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Quadratic associations between cardiovascular stress reactivity and
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Wei Lü and Yefei Huang
Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience, Shaanxi Key Research Center for Children Mental and Behavior Health, School of Psychology,
Shaanxi Normal University, Xi'an, China

Abstract

Stress affects executive functions and exploring the association between stress-induced physiological reactivity and executive functions could
highlight the potential mechanism of the stress-cognitive function link. Our study examined the linear and nonlinear associations between
cardiovascular stress reactivity and cool and hot executive functions among adolescents. In November 2021 (T1), 273 Chinese adolescents
between 11 and 14 (Mage= 12.93, SDage= 0.79) underwent a speech task during which their cardiovascular data were recorded, and they
completed a Flanker task and an Emotional Stroop task. InMay 2023 (T2), 253 adolescents again completed the Flanker and Emotional Stroop
tasks. Cool and hot executive functions were assessed using the intra-individual reaction time variability of the Flanker task and Emotional
Stroop task, respectively. Results showed that cardiovascular stress reactivity was positively linearly associated with cool executive functions at
T1 and quadratically (inverted U-shaped) associated with cool executive functions at T1 and hot executive functions at T1 and T2. These
findings suggest that compared to very high and very low cardiovascular reactivity, moderate to high cardiovascular reactivity to a structured
social challenge is associated with better cool and hot executive functions.
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Introduction

Executive function, as a high-level cognitive process, refers to the
ability to plan, initiate, shift, monitor, and inhibit behaviours
(Diamond, 2013). Executive functions generally include three core
components: inhibitory control, working memory, and cognitive
flexibility (Friedman & Miyake, 2017). In addition, executive
functions can be divided into cool and hot executive functions
based on whether motivation and emotion are involved (Zelazo &
Müller, 2002). Cool executive functions which refer to executive
functions in emotionally neutral contexts, are more robustly
related to cognitive outcomes, whereas hot executive functions
which refer to executive functions in motivational and emotionally
laden contexts, are more strongly related to socioemotional
behavioral problems (Di et al., 2015; Fernández et al., 2021; Kim
et al., 2013). Adolescence is a critical period for the maturity and
development of a series of executive functions (Best & Miller,
2010), and cool and hot executive functions are found to develop
differently during adolescence (Poon, 2018). Deficits in executive
functions have been suggested as the underlying mechanism
leading to psychopathological problems (Han et al., 2016; Romer &
Pizzagalli, 2021), and cool and hot executive functions have been
found to be differently associated with psychopathological
symptoms (Zelazo, 2020). Therefore, exploring cool and hot

executive functions among adolescents is important for a deeper
understanding of the differential mechanisms of developmental
psychopathology.

Stress is regarded as a leading environmental factor affecting
executive functions (Sandi, 2013). Whether acute or chronic, stress
generally has negative effects on working memory (Li et al., 2021;
Raver & Blair, 2016), inhibitory control (Afek et al., 2021; Cowell
et al., 2015; Roos et al., 2017), cognitive flexibility (Goldfarb et al.,
2017; Kalia et al., 2021), and overall executive functions (Moeschl
et al., 2022; Shields et al., 2016). However, stress does not inevitably
undermine executive functions, and mild or moderate stress tends
to facilitate executive functions (Sandi, 2013). The underlying
process by which stress affects executive functions remains poorly
understood. The arousal of physiological systems under stress,
including the autonomic nervous system (ANS) and hypotha-
lamic–pituitary–adrenal (HPA) axis, is considered one of the
potential mechanisms that facilitate cognitive activity (Godoy
et al., 2018; Wass, 2018). The HPA axis is activated slowly under
stress and impacts executive functions through a chronic
imbalance in cortisol levels (Peters et al., 1998). Comparatively,
the ANS can be aroused very quickly to provide rapid physiological
adaptation, which facilitates individuals to utilize cognitive
resources and maintain attention to face challenges in the initial
phase of a stressful event (Godoy et al., 2018; Peters et al., 1998;
Wass, 2018). Studies have also shown that some individuals’ ANS
is responsive, while their HPA axis is not responsive to stress or
challenges, suggesting an asymmetry between the HPA axis and
ANS in stress arousal (Del Giudice et al., 2011; Wiemers et al.,
2013). Thus, HPA axis arousal and ANS arousal may be differently
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associated with executive functions. The relationship between
HPA axis arousal, indexed by cortisol stress reactivity, and
executive functions has been extensively explored (e.g., Blair et al.,
2005; Feola et al., 2020; Guevara & Murdock, 2020; McCormick
et al., 2007); however, the understanding of the association
between ANS arousal and executive functions is limited.

Cardiovascular stress reactivity, indexed by heart rate (HR),
systolic blood pressure (SBP), and diastolic blood pressure (DBP),
which are innervated by the ANS, has been preliminarily explored
in relation to executive functions. Some studies have found that
higher SBP and DBP reactivity is associated with poor working
memory, inhibitory control, and general executive functions
among young adults (Hendrawan et al., 2012), and older adults
(Waldstein & Katzel, 2005; Wright et al., 2005). However, some
studies found that lower HR, SBP, and DBP reactivity are linked to
deficits in working memory, inhibitory control, and general
executive functions among children (Gao et al., 2015), young
adults (Backs & Seljos, 1994) and older adults (Ginty et al., 2012;
Lin et al., 2014;Wawrzyniak et al., 2016). Longitudinal studies have
also found that lower HR, SBP, and DBP reactivity in young adults
are linked to poor inhibitory control and general executive
functions in midlife (Lin et al., 2014; Yano et al., 2016).
Additionally, null associations between HR, SBP, and DBP
reactivity and inhibitory control have also been found among
young (Duschek et al., 2009) and middle-aged adults (Mehta,
2012). In short, only the association between cardiovascular stress
reactivity and cool executive function has been explored in
previous studies with mixed findings, leaving the relationship
between cardiovascular stress reactivity and hot executive
functions underexplored. Given that, stress-induced cardio-
vascular arousal is accompanied by motivational engagement
(Carroll et al., 2017; Ginty et al., 2020; Lü & Yao, 2021; Lü, 2020), it
is thus plausible to assume that cardiovascular stress reactivity
would be related to hot executive functions which include
motivational and emotional elements.

Moreover, the inconsistent findings regarding the association
between cardiovascular stress reactivity and cool executive
function might only be due to a linear association. Obradović
(2016) indicated that moderate levels of physiological responsivity
are optimal for executive function performance, whereas extremely
high or low levels of physiological responsivity may undermine it.
Carroll et al. (2017) proposed an inverted U-shaped correlation
between cardiovascular stress reactivity and behavioural outcomes,
suggesting that very high cardiovascular reactivity which reflects
allostatic load, and very low cardiovascular reactivity which reflects
motivational dysregulation, are related to adverse outcomes
(Carroll et al., 2017; O’ Riordan et al., 2023; Turner et al., 2020;
Whittaker et al., 2021). Therefore, based on theoretical perspec-
tives, and considering that mild stress is considered to facilitate
executive functions (Sandi, 2013), moderate rather than very high
or very low cardiovascular stress reactivity might be related to
optimal executive functions. An empirical study has shown that
moderate rather than high or low parasympathetic arousal to
stress, indexed by vagal withdrawal, is linked to the best executive
functions among children (Marcovitch et al., 2010). Thus, in
addition to a linear association, cardiovascular stress reactivitymay
be quadratically associated with executive functions.

Overall, our study aimed to examine the linear and nonlinear
associations between cardiovascular stress reactivity and cool and
hot executive functions among adolescents using two-wave
data collected 18 months apart. Based on the literature reviewed
above, we hypothesized that (a) other than linear associations,

cardiovascular stress reactivity would be quadratically associated
with cool and hot executive functions assessed at T1. Specifically,
adolescents with moderate cardiovascular stress reactivity exhib-
ited better cool and hot executive functions. (b) From a
developmental perspective, cardiovascular stress reactivity would
be quadratically associated with cool and hot executive functions
assessed at T2 after controlling for executive functions assessed
at T1.

Method

Participants

Middle school students (between 11 and 14 years old) were
recruited from Northwest China, and data were drawn longitu-
dinally from two time points: November 2021 (T1) and May 2023
(T2). After eliminating three participants at T1 and five
participants at T2 due to missing experimental data, the final
sample included 273 participants (133 females; Mage= 12.93,
SDage= 0.79) at T1 and 253 participants (125 females;
Mage= 14.44, SDage= 0.79) at T2. All participants were physically
healthy; reported no diagnosis of primary psychotic or mood
disorder; had no history of psychosis, asthma, obesity, or
cardiovascular disease; and had a body mass index (BMI) between
15.60 kg/m2∼ 20.07 kg/m2. The participants had normal or
corrected-to-normal vision. Demographic information of the
sample at T1 is presented in Table 1. This study was approved by
the local institutional review board and written informed consent
was obtained from all participants before the experiment. At the
end of the experiment, the participants received a gift as
compensation.

Public speaking task

Stress was induced by an impromptu speech about running for a
class leader, which was demonstrated to effectively induce
subjective and physiological stress responses in previous studies
(Hofmann et al., 2006; Huang & Lü, 2023; Lü & Wang, 2017).
Participants were given 30 s to prepare a speech and 3 min to
deliver it. During the public speaking task, their performances were
videotaped, and the confederates showed neutral facial expressions
and avoided smiling and nodding. If the participants stopped
speaking before 3 min, the confederates said, ‘Please continue, I
will tell you when your time is up’. If participants had trouble
determining what to say, they were asked a series of standard
questions as prompts.

Measures

Physiological measurement
Physiological data were continuously recorded using SOMNO
touchTM RESP (SOMNOmedics, Germany). Electrocardiogram
(ECG) data were collected from the participants using three
Ag-AgCl leads (mounted on the right and left clavicles and the
lower left rib) with a 1-channel ECG sensor sampled at 512 Hz. HR
data were acquired from the R-R intervals in the ECG and SBP and
DBP values were obtained via pulse transit time (PTT) method,
which has been proven as a valid indirect blood pressure
measurement method (Bilo et al., 2015) and has been used in
experimental and clinical studies (Gesche et al., 2012; Lü & Yao,
2021). Subsequently, DOMINO light software 1.4.0 was applied for
physiological data downloading, artefact control, and computation
of average physiological scores for each participant for the baseline
and stress periods. In this study, HR, SBP, and DBP values were
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calculated every minute and averaged to obtain the mean HR, SBP,
and DBP values for each study period.

Subjective emotional experience
Subjective emotional experiences involving pleasantness and
arousal were assessed immediately after each study phase (baseline,
stress exposure) on a 9-point scale from 1 (unpleasant) to 9
(pleasant) and 1 (relaxed) to 9 (aroused) (Lü & Wang, 2018;
Lü, 2020).

Socioeconomic status
Socioeconomic status (SES) comprised the monthly family
income, highest parental educational level, and parental occupa-
tional level. Monthly household income, assessed as the monthly
income of all family members, was rated from 1 (less than ¥3000)
to 5 (> ¥10,000). The parents’ education levels were rated from 1
(illiterate) to 6 (postgraduate or above). Parents’ occupations were
rated from 1 (temporary workers) to 5 (senior managers)
according to China’s occupation classification (Shi & Shen,
2007). These three components were condensed into one variable
as an index of SES, using principal component analysis (Qiu &
Ye, 2023).

Executive function tasks
In the present study, cool and hot executive functions were
assessed using intraindividual reaction time variability (IIV) of a
Flanker task and an Emotional Stroop task, respectively. The IIV
refers to short-term trial-to-trial fluctuations in reaction time, with
a larger IIV suggesting poorer executive functions (Ali et al., 2019;
Jensen, 1992; MacDonald et al., 2009). Compared with reaction
time (RT) and accuracy rates (ACC), the IIV reflects the mean

differences in performance within individuals and is regarded as a
better indicator of executive functions (Williams et al., 2016).

Cool executive functions. In the present study, cool executive
functions were assessed using a modified Flanker task, which was
administered via E-Prime 2.0 (Psychology Software Tools, Inc.,
Sharpsburg, PA). Following previous studies (Lü & Wang, 2018;
Williams et al., 2016), the present study set the practice experiment
including 20 trials and the formal experiment including three
blocks which consisted of 120 trials for each block. The procedure
for a single trial is illustrated in Figure 1. In each trial, a fixation
cross was first presented at the center of the screen for 1,000ms and
then, a flanker arrow appeared for 250 ms positioned directly to the
left or right of the fixation cross. Subsequently, a fixation cross
appeared for 50 ms and then a dot appeared to the left or right of
the fixation cross for 750 ms. Participants were asked to ignore all
other information and indicate whether the dot was located to the
left or right of the fixation cross by pressing the left key (F) or the
right key (J) on a computer keyboard with the corresponding index
finger as quickly and accurately as possible. The experimental
program included the congruent trials (the dot was presented in
the same position in which the arrow pointed) and the incongruent
trials (the dot was presented in the opposite position in which the
arrow pointed), with 24 (20%) incongruent and 96 (80%)
congruent trials in a random order in the formal experiment. In
the formal experiment, the trials with a dot on the left or right side
were an even split. During the experiment, accuracy rates
(proportion of correct trials), reaction times (reaction time of
responding to correct trials), and IIV (standard deviation of
reaction time) were obtained for the congruent and incongruent
conditions. According to previous studies (e.g., Lü & Wang, 2018;
Williams et al., 2016), all trials were combined to give an overall
indication of IIV (combined IIV). The IIV on the Flanker task at T1
and T2 were recorded as Flanker IIV-T1, and Flanker IIV-T2,
respectively.

Hot executive functions. In the present study, individuals’ hot
executive functions were assessed by an Emotional Stroop task,
which was administered via E-Prime 2.0 (Psychology Software
Tools, Inc., Sharpsburg, PA). Following previous studies
(Adelhöfer et al., 2020), the present study set up a practice
experiment including 20 trials and a formal experience
including two blocks which consisted of 80 trials for each
block. The procedure for a single trial is illustrated in Figure 2.
In each trial, a fixation cross was first displayed in the center of
the screen for 500 ms and then, a positive or negative face-word
stimulus appeared in the center of the screen for 2,000 ms,
followed by a 1,000 ms intertrial interval (blank screen).
Participants were asked to respond to positive emotional faces
by pressing the left key (F) and negative emotional faces by
pressing the right key (J) on a computer keyboard with the
corresponding index finger as quickly and accurately as possible.
In the formal experiment, the trials with positive or negative
faces were an even split. The experimental program included
the congruent trials (facial expressions that correspond to the
word’s emotional valence) and the incongruent trials (facial
expressions that differed from the word’s emotional valence)
and consisted of 80 (50%) incongruent and 80 (50%) congruent
trials in random order. There were a total of four conditions
based on trial congruency (congruence/incongruence) and facial
expressions (positive/negative), and similar to the Flanker task,

Table 1. The demographic information of the sample (N= 273)

Frequency %

Gender Female 133 48.72

Male 140 51.28

Average monthly
household income

Less than ¥3000 70 25.64

¥3000 - ¥7000 120 43.96

¥7000 - ¥10,000 54 19.78

Above ¥10,000 29 10.62

Parents’ highest
education levels

Illiteracy 2 0.73

Primary school 54 19.05

Junior high school 126 46.15

High school 55 20.15

University 38 13.92

Postgraduate or above 0 0.00

Parents’ highest
occupation

Temporary workers 32 11.72

Manual workers 127 48.52

Ordinary managers 63 23.08

Middle managers 34 12.45

Senior managers 17 6.23
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accuracy rates, reaction time, and IIV were obtained for four
conditions separately (positive-congruent, positive-incongruent,
negative-incongruent, and negative-incongruent). According to
previous studies (e.g., Adelhöfer et al., 2020; Lü & Wang, 2018),
all trials with positive face were combined to give an overall

indication of IIV (Positive combined IIV) and all trials with
negative face were combined to give an overall indication of IIV
(Negative combined IIV). The IIV on the Emotional Stroop task
at T1 and T2 were recorded as Stroop IIV-T1 and Stroop
IIV-T2, respectively.

Figure 1. Schematic diagram of the Flanker task.

Figure 2. Schematic diagram of the Emotional Stroop task.
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Procedure

In November 2021 (T1), participants were requested to sleep well
the night before the experiment and to avoid consuming nicotine
or caffeine for 2 h before the experiment to control any exogenous
effects on physiological measurements. After arriving at the
laboratory at their scheduled appointments between 2:30 pm and
5:30 pm, the participants were asked to provide informed consent
and demographic information. After the SOMNOtouchTMRESP
device was attached, the participants were allowed 10 min to
acclimatize to the laboratory. The physiological experiment
session was initiated with a 3 min baseline period, during which
participants were asked to rest and view a neutral picture (a
picture of an umbrella drawn from the International Affective
Picture System, IAPS; Lang et al., 2005) presented on the monitor
screen. Subsequently, they were asked to rate their subjective
emotional experiences using pleasantness and arousal scales.
Then, two unfamiliar adult confederates (one female and one
male) entered the room, and participants were given 30 s to
prepare a speech and then delivered the speech for 3 min (stress
period) in front of the confederates. Immediately after the stress
period, participants rated their emotional pleasantness and
arousal. Three days later, participants returned to participate in
the Flanker task and Emotional Stroop task (the order of the two
tasks was counterbalanced between participants). In May 2023
(T2), the participants were invited to complete the Flanker and
Emotional Stroop tasks. The study procedure is illustrated in
Figure 3.

Analysis review

In this study, cardiovascular (HR, SBP, and DBP) reactivity was
calculated by subtracting the mean baseline value from the mean
stress exposure value, with higher change scores indicating
greater cardiovascular response to stress (Lü, 2020; Llabre
et al., 1991).

Data analysis was conducted using IBM SPSS Statistics 25.0,
and Mplus 7.0. First, paired sample t-tests were performed to
explore whether the public speech task effectively elicited a
subjective stressful experience and physiological activation at T1
and the effects of the trial type (congruent and incongruent
conditions) on the performance of the Flanker task and
Emotional Stroop task at T1 and T2. Second, zero-order
correlations of the study variables were performed at T1 and

T2. Third, separate hierarchical regression analyses were
performed to examine the linear and quadratic effects of
standardized cardiovascular reactivity at T1 on IIV-T1 and
IIV-T2 of the Flanker task and the Emotional Stroop task. In each
regression equation, age, sex, SES, and BMI, which are closely
related to executive functions and cardiovascular stress reactivity
(Hackman et al., 2015; Steptoe & Wardle, 2005), were entered as
control variables in the first step. In addition, the IIV in the
corresponding task condition at T1 was entered as a control
variable in separate hierarchical regression analyses for the IIV at
T2. Finally, if the quadratic associations between cardiovascular
reactivity and IIV were significant, the Johnson-Neyman
technique and Mplus 7.0 were used to calculate the slope of
cardiovascular reactivity on IIV at different levels of cardio-
vascular reactivity.

Result

Manipulation checks

Physiological experiment checks
The means and standard deviations of the subjective and
physiological values at baseline and during stress exposure are
presented in Table 2.

The results of the paired sample t-tests showed that emotional
arousal in the stress task was significantly higher than at baseline,
t (272) =−24.80, p< .001, and emotional pleasantness in the stress
task was significantly lower than at baseline, t (272) = 21.85,
p< .001. The HR, SBP, and DBP values in the stress task were
significantly lower than those at baseline (t (272) = 21.85, p< .001,

Figure 3. Schematic of the experimental procedure.

Table 2. Means and SDs for subjective and physiological values across different
study phases

Baseline Stress Exposure t (272)

Emotional Arousal 4.47 (1.37) 6.85 (1.10) −24.80***

Emotional Pleasantness 5.61 (1.15) 3.79 (0.80) 21.85***

HR (bpm) 86.66 (11.82) 98.94 (14.00) 21.85***

SBP (mmHg) 103.95 (12.41) 115.08 (15.31) 21.86***

DBP (mmHg) 64.76 (8.26) 71.22 (8.91) 21.26***

Note. HR= heart rate; SBP= systolic blood pressure; DBP= diastolic blood pressure.
*p< 0.05. ** p< 0.01. *** p< 0.001.
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t (272) = 21.26, p< .001, t (272) = 30.04, and p< .001. These
results indicate that the public-speaking task was successfully
manipulated to elicit subjective and physiological responses.

Behavioural experiment checks
The means and standard deviations of the accuracy rate, reaction
time, and IIV on the Flanker task and Emotional Stroop task are
presented in Table 3.

The results of paired samples t-tests showed that on the
Flanker task, better accuracy rate-T1 (t (272)= 19.05, p< .001),
shorter reaction time-T1 (t (272)=−29.05, p< .001), lower IIV-T1
(t (272)=−15.42, p< .001), and better accuracy rate-T2
(t (252)= 17.79, p< .001), shorter reaction time-T2
(t (252)=−31.98, p< .001), lower IIV-T2 (t (252)=−12.37,
p< .001), were found on congruent trials in comparison to
incongruent trials. On the Emotional Stroop task, better accuracy
rate-T1 (t (272)= 11.16, p< .001), shorter reaction time-T1
(t (272)=−15.88, p< .001), lower IIV-T1 (t (272)=−9.95,
p< .001), and better accuracy rate-T2 (t (252)= 9.96, p< .001),
shorter reaction time-T2 (t (252)=−15.71, p< .001), lower IIV-T2
(t (252)=−9.38, p< .001), were found on positive congruent trials in
comparison to positive incongruent trials. However, better accuracy
rate-T1 (t (272)= 10.83, p< .001), shorter reaction time-T1
(t (272)=−9.95, p< .001), but not IIV-T1 (t (272)=−1.29,
p= .200), and better accuracy rate-T2 (t (252)= 8.50, p< .001),
shorter reaction time-T2 (t (252)= -11.44, p< .001), lower IIV-T2
(t (252)=−2.65, p= .009), were found on negative congruent trials in
comparison to negative incongruent trials. Moreover, IIV-T2 was not
significantly different from IIV-T1 on the Flanker task (t (252)= 0.77,
p= .441), whereas IIV-T2 was lower than IIV-T1 in positive and
negative trials in the Emotional Stroop task (t (252)= 6.01, p< .001;
t (252)= 5.57, p< .001).

Zero-order correlations

The correlations among all study variables are presented in Table 4.
As shown in Table 4, HR reactivity was positively associated

with SBP (r= 0.66, p<0.001) and DBP reactivity (r= 0.58,
p<0.001), whereas SBP reactivity was positively associated with
DBP reactivity (r= 0.77, p< 0.001). Within measures, Flanker
combined IIV-T1 was positively related to Stroop-Positive
combined IIV-T1 (r= 0.46, p< 0.001) and Stroop-negative
combined IIV-T1 (r= 0.37, p< 0.001). Flanker combined
IIV-T2 was positively related to Stroop-Positive combined IIV-
T2 (r= 0.44, p< 0.001) and Stroop-negative combined
IIV-T2 (r= 0.36, p< 0.001). Across measures, Flanker combined

IIV-T1 was positively correlated with Flanker combined IIV-T2
(r= 0.50, p< 0.001), Stroop positive-combined IIV-T1 was
positively correlated with Stroop-Positive combined IIV-T2
(r= 0.48, p< 0.001), and Stroop-negative combined IIV-T1 was
positively correlated with Stroop-negative combined IIV-T2
(r= 0.38, p< 0.001), which indicated consistency between mea-
surements at T1 and T2.

Hierarchical regression

Hierarchical regression on the flanker task
The results of the hierarchical regression analyses are presented in
Table 5.

As shown in Table 5, the linear effects of HR and SBP reactivity
were marginally significant for Flanker combined IIV-T1
(b=−3.20, t=−1.90, 95 % CI [−6.51, 0.11], p= .058; b=−3.30,
t=−1.94, 95 % CI [−6.66, 0.06], p= .054), and the linear effects of
DBP reactivity were significant for Flanker combined IIV-T1
(b=−3.61, t=−2.05, 95% CI [−7.08, 0.14], p= .042). The linear
effects of HR, SBP and DBP reactivity were not significant for
Flanker combined IIV-T2 (b=−2.25, t= -1.29, 95 % CI [−5.69,
1.20], p= .200; b= 0.76, t= 0.43, 95 % CI [−2.71, 4.23], p= .667;
b= 3.02, t= 1.68, 95 % CI [−0.52, 6.55], p= .094).

The quadratic effects of HR and SBP reactivity were significant
for Flanker combined IIV-T1 (b= 3.64, t= 2.99, 95 % CI [1.25,
6.04], p= .003; b= 3.98, t= 3.52, 95%CI [1.75, 6.20], p< .001), but
were not significant for Flanker combined IIV-T2 (b= 1.89,
t= 1.42, 95% CI [−0.72, 4.49], p= .156; b= 1.85, t= 1.55, 95% CI
[−0.50, 4.21], p= .122). The quadratic effects of DBP reactivity
were significant for Flanker combined IIV-T1 (b= 4.67, t= 4.03,
95% CI [2.39, 6.95], p< .001) and Flanker combined IIV-T2
(b= 2.87, t= 2.33, 95% CI [0.44, 5.30], p= .021).

As shown in Figure 4, with an increase in HR reactivity, Flanker
combined IIV-T1 first decreased significantly (HR reactivity lower
than 0.38 Z), then changed insignificantly (HR reactivity between
0.38 Z and 1.47 Z), and finally increased significantly (HR
reactivity higher than 1.47 Z). With the increase of SBP reactivity,
Flanker combined IIV-T1 firstly decreased significantly (SBP
reactivity lower than 0.68 Z), then changed non-significantly (SBP
reactivity between 0.68 Z and 1.59 Z), and finally increased
significantly (SBP reactivity higher than 1.59 Z). With the increase
in DBP reactivity, Flanker combined IIV-T1 first decreased
significantly (DBP reactivity lower than 0.23 Z), changed non-
significantly (DBP reactivity between 0.23 Z and 0.99 Z), and
finally increased significantly (DBP reactivity higher than 0.99 Z);
Flanker combined IIV-T2 first decreased significantly (DBP

Table 3. Means and SDs for accuracy rates, reaction time and IIV on the flanker task and Emotional Stroop task

Flanker task Stroop task

Congruent Incongruent Positive Congruent Positive Incongruent Negative Congruent Negative Incongruent

Accuracy Rates-T1 0.97 (0.05) 0.82 (0.15) 0.90 (0.14) 0.81 (0.18) 0.88 (0.14) 0.80 (0.17)

Reaction Time-T1 332.23 (51.80) 379.13 (64.67) 740.31 (118.63) 794.15 (137.17) 788.38 (32.40) 821.63 (134.61)

IIV-T1 111.07 (28.52) 127.08 (34.17) 212.29 (78.44) 245.72 (87.80) 242.64 (97.34) 247.61 (86.94)

Accuracy Rates-T2 0.96 (0.06) 0.85 (0.13) 0.95 (0.10) 0.88 (0.13) 0.93 (0.10) 0.88 (0.12)

Reaction Time-T2 323.57 (43.53) 369.37 (52.79) 694.04 (115.66) 743.97 (122.39) 737.19 (123.52) 770.19 (117.98)

IIV-T2 107.36 (31.75) 120.95 (38.81) 183.08 (75.28) 215.12 (79.55) 210.96 (84.77) 220.24 (84.16)

Note. IIV= intraindividual reaction time variability.
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Table 4. Descriptive statistics and correlations among study variables

1 2 3 4 5 6 7 8 9 10 11 12 13

1. Gender

2. Age 0.05

3. BMI 0.05 0.08

4. SES 0.10 −0.15* −0.009

5. HR Reactivity −0.15** 0.008 0.02 0.09

6. SBP Reactivity −0.25*** −0.02 −0.02 −0.04 0.66***

7. DBP Reactivity −0.34*** −0.09 <0.001 −0.08 0.58*** 0.77***

8. Flanker combined IIV-T1 −0.07 −0.13* −0.04 −0.003 −0.11 −0.10 −0.08

9. Stroop-Positive combined IIV-T1 0.07 −0.01 −0.09 −0.07 −0.07 −0.04 −0.08 0.46***

10. Stroop-Negative combined IIV-T1 0.17** −0.01 −0.15* −0.05 −0.06 −0.07 −0.09 0.37*** 0.77***

11. Flanker combined IIV-T2 0.006 0.04 −0.02 −0.02 −0.13* −0.04 0.02 0.50*** 0.39*** 0.32***

12. Stroop-Positive combined IIV-T2 0.05 −0.03 −0.03 0.02 −0.10 −0.01 −0.02 0.39*** 0.48*** 0.43*** 0.44***

13. Stroop-Negative combined IIV-T2 0.06 −0.03 −0.05 0.02 0.02 0.003 −0.02 0.33*** 0.38*** 0.38*** 0.36*** 0.79***

M 12.93 18.44 0.00 12.29 11.13 6.46 113.96 227.51 244.64 112.42 201.46 216.21

SD 0.79 1.02 1.00 9.29 8.65 3.55 27.48 74.54 81.02 31.13 68.63 74.88

Note. SES= socioeconomic status; BMI= body mass index = weight / height2; HR = heart rate; HR reactivity= average HR at stress − average baseline HR; SBP= systolic blood pressure; SBP reactivity= average SBP at stress − average baseline SBP;
DBP= diastolic blood pressure; DBP reactivity= average DBP at stress − average baseline DBP. * p< 0.05. ** p< 0.01. *** p< 0.001.
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reactivity lower than −1.82 Z), then changed non-significantly
(DBP reactivity between −1.82 Z and 0.21 Z), and finally increased
significantly (DBP reactivity higher than 0.21 Z).

These results revealed that, compared to very high or very low
cardiovascular reactivity, adolescents with moderate to high
cardiovascular stress reactivity at T1 exhibited better cool executive
functions at T1, but not at T2.

Hierarchical regression on the emotional Stroop task
The results of the hierarchical regression analyses are presented in
Table 6.

As shown in Table 6, the quadratic effects of HR, SBP and DBP
reactivity were significant or marginally significant for Stroop-
positive combined IIV-T1 (b= 6.04, t= 1.80, 95% CI [-0.57,
12.66], p= .073; b= 10.72, t= 3.47, 95% CI [4.64, 16.80], p< .001;
b= 9.14, t= 2.85, 95% CI [2.81, 15.46], p= .005), Stroop-Negative
combined IIV-T1 (b= 10.79, t= 3.04, 95% CI [3.80, 17.77],
p= .003; b= 10.04, t= 3.03, 95% CI [3.52, 16.56], p= .003;
b= 9.30, t= 2.71, 95% CI [2.54, 16.07], p= .007),
Stroop-Positive combined IIV-T2 (b= 9.43, t= 3.25, 95% CI
[3.71, 15.14], p= .001; b= 7.46, t= 2.81, 95% CI [2.24, 12.68],
p= .005; b= 7.47, t= 2.73, 95% CI [2.09, 12.86], p= .007) and
Stroop-Negative combined IIV-T2 (b= 9.50, t= 2.78, 95% CI
[2.78, 16.22], p= .006; b= 10.60, t= 3.52, 95% CI [4.66, 16.54],
p= .001; b= 8.18, t= 2.60, 95% CI [1.97, 14.39], p= .010).

As shown in Figure 5, with the increase of HR reactivity, Stroop-
Negative combined IIV-T1 first decreased significantly (HR

reactivity lower than 0.003 Z), then changed non-significantly
(HR reactivity between 0.003 Z and 0.81 Z), and finally increased
significantly (HR reactivity higher than 0.81 Z); Stroop-Positive
combined IIV-T2 first decreased significantly (HR reactivity lower
than 0.16 Z), then changed non-significantly (HR reactivity
between 0.16 Z and 1.04 Z), and finally increased significantly (HR
reactivity higher than 1.04 Z); and, Stroop-Negative combined IIV-
T2 first decreased significantly (HR reactivity lower than −0.40 Z),
then changed non-significantly (HR reactivity between −0.40 Z
and 0.57 Z); and, finally increased significantly (HR reactivity
higher than 0.57 Z). With the increase of SBP reactivity, Stroop-
Positive combined IIV-T1 first decreased significantly (SBP
reactivity lower than 0.39 Z), then changed non-significantly
(SBP reactivity between 0.39 Z and 1.20 Z), and finally increased
significantly (SBP reactivity higher than 1.20 Z); Stroop-Negative
combined IIV-T1 first decreased significantly (SBP reactivity lower
than 0.31 Z), then changed non-significantly (SBP reactivity
between 0.31 Z and 1.18 Z); and, finally increased significantly
(SBP reactivity higher than 1.18 Z); Stroop-Positive combined IIV-
T2 first decreased significantly (SBP reactivity lower than 0.08 Z),
then changed non-significantly (SBP reactivity between 0.08 Z and
1.17 Z), and finally increased significantly (SBP reactivity higher
than 1.17 Z); Stroop-Negative combined IIV-T2 first decreased
significantly (SBP reactivity lower than 0.15 Z), then changed non-
significantly (SBP reactivity between 0.15 Z and 0.97 Z), and finally
increased significantly (SBP reactivity higher than 0.97 Z). With
the increase of DBP reactivity, Stroop-Positive combined IIV-T1

Table 5. Linear and quadratic effects of cardiovascular reactivity in predicting IIV on the flanker task

Step Predictor

Flanker combined IIV-T1 Flanker combined IIV-T2

b SE t ΔR2 b SE t ΔR2

Step1 Gender −3.27 3.34 −0.98 0.02 1.81 3.42 0.53 0.27

Age −4.42 2.13 −2.08* 4.31 2.20 1.96†

BMI −0.92 1.64 −0.56 0.24 1.63 0.14

SES −0.45 1.69 −0.27 −0.05 1.77 −0.03

Corresponding IIV-T1 0.58 0.06 9.45***

Step2 HR reactivity −3.20 1.68 −1.90† 0.01 −2.25 1.75 −1.29 0.005

Step3 HR reactivity2 3.64 1.22 2.99** 0.03 1.89 1.32 1.42 0.006

Step1 Gender −3.27 3.34 −0.98 0.02 1.81 3.42 0.53 0.27

Age −4.42 2.13 −2.08* 4.31 2.20 1.96†

BMI −0.92 1.64 −0.56 0.24 1.63 0.14

SES −0.45 1.69 −0.27 −0.05 1.77 −0.03

Corresponding IIV-T1 0.58 0.06 9.45***

Step2 SBP reactivity −3.30 1.71 −1.94† 0.01 0.76 1.76 0.43 0.001

Step3 SBP reactivity2 3.98 1.13 3.52*** 0.04 1.85 1.19 1.55 0.007

Step1 Gender −3.27 3.34 −0.98 0.02 1.81 3.42 0.53 0.27

Age −4.42 2.13 −2.08* 4.31 2.20 1.96†

BMI −0.92 1.64 −0.56 0.24 1.63 0.14

SES −0.45 1.69 −0.27 −0.05 1.77 −0.03

Corresponding IIV-T1 0.58 0.06 9.45***

Step2 DBP reactivity −3.61 1.76 −2.05* 0.02 3.02 1.80 1.68† 0.008

Step3 DBP reactivity2 4.67 1.16 4.03*** 0.06 2.87 1.23 2.33* 0.02

Note. SES= socioeconomic status; BMI= body mass index=weight / height2; HR= heart rate; HR reactivity= average HR at stress − average baseline HR; HR2= HR × HR; SBP= systolic blood
pressure; SBP reactivity= average SBP at stress − average baseline SBP; SBP2= SBP × SBP; DBP= diastolic blood pressure; DBP reactivity= average DBP at stress − average baseline DBP;
DBP2= DBP × DBP. † p< 0.10. * p< 0.05. ** p< 0.01. *** p< 0.001.
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first decreased significantly (DBP reactivity lower than 0.01 Z),
then changed non-significantly (DBP reactivity between 0.01 Z and
1.17 Z), and finally increased significantly (DBP reactivity higher
than 1.17 Z); Stroop-Negative combined IIV-T1 first decreased
significantly (DBP reactivity lower than −0.08 Z), then changed
non-significantly (DBP reactivity between -0.08 Z and 0.93 Z), and
finally increased significantly (DBP reactivity higher than 0.93 Z);
Stroop-Positive combined IIV-T2 first decreased significantly
(DBP reactivity lower than −0.43 Z), then changed non-
significantly (DBP reactivity between −0.43 Z and 0.64 Z),
and finally increased significantly (DBP reactivity higher than 0.64
Z); and, Stroop-Negative combined IIV-T2 first decreased
significantly (DBP reactivity lower than −0.43 Z), then changed
non-significantly (DBP reactivity between −0.43 Z and 0.69 Z),
and finally increased significantly (DBP reactivity higher than
0.69 Z).

Therefore, compared with very high or very low cardiovascular
reactivity, adolescents with moderate to high cardiovascular stress
reactivity at T1 exhibited better hot executive functions at T1
and T2.

Post-hoc analysis
Considering that there were sex differences in cardiovascular
reactivity and Stroop-Negative combined IIV-T1, the moderating
effects of sex on the quadratic associations between cardiovascular
reactivity and Stroop-Negative combined IIV-T1 were analyzed.
No significant moderating effects of sex were found among the
quadratic associations (p> .05).

Discussion

The present study found positive linear associations between
cardiovascular stress reactivity (HR, SBP, and DBP) at T1 and cool
executive functions at T1. This is in line with previous cross-
sectional studies (Gao et al., 2015; Ginty et al., 2012; Wawrzyniak
et al., 2016), showing that adolescents with higher cardiovascular
stress reactivity exhibited better cool executive functions. However,
after controlling for cool executive functions at T1, the associations
between cardiovascular stress reactivity at T1 and cool executive
functions at T2 were not significant, suggesting that the initial
linear associations did not change significantly 18 months later.

Figure 4. Quadratic associations between cardiovascular stress reactivity and IIV on the Flanker task and Johnson-Neyman plot for the simple slope of quadratic effects.
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Table 6. Linear and quadratic effects of cardiovascular reactivity in predicting IIV on the Emotional Stroop task

Step Predictor

Stroop-Positive combined IIV-T1 Stroop-Negative combined IIV-T1 Stroop-Positive combined IIV-T2 Stroop-Negative combined IIV-T2

b SE t ΔR2 b SE t ΔR2 b SE t ΔR2 b SE t ΔR2

Step1 Gender 11.63 9.08 1.28 0.02 28.28 9.68 2.92** 0.06 −0.49 7.74 −0.06 0.24 −3.46 9.07 −0.38 0.15

Age −2.45 5.78 −0.43 −2.50 6.16 −0.41 −1.76 4.91 −0.36 −2.66 5.66 −0.47

BMI −6.36 4.44 −1.43 −11.67 4.74 −2.46* 1.18 3.68 0.32 0.48 4.27 0.11

SES −6.23 4.59 −1.36 −5.66 4.90 −1.16 2.87 3.99 0.72 1.90 4.60 0.41

Corresponding IIV-T1 0.45 0.05 8.65*** 0.36 0.06 6.35***

Step2 HR Reactivity −3.84 4.59 −0.84 0.003 −2.37 4.90 −0.48 0.001 −4.87 3.91 −1.25 0.005 2.68 4.52 0.59 0.001

Step3 HR Reactivity2 6.04 3.36 1.80† 0.01 10.79 3.55 3.04** 0.03 9.43 2.90 3.25*** 0.03 9.50 3.41 2.78** 0.03

Step1 Gender 11.63 9.08 1.28 0.02 28.28 9.68 2.92** 0.06 −0.49 7.74 −0.06 0.24 −3.46 9.07 −0.38 0.15

Age −2.45 5.78 −0.43 −2.50 6.16 −0.41 −1.76 4.91 −0.36 −2.66 5.66 −0.47

BMI −6.36 4.44 −1.43 −11.67 4.74 −2.46* 1.18 3.68 0.32 0.48 4.27 0.11

SES −6.23 4.59 −1.36 −5.66 4.90 −1.16 2.87 3.99 0.72 1.90 4.60 0.41

Corresponding IIV-T1 0.45 0.05 8.65 0.36 0.06 6.35***

Step2 SBP Reactivity −2.39 4.66 −0.51 0.001 −2.56 4.97 −0.52 0.001 0.51 3.94 0.13 <0.001 1.71 4.54 0.38 <0.001

Step3 SBP Reactivity2 10.72 3.09 3.47*** 0.04 10.04 3.31 3.03** 0.03 7.46 2.65 2.81** 0.02 10.60 3.02 3.52*** 0.04

Step1 Gender 11.63 9.08 1.28 0.02 28.28 9.68 2.92** 0.06 −0.49 7.74 −0.06 0.24 −3.46 9.07 −0.38 0.15

Age −2.45 5.78 −0.43 −2.50 6.16 −0.41 −1.76 4.91 −0.36 −2.66 5.66 −0.47

BMI −6.36 4.44 −1.43 −11.67 4.74 −2.46* 1.18 3.68 0.32 0.48 4.27 0.11

SES −6.23 4.59 −1.36 −5.66 4.90 −1.16 2.87 3.99 0.72 1.90 4.60 0.41***

Corresponding IIV-T1 0.45 0.05 8.65 0.36 0.06 6.35

Step2 DBP Reactivity −5.20 4.81 −1.08 0.004 −3.63 5.14 −0.71 0.002 1.47 4.04 0.36 <0.001 1.02 4.66 0.22 <0.001

Step3 DBP Reactivity2 9.14 3.21 2.85** 0.03 9.30 3.44 2.71** 0.03 7.47 2.74 2.73** 0.02 8.18 3.15 2.60** 0.02

Note. SES = socioeconomic status; BMI= body mass index = weight / height2; HR= heart rate; HR reactivity = average HR at stress − average baseline HR; HR2 = HR × HR. SBP= systolic blood pressure; SBP reactivity = average SBP at stress − average
baseline SBP; SBP2 = SBP × SBP; DBP= diastolic blood pressure; DBP reactivity = average DBP at stress − average baseline DBP; DBP2 = DBP × DBP. † p < 0.10. * p < 0.05. ** p < 0.01. *** p < 0.001.
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Figure 5. Quadratic associations between cardiovascular stess reactivity and IIV on the Emotional Stroop task and Johnson-Neyman plot for the simple slope of quadratic
effects.
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This finding is somewhat different from those of previous studies
using a longitudinal design that obtained a linear association
between cardiovascular reactivity at T1 and cool executive
functions at T2 (Lin et al., 2014; Yano et al., 2016). This is partly
because the longitudinal associations observed in previous studies
did not control for the initial level of cool executive functions,
which may be underpowered to detect the influence of
cardiovascular stress reactivity on changes in cool executive
functions with age. Additionally, extending previous studies, the
present study further found that cardiovascular (HR, SBP, and
DBP) stress reactivity at T1 was quadratically associated with cool
executive functions at T1, but the quadratic association was only
significant between DBP reactivity (rather than HR or SBP
reactivity) at T1 and cool executive functions at T2 after controlling
for cool executive function at T1. These findings suggest that
adolescents with moderate to high rather than very high or very
low cardiovascular stress reactivity showed better cool executive
function, but this effect did not change 18 months later.

Moreover, the present study is the first to explore the
association between cardiovascular stress reactivity and hot
executive functions. We did not find any linear associations
between cardiovascular stress reactivity at T1 and hot executive
functions at T1 and T2. However, significant quadratic associa-
tions were observed between cardiovascular (HR, SBP, and DBP)
stress reactivity at T1, hot executive functions at T1, and hot
executive functions at T2 after controlling for hot executive
functions at T1. These findings suggest that adolescents with
moderate to high rather than very high or very low cardiovascular
stress reactivity show better hot executive functions with develop-
ment. Although there is a lack of direct evidence, relevant studies
have suggested that higher physiological stress reactivity is
associated with better socioemotional functioning (Carroll et al.,
2017; O’ Riordan et al., 2023; Turner et al., 2020; Whittaker et al.,
2021). Considering that hot executive functions involve motiva-
tional and emotional elements, the pattern of the present study’s
findings partly supports indirect evidence. However, it should be
noted that the conclusion of indirect evidence is based on a linear
association, which cannot reveal the extent to which ‘higher’
physiological stress reactivity is optimal. The present study’s
findings emphasize that moderate to high rather than very high
cardiovascular stress reactivity is related to better hot executive
functions. Additionally, hot executive function has been found to
show a bell-shaped development curve during adolescence, with an
upward slope from early adolescence (i.e., from age 12 to 14) to
reach a peak in middle adolescence (ages 14 and 15) (Poon, 2018).
Therefore, we found quadratic associations between cardiovascular
stress reactivity and changes in hot executive functions over 18
months among adolescents aged 11 to 14 years.

Taken together, in addition to the linear relationships, the
present study is the first to reveal quadratic associations between
cardiovascular reactivity to a structured social challenge (i.e.,
public speaking task) and cool and hot executive functions among
Chinese adolescents, suggesting that moderate to high rather than
very high or very low cardiovascular reactivity is related to better
cool and hot executive functions. This finding highlights the
underlying mechanisms by which mild or moderate stress
facilitates executive functions. Additionally, from a developmental
perspective, the associations between cardiovascular stress reac-
tivity and hot executive functions, rather than cool executive
functions, changed after 18 months in the present study. This
differential association change trajectory may contribute to the

identification of cool and hot executive functions related to
developmental psychopathology, particularly psychopathological
symptoms associated with hot executive functions such as
externalizing behavioural problems and substance abuse (Kim
et al., 2013; Woltering et al., 2016; Yang et al., 2022).

Our study had several limitations. First, the findings of the
present study were obtained in terms of social stress induced by a
public speaking task and cool and hot executive functions operated
by the Flanker and Emotional Stroop task, respectively, in Chinese
junior school students.Whether these findings could be extended to
other types of stressors, such as mental arithmetic tasks and other
cool and hot executive function tasks, such as the GO/No-Go task
and the delay-discounting task, for all children or clinical samples
needs to be further explored. Second, the findings of cardiovascular
reactivity induced by the speech task may be affected by speaking
style, including sound size, and speaking rate. Future studies need to
retest these findings by ruling out these potential impacts and
further explore the specific associations of parasympathetic and
sympathetic activity with cool and hot executive functions. Third,
environmental factors, such as home adversity, schooling environ-
ment, and the context of the COVID-19 epidemic, were not
controlled; thus, whether the findings could be extended to the daily
life background needs to be further examined.

In conclusion, the present study revealed that cardiovascular
reactivity to a structured social challenge was quadratically
associated with baseline cool executive functions and 18 months
later hot executive functions among Chinese early adolescents.
Specifically, adolescents with moderate to high cardiovascular
stress reactivity exhibited better performance of cool executive
functions, and better performance of hot executive functions with
development, whereas adolescents with very high or very low
cardiovascular stress reactivity exhibited worse performance in
cool and hot executive functions.
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