + d)−1 in (8), recall the following

definition and series expansion of the Digamma function,

ψ(d) = Dd log�(d) = −γ −
∞∑

k=0

((k +d)−1 − (k +1)−1) for d �= 0, −1, . . . ,

where γ = limT→∞(
∑T

k=1 k−1 − logT) = 0.577. . . is the Euler–Mascheroni con-
stant (see Abramowitz and Stegun, 1972, eqns. (6.3.1) and (6.3.16)). We then find
that

− logT +
T∑

k=0

1

k +d
= −

(
logT −

T∑
k=1

k−1

)
−

(
T−1∑
k=0

(k +1)−1 −
T∑

k=0

(k +d)−1

)

→ γ −
∞∑

k=0

((k +1)−1 − (k +d)−1) = −ψ(d). (9)

Finally, we prove that

Dd

∫ r

0
(r − s)d−1dW(s) =

∫ r

0
log(r − s)(r − s)d−1dW(s) for d > 1/2. (10)

By definition of the derivative,

Dd

∫ r

0
(r − s)d−1dW(s)−

∫ r

0
log(r − s)(r − s)d−1dW(s) = lim

δ→0
Kd(δ),

where

Kd(δ) = δ−1
∫ r

0
(r − s)d−1((r − s)δ −1− δ log(r − s))dW(s).
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By the mean value theorem,

(r − s)δ −1− δ log(r − s) = 1

2
δ2 log2(r − s)(r − s)δ

∗
for |δ∗| ≤ |δ|.

Hence, we find, using the Frobenius norm ‖A‖ = (tr{A′A})1/2,

‖Var(Kd(δ))‖ = 1

4
δ2 ‖Var(W(1))‖

∫ r

0
log4(r − s)(r − s)2d−2+2δ∗

ds

≤ cδ2
∫ r

0
log4(r − s)(r − s)2d−2−2|δ|ds=cδ2

∫ r

0
(log4 s)s|δ|s2d−2−3|δ|ds

≤ cδ2
∫ r

0
s2d−2−3|δ|ds = cδ2r2d−1−3|δ| → 0 as δ → 0,

because 2d −1 > 0. This proves (10).
Combining these results, it follows that

DdZ�Tr�(d) ⇒ −ψ(d)W(r;d)+A(r;d)

= �(d)−1
∫ r

0
(−ψ(d)+ log(r − s))(r − s)d−1dW(s)

=
∫ r

0
Dd(�(d)−1(r − s)d−1)dW(s) = DdW(r;d). (11)

Thus, the first derivative of the fractional process Z�Tr�(d) converges weakly to the
first derivative of the fBm W(r;d). Interestingly, the above arguments leading to
(11) required only the weak convergences in (3) and (5) (jointly) together with
some well-known results regarding the Digamma function. Consequently, our
result (11) holds whenever (3) and (5) hold jointly. In the next two sections, we
will prove the corresponding result for derivatives of any order under precisely
stated conditions.

3. A GENERALIZATION OF THE RESULT OF HUALDE (2012)

In this section, we generalize the result (5) of Hualde (2012). To this end, we define
the processes

Hm,�Tr�(d) = T1/2−d
�Tr�−1∑

n=0

πn(d)

(
−

T∑
k=n

(k +d)−1

)m

ξ�Tr�−n

= T1/2−d
�Tr�∑
n=1

π�Tr�−n(d)

⎛
⎝−

T∑
k=�Tr�−n

(k +d)−1

⎞
⎠

m

ξn, m = 0,1,2, . . . ,

(12)

so that Z�Tr�(d) = H0,�Tr�(d) and H�Tr�(d) = H1,�Tr�(d). In Theorem 1, we find the
joint weak limit of Hm,�Tr�(d), m = 0,1, . . . ,M, for any nonnegative integer M, but
first we state our assumptions.
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Assumption 1. The p-dimensional process ξt is such that

ξt =
∞∑

j=−∞
Cjεt−j,

∞∑
j=0

∞∑
k=j+1

(‖Ck‖2 +‖C−k‖2) < ∞,

where the Cj are p×p deterministic matrices and C(1) = ∑∞
j=−∞ Cj has full rank, p.

Assumption 2. The p-dimensional process εt in Assumption 1 is i.i.d. with

E(εt) = 0, E(εtε
′
t) = �, E‖εt‖q < ∞,

for some q > max{2,2/(2d −1)}, d > 1/2, and � positive-definite.

We note that the moment condition in Assumption 2 is in fact necessary (see
Johansen and Nielsen, 2012a). The rank conditions in Assumptions 1 and 2 ensure
that the long-run variance of ξt is positive-definite.

Assumptions 1 and 2 are identical to the corresponding conditions in Marinucci
and Robinson (2000) and Hualde (2012). Thus, (3), (5), and the results in Section 2,
and in particular the weak convergence in (11), all hold under Assumptions 1
and 2.

Theorem 1. Under Assumptions 1 and 2, it holds that, for m = 0,1,2, . . . ,

Hm,�Tr�(d) ⇒ Am(r;d), (13)

where Am(r;d) = �(d)−1
∫ r

0 (log(r − s))m(r − s)d−1dW(s). For any nonnegative
integer M, the convergence in (13) holds jointly for m = 0,1, . . . ,M < ∞.

Proof. The main steps of the proof are identical to those in Marinucci and
Robinson (2000) and Hualde (2012), so we focus on the relevant differences.
We give the proof for a fixed m. Joint convergence follows by application of the
Cramér–Wold device and the same proof.

Marinucci and Robinson (2000) generalize the results of Einmahl (1989) to
short-range dependent variables, so they can construct copies in distribution of
ξt, say ξ̂t, and independent wt that are i.i.d. N(0,�) on the same probability space.
We define Sj = ∑j

t=1 ξ̂t, Vj = C(1)
∑j

t=1 wt, S0 = V0 = 0, and consider below the
difference Sj − Vj, which is possible because Sj and Vj are defined on the same
probability space. Specifically, based on results of Einmahl (1989, Theorems 1, 2,
and 4), Marinucci and Robinson (2000, Lemma 2) show that sup1≤j≤T |Sj − Vj| =
oP(T1/s) for 2 < s < q, where q is given in Assumption 2. As in Hualde (2012),
we define

Ĥm,�Tr�(d) = T1/2−d
�Tr�∑
n=1

π�Tr�−n(d)

⎛
⎝−

T∑
k=�Tr�−n

(k +d)−1

⎞
⎠

m

ξ̂n, m = 0,1,2, . . . .
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That is, Ĥm,�Tr�(d) is defined exactly like Hm,�Tr�(d) in (12), but with ξ̂n replacing
ξn. Because Ĥm,�Tr�(d) is then a copy in distribution of Hm,�Tr�(d), it suffices to
show the required result for Ĥm,�Tr�(d).

We then decompose Ĥm,�Tr�(d) = ∑5
i=1 QiT(r), where

Q1T (r) = 1

�(d)
T−1/2

�Tr�−1∑
n=1

(
r − n

T

)d−1 (
log

(
r − n

T

))m
(Vn −Vn−1)I(�Tr� > 2),

Q2T (r) = T1/2−d
�Tr�−1∑

n=1

π�Tr�−n(d)(Sn −Sn−1 − (Vn −Vn−1))

⎛
⎝−

T∑
k=�Tr�−n

(k +d)−1

⎞
⎠

m

I(�Tr� > 2),

Q3T (r) = T1/2−d
�Tr�−1∑

n=1

⎛
⎝π�Tr�−n(d)

⎛
⎝−

T∑
k=�Tr�−n

(k +d)−1

⎞
⎠

m

− (Tr −n)d−1

�(d)

(
log

(
r − n

T

))m

⎞
⎠

× (Vn −Vn−1)I(�Tr� > 2),

Q4T (r) = T1/2−d

⎛
⎝−

T∑
k=0

(k +d)−1

⎞
⎠

m

(S�Tr� −S�Tr�−1)I(�Tr� > 2),

Q5T (r) = T1/2−d
�Tr�∑
n=1

ξ̂nπ�Tr�−n(d)

⎛
⎝−

T∑
k=�Tr�−n

(k +d)−1

⎞
⎠

m

I(�Tr� ≤ 2),

and I(·) denotes the indicator function. It suffices to show that

Q1T(r) ⇒ Am(r;d), (14)

sup
0≤r≤1

‖QiT(r)‖ P→ 0 for i = 2, . . . ,5. (15)

Note that the only difference between our QiT(r) and the corresponding terms
in Hualde (2012), aside from notational differences, is that instead of Hualde’s∑T

k=�Tr�−n(k + d)−1 and log(r − n/T), we have (−∑T
k=�Tr�−n(k + d)−1)m and

(log(r −n/T))m, respectively.
We first prove (14) and (15) for i = 2,4,5. These proofs follow nearly identically

to the corresponding proofs of (24) and (25) in Hualde (2012), so we only outline
the differences. First, we note that the bound established for m = 1 in (26) of
Hualde (2012) can easily be generalized to

|log(r −n/T)|m ≤ K (r −n/T)−α , n = 1, . . . , �Tr�−1,

for any α > 0 and some positive constant K (if the bound applies for m = 1 and any
α > 0, then clearly the bound also applies for any value of m on the left-hand side).
Then the proof of (14) follows identically to that of the corresponding term in (24)
of Hualde (2012). To prove (15) for i = 2,4,5, we can apply the same proofs as in
Hualde (2012) except with⎛
⎝ T∑

k=�Tr�−n

(k +d)−1

⎞
⎠

m

≤
(

T∑
k=0

(k +d)−1

)m

≤ K(logT)m,
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where Hualde has m = 1, and that change is inconsequential for the proofs.
It remains to prove (15) for the i = 3 term, which is the term that involves

the difference between the two factors (−∑T
k=n(k + d)−1)m and πn(d) and their

corresponding limiting forms. We bound sup0≤r≤1 ‖Q3T(r)‖ by sup1≤n≤T ‖C(1)wn‖
times

sup
0≤r≤1

T−1/2
�Tr�−1∑

n=1

∣∣∣∣πn(d)

Td−1
− 1

�(d)

( n

T

)d−1
∣∣∣∣
(

T∑
k=n

(k +d)−1

)m

(16)

+ 1

�(d)
sup

0≤r≤1
T−1/2

�Tr�−1∑
n=1

∣∣∣∣∣
(

T∑
k=n

(k +d)−1

)m

−
(

log
n

T

)m
∣∣∣∣∣
( n

T

)d−1
. (17)

For �Tr� > 2 and any d ≥ 0,

sup
0≤r≤1

sup
1≤n≤�Tr�−1

(
T∑

k=n

(k +d)−1

)m

≤ (

T∑
k=1

(k +d)−1)m ∼ (logT)m, (18)

and thus the proof that (16) = o(1) is identical to that in (29) of Hualde (2012)
except the logarithmic term is raised to the power m, which is inconsequential.
Next, (17) is bounded by �(d)−1 ≤ K times

sup
0≤r≤1

T−1/2
�Tr�−1∑

n=1

∣∣∣∣∣
(

T∑
k=n

(k +d)−1

)m

− (

T∑
k=n

k−1)m

∣∣∣∣∣
( n

T

)d−1
(19)

+ sup
0≤r≤1

T−1/2
�Tr�−1∑

n=1

∣∣∣∣∣(
T∑

k=n

k−1)m − (

∫ T

n
x−1dx)m

∣∣∣∣∣
( n

T

)d−1
. (20)

To bound these terms, we use the identity xm − ym = (x − y)
∑m−1

j=0 xjym−1−j and
bound the first factor as

T∑
k=n

1

k
−

T∑
k=n

1

k +d
=

T∑
k=n

d

k(k +d)
≤ d

T∑
k=n

1

k2
≤ Kn−1.

Using this bound together with (18), (19) is bounded by

K(logT)m−1 sup
0≤r≤1

T−3/2
�Tr�−1∑

n=1

( n

T

)d−2 ≤ K(logT)m−1T1/2−d
T∑

n=1

nd−2

≤ K(logT)mTmax{1/2−d,−1/2} → 0. (21)

Similarly,

T∑
k=n

1

k
−

∫ T

n
x−1dx ≤

T∑
k=n

(
1

k
− 1

k +1

)
= 1

n
− 1

T +1
≤ n−1
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and sup0≤r≤1 sup1≤n≤�Tr�−1(
∫ T

n x−1dx)m ∼ (logT)m, so that (20) is also bounded
by (21). �

4. WEAK CONVERGENCE OF Dm
d Z�Tr�(d)

We next analyze the derivatives of the fractional process Z�Tr�(d) with respect to
the fractional parameter d, i.e., Dm

d Z�Tr�(d). In terms of the fractional coefficients
and their derivatives, we can define Dm

d Z�Tr�(d) recursively as follows. We apply
logarithmic differentiation and let

Dm
d Z�Tr�(d) =

�Tr�−1∑
n=0

Dm
d (T1/2−dπn(d))ξ�Tr�−n =

�Tr�−1∑
n=0

T1/2−dπn(d)R(m)
Tn (d)ξ�Tr�−n,

(22)

where the coefficients R(m)
Tn (d) are defined by the relation Dm

d (T1/2−dπn(d)) =
T1/2−dπn(d)R(m)

Tn (d). We note that

D
m+1
d Z�Tr�(d) =

�Tr�−1∑
n=0

T1/2−dπn(d)(DdR(m)
Tn (d)+R(1)

Tn (d)R(m)
Tn (d))ξ�Tr�−n,

so that the coefficients R(m)
Tn (d) must satisfy the recursion

R(1)
Tn (d) = Dd log(T1/2−dπn(d)) = − logT +

n−1∑
k=0

(k +d)−1, (23)

R(m+1)
Tn (d) = DdR(m)

Tn (d)+R(1)
Tn (d)R(m)

Tn (d), m = 1,2, . . . . (24)

To illustrate the recursion, the next two terms of R(m)
Tn (d) are

R(2)
Tn (d) = −

n−1∑
k=0

(k +d)−2 +
(

− logT +
n−1∑
k=0

(k +d)−1

)2

,

R(3)
Tn (d) = 2

n−1∑
k=0

(k +d)−3 −3

(
− logT +

n−1∑
k=0

(k +d)−1

)
n−1∑
k=0

(k +d)−2

+
(

− logT +
n−1∑
k=0

(k +d)−1

)3

.

There is a similar recursive definition of the derivatives of fBm. We define R(m)(d)

by the relation Dm
d (�(d)−1(r − s)d−1) = �(d)−1(r − s)d−1R(m)(d) and find

Dm
d W(r;d) =

∫ r

0
Dm

d (�(d)−1(r − s)d−1)dW(s) = �(d)−1
∫ r

0
R(m)(d)(r − s)d−1dW(s).

(25)
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The first equality in (25) follows by the same proof as for (10). As in (23) and (24),
we find that the functions R(m)(d) must satisfy the recursion

R(1)(d) = Dd log(�(d)−1(r − s)d−1) = −ψ(d)+ log(r − s), (26)

R(m+1)(d) = DdR(m)(d)+R(1)(d)R(m)(d), m = 1,2, . . . . (27)

To compare with R(2)
Tn (d) and R(3)

Tn (d), we find

R(2)(d) = −ψ(1)(d)+ (−ψ(d)+ log(r − s))2,

R(3)(d) = −ψ(2)(d)−3(−ψ(d)+ log(r − s))ψ(1)(d)+ (−ψ(d)+ log(r − s))3,

where ψ(j)(d) = D
j
dψ(d) = D

j+1
d log�(d) denotes the polygamma function (see

Abramowitz and Stegun, 1972, eqn. (6.4.1)). The recursive formulations in (24)
and (27) are clearly much more tractable than direct calculation for larger values
of m. We note, in particular, the strong similarity between the terms R(m)

Tn (d) and
R(m)(d). For example, for m = 1 and with n replaced by �Tr�−�Ts�, we find that

R(1)
T,�Tr�−�Ts�(d) = − logT +

T∑
k=0

(k +d)−1 −
T∑

k=�Tr�−�Ts�
(k +d)−1

→ −ψ(d)+ log(r − s) = R(1)(d),

as T → ∞ (cf. (9)).
We next derive the solutions to the recursions.

Lemma 1. Let g(d) : R+ → R and assume that Dmg(d) exists for m = 1,2, . . .
and define G(d) = ∫ d

0 g(s)ds. Define recursively the functions gm(d), m = 1,2, . . . ,
by g0(d) = 1 and

gm+1(d) = Ddgm(d)+g(d)gm(d). (28)

The solution gm(d) of (28) is given, for m = 1,2, . . . , by

gm(d) = e−G(d)Dm
d eG(d) =

∑
(∗)

c(∗)

m∏
i=1

(
Di

dG(d)
)ji =

∑
(∗)

c(∗)

m∏
i=1

(
D

i−1
d g(d)

)ji
,

(29)

where the summation
∑

(∗) extends over all m-tuples of nonnegative integers
(j1, . . . ,jm) that satisfy

∑m
i=1 iji = m and where c(∗) = m!

∏m
i=1(ji!(i!)

ji)−1.

Proof of Lemma 1. The final equality in (29) follows easily because Di
dG(d) =

D
i−1
d g(d). We multiply (28) by eG(d) with derivative DdeG(d) = eG(d)g(d) and find

eG(d)gm+1(d)

= eG(d)Ddgm(d)+ eG(d)g(d)gm(d) = Dd(e
G(d)gm(d)), m = 0,1,2, . . . .
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It follows by iteration that

eG(d)gm+1(d)

= Dd(e
G(d)gm(d)) = D2

d(e
G(d)gm−1(d)) = ·· · = Dm

d (eG(d)g(d)) = D
m+1
d (eG(d)).

Dividing by eG(d), we have proved the first equality in (29). The next equality in
(29) follows from the Faà di Bruno formula (see Roman, 1980, Theorem 2), which
states that the derivatives of a composite function f (y), y = G(d), are given by

Dm
d f (G(d)) =

∑
(∗)

m!

j1! j2! · · · jm!
Dj1+···+jm

y f (y)
m∏

i=1

(
Di

dG(d)

i!

)ji

=
∑
(∗)

c(∗)D
j1+···+jm
y f (y)

m∏
i=1

(
Di

dG(d)
)ji .

Inserting f (G(d)) = eG(d) and noting that Dj1+···+jm
y f (y) = f (y), we find (29). �

Corollary 1. The solutions to the recursions (23)–(24) and (26)–(27) are
given, for m = 1,2, . . . , by

R(m)
T,n(d) =

∑
(∗)

c(∗)

m∏
i=1

(Di−1
d R(1)

T,n(d))ji and R(m)(d) =
∑
(∗)

c(∗)

m∏
i=1

(Di−1
d R(1)(d))ji,

respectively, where, for i = 2,3, . . . ,

D
i−1
d R(1)

T,n(d) = (−1)i−1(i−1)!
n−1∑
k=0

(k +d)−i and D
i−1
d R(1)(d) = −ψ(i−1)(d). (30)

Proof. Apply Lemma 1 with initial functions g(d) = R(1)
T,n(d) = − logT +∑n−1

k=0(k + d)−1 and g(d) = R(1)(d) = −ψ(d) + log(r − s), respectively. The
solutions then follow from (29). �

We are now ready to give our main result.

Theorem 2. Under Assumptions 1 and 2, it holds that, for m = 0,1,2, . . . ,

Dm
d Z�Tr�(d) ⇒ Dm

d W(r;d),

where the derivatives are given in (22) and (25). For any nonnegative integer M,
the convergence holds jointly for m = 0, . . . ,M < ∞.

Proof. For m = 0, the result is given in (3), so we give the proof only for m ≥ 1.
Again, joint convergence follows by application of the Cramér–Wold device and
the same proof.
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We apply Corollary 1 and find that, in view of (22) and (25), it is enough to
prove (joint) convergence for each (j1, . . . ,jm) where ji ≥ 0 :

�Tr�∑
n=1

m∏
i=1

(Di−1
d R(1)

T,�Tr�−n(d))ji T1/2−dπ�Tr�−n(d)ξn ⇒
∫ r

0

m∏
i=1

(Di−1
d R(1)(d))ji dW. (31)

With this result, we can get the final result by taking the linear combination∑
(∗) c(∗) (see Lemma 1). Thus, we start by analyzing (Di−1

d R(1)
T,�Tr�−n(d))j for some

j ≥ 1. We consider two cases.
The case i = 1: We find (see (9) and (23)), that

(R(1)
T,�Tr�−n)

j = ((− logT +
T∑

k=0

(k +d)−1)−
T∑

k=�Tr�−n

(k +d)−1)j

= (−ψ(d)−
T∑

k=�Tr�−n

(k +d)−1)j +o(1). (32)

The case i ≥ 2: Adding and subtracting appropriately, we write D
i−1
d R(1)

T,�Tr�−n(d)

in (30) as

D
i−1
d R(1)

T,�Tr�−n(d) = (−1)i−1(i−1)!
T∑

k=0

(k +d)−i − (−1)i−1(i−1)!
T∑

k=�Tr�−n

(k +d)−i

= −ψ(i−1)(d)+o(1)+ui,n,

where the convergence of the first term follows from Abramowitz and Ste-
gun (1972, eqn. (6.4.10)) because i ≥ 2, and where ui,n = −(−1)i−1(i −
1)!

∑T
k=�Tr�−n(k+d)−i satisfies |ui,n| ≤ K(�Tr�−n)−i+1 ≤ K(�Tr�−n)−1 because

i ≥ 2. Thus, in the analysis of (31), we can use the approximation

(Di−1
d R(1)

T,�Tr�−n(d))j = (−ψ(i−1)(d))j +o(1)+ui,n for i ≥ 2. (33)

Analysis of (31): We insert (32) and (33) into (31) and find, using (3) and
Theorem 1, that

�Tr�∑
n=1

m∏
i=1

(Di−1
d R(1)

T,�Tr�−n(d))ji T1/2−dπ�Tr�−n(d)ξn

=
�Tr�∑
n=1

((−ψ(d)−
T∑

k=�Tr�−n

(k +d)−1)j1
m∏

i=2

(−ψ(i−1)(d))ji +o(1)+ui,n)T
1/2−dπ�Tr�−n(d)ξn

⇒
∫ r

0
(−ψ(d)+ log(r − s))j1

m∏
i=2

(−ψ(i−1)(d))ji dW =
∫ r

0

m∏
i=1

(Di−1
d R(1)(d))ji dW

(see (26) and (30)). This proves (31) and hence the desired result. �

https://doi.org/10.1017/S0266466622000639 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000639


WEAK CONVERGENCE TO DERIVATIVES OF fBm 871

5. APPLICATION TO THE MULTIFRACTIONAL COINTEGRATION
MODEL

One motivation for the results on the weak convergence of derivatives of the
fractional process comes from the analysis of the multifractional cointegrated
vector autoregressive (MFCVAR) model (see Johansen and Nielsen, 2021). Let
d = (d1, . . . ,dp)

′ be a vector of fractional parameters, and let b be a scalar fractional
parameter. The MFCVAR model with parameters λ = (d,b,α,β,�) and no lags is
given by

�+(d)Xt = αβ ′(�−b
+ −1)�+(d)Xt + εt, t = 1, . . . ,T, (34)

where the matrix differencing operator is �+(d) = diag(�
d1+ , . . . ,�

dp
+ ) and εt

satisfies Assumption 2. In particular, εt is i.i.d. with mean zero and variance �.
The properties of the solution to these equations can be found from the corre-

sponding result for the FCVAR model studied in Johansen and Nielsen (2012b).
We denote true values by subscript zero, and in particular d0p denotes the pth

element of d0. Now, if we define X̃t by �
dp
+ X̃t = �+(d)Xt, then X̃t is given by

the equations

�
dp
+ X̃t = αβ ′(�−b

+ −1)�
dp
+ X̃t + εt, t = 1, . . . ,T . (35)

These equations define the FCVAR model of Johansen and Nielsen (2012b)
with scalar fractional parameters dp and b together with (α,β,�). It follows
from Theorem 2 of Johansen and Nielsen (2012b) that the solution to (35), for
(dp,b,α,β,�) = (d0p,b0,α0,β0,�0), is

X̃t = C0�
−d0p
+ εt +�

b0−d0p
+ Yt,

where C0 = β0⊥(α′
0⊥β0⊥)−1α′

0⊥ and Yt is a stationary linear process satisfying
Assumption 1. Consequently, the solution to (34), for λ = λ0, satisfies

�+(d0)Xt = C0εt +�
b0+ Yt. (36)

This shows that �
d0i+ Xit is in general fractional of order zero, for i = 1, . . . ,p, so

that the model (34) allows each component of Xt to have its own fractional order,
and is therefore called “multifractional.” Premultiplying (36) by β ′

0 shows that
�

−b0+ β ′
0�+(d0)Xt is also fractional of order zero; that is, some linear combinations

of the processes {�d0i−b0+ Xit}p
i=1 are fractional of order zero and hence Xt is

cointegrated.
We define the i.i.d. process ξt = (α′

0⊥β0⊥)−1α′
0⊥εt such that C0εt = β0⊥ξt. The

three processes Zt(b0), Z∗
t (b0), and Db0 Zt(b0) are then defined in terms of ξt as in

(3), (4), and (6), respectively. It follows from the above analysis that Z�Tr�(b0) and
Z∗

�Tr�(b0) converge weakly to fBm W(r;b0), that Db0 Z�Tr�(b0) converges weakly to
Db0 W(r;b0), and that the processes converge jointly.

To simplify the subsequent analysis, we assume that � = �0, dp = d0p, α =
α0, and b = b0 > 1/2. This allows us to focus on the parameters that give rise
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to “nonstandard” asymptotic distributions, and in particular to the application of
Db0 W(r;b0). Specifically, we define the parameters θ = β ′

0⊥β (or β = β0 + β̄0⊥θ

with Ā = A(A′A)−1 for any matrix A with full rank) and γi = di −d0i, for i = 1, . . . ,p,
such that γp = 0. With this notation, we can define the residual, using (34) and
(36), as

εt(θ,γ ) = (Ip +α0(β
′
0 + θ ′β̄ ′

0⊥)(1−�
−b0+ ))�+(γ )(C0εt +�

b0+ Yt),

and the Gaussian likelihood is

LT(θ,γ )=−1

2
tr{�−1

0 T−1
T∑

t=1

εt(θ,γ )εt(θ,γ )′}=−1

2
tr{�−1

0 MT(ε(θ,γ ),ε(θ,γ ))},

where MT(a,b) = T−1 ∑T
t=1 atb′

t. We will use this simple model to illustrate the
role of the processes Zt(b0) and Db0 Zt(b0) and their limits in the analysis of the
score functions for γ and θ evaluated at λ0.

The derivative of εt(θ,γ ) with respect to θ at λ = λ0 in the direction ∂θ ∈
R

(p−r)×r is denoted Dθ εt|λ=λ0(∂θ) and similarly for Dγ εt|λ=λ0(∂γ ),∂γ ∈ R
p, but

with ∂γp = 0 because γp = 0. We find that

Dθ εt|λ=λ0(∂θ) = α0(∂θ)′β̄ ′
0⊥(1−�

−b0+ )(C0εt +�
b0+ Yt)

� −α0(∂θ)′�−b0+ ξt = −Tb0−1/2α0(∂θ)′Zt(b0),

Dγ εt|λ=λ0(∂γ ) = (Ip +α0β
′
0(1−�

−b0+ ))diag(∂γ )Dγ �+(γ )|γ=0(C0εt +�
b0+ Yt)

� −α0β
′
0 diag(∂γ )Dγ �

γ−b0+ |γ=0β0⊥ξt = α0β
′
0 diag(∂γ )β0⊥Db0�

−b0+ ξt

= Tb0−1/2(logT)α0β
′
0 diag(∂γ )β0⊥Z∗

t (b0),

where Zt and Z∗
t are given in (3) and (4), and where we use “�” to indicate that

equality holds up to a stationary process that disappears asymptotically when we
normalize the nonstationary processes. We identify the score vector ST,θ for θ from
DθLT |λ=λ0(∂θ) = (vec∂θ)′ST,θ , and similarly for γ . We then find that

T−b0+1DθLT |λ=λ0(∂θ) � tr{�−1
0 α0(∂θ)′T1/2MT(Z(b0),ε)},

T−b0+1(logT)−1Dγ LT |λ=λ0(∂γ ) � − tr{�−1
0 α0β

′
0 diag(∂γ )β0⊥T1/2MT(Z∗(b0),ε)},

and, using tr{A′B} = (vecA)′ vecB, the scores are

T−b0+1ST,θ � vec(T1/2MT(Z(b0),ε)�
−1
0 α0),

T−b0+1(logT)−1ST,γ � −B′
0 vec(T1/2MT(Z∗(b0),ε)�

−1
0 α0).

Here, we have defined the (p − r)r × p matrix B0 = (β ′
0e1 ⊗ β ′

0⊥e1, . . . ,β
′
0ep ⊗

β ′
0⊥ep), with ei denoting the ith unit vector in R

p, and used the property that
tr{β ′

0 diag(φ)β0⊥M} = φ′B′
0 vecM (see Theorem 2 of Johansen and Nielsen, 2021).

Thus, ST,θ ∈ R
(p−r)r and ST,γ ∈ R

p.
We note that the product moments T1/2MT(Z(b0),ε) and T1/2MT(Z∗(b0),ε)

converge jointly to their weak limit
∫ 1

0 W(r;b0)dW ′(r), so the scores become
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linearly dependent in the limit. We therefore use the relation (7) to eliminate
Z∗

t (b0) = Zt(b0)+ (logT)−1Db0 Zt(b0), and the score for γ becomes

T−b0+1ST,γ � −B′
0 vec(T1/2MT((logT)Z(b0)+Db0 Z(b0),ε)�

−1
0 α0).

We can now eliminate the linear dependence in the limit by defining the new
parameter

vec θ̃ = vecθ + (logT)B0γ ∈ R
(p−r)r

and

ε̃t(vec θ̃,γ ) = εt(vecθ,γ ) = εt(vec θ̃ − (logT)B0γ,γ ).

Then the scores and their joint limits become

T−b0+1ST,θ̃ � vec(T1/2MT(Z(b0),ε)�
−1
0 α0) ⇒ vec

(∫ 1

0
W(r;b0)dW ′(r)�−1

0 α0

)
,

T−b0+1ST,γ = (logT)B′
0 vec(T1/2MT(Z(b0),ε)�

−1
0 α0)

−B′
0 vec(T1/2MT((logT)Z(b0)+Db0 Z(b0),ε)�

−1
0 α0)

= −B′
0 vec(T1/2MT (Db0 Z(b0),ε)�

−1
0 α0)

⇒ −B′
0 vec

(∫ 1

0
Db0 W(r;b0)dW ′(r)�−1

0 α0

)
.

Thus, the introduction of the derivative of the fractional process and its limit allows
one to reparameterize the score to find a mixed Gaussian asymptotic distribution,
which can then be exploited to conduct inference for some hypotheses in the
MFCVAR model. For a detailed analysis, we refer to Johansen and Nielsen (2021).

6. CONCLUDING REMARKS

Weak convergence of derivatives of fractional processes is interesting in its own
right. However, it is also likely to find application in statistical analysis of inference
problems related to multivariate fractional processes.

Hualde (2012) motivated his result (5) with a bivariate regression analysis of
so-called “unbalanced cointegration” (see Hualde, 2014), but also anticipated
that results like (5) may be useful in the statistical analysis of polynomial co-
fractionality (see Johansen, 2008; Franchi, 2010).

In Section 5, we presented an application of our results in (11) and Theorem 2
to the asymptotic distribution theory for the maximum likelihood estimators of
the fractional parameters in the so-called “multifractional” vector autoregressive
model of Johansen and Nielsen (2021). In this setting, the derivative DdZ�Tr�(d)

and its weak limit DdW(r;d) play an important role, because they allow avoiding
linear dependence in the limit and because the asymptotic distribution is expressed
in terms of both W(r,d) and DdW(r,d).
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