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MXenes are a class of 2D materials with the chemical formula Mn+1XnTx (M = transition metal element, 
X = C and/or N, and T = surface termination, e.g. –O, –OH, –F) with currently 20+ members and the 
potential for many more. Despite their recent discovery in 2011, MXenes have already demonstrated 
state-of-the-art performance in fields such as electromagnetic interference shielding, chemical sensing, 
and energy storage[1]. To a large extent, this exceptional performance is due to MXenes’ high metallic 
conductivity. Methods to further improve conductivity, and thus performance, are a central objective of 
MXene research. A promising approach is through surface chemistry engineering; density functional 
theory has predicted a strong influence of surface terminations on MXene conductivity[2]. To date, such 
predications lack experimental validation. Here, we directly correlate MXene surface chemistry and 
electronic transport through novel microscopy techniques:  direct-detection electron energy-loss 
spectroscopy[3] (EELS) and simultaneous in situ heating (up to 775 °C) and electric biasing. Our 
experiments uncover important chemistry-property relationships which advance our fundamental 
understanding of MXenes and provide clear guidelines for the optimization of MXene devices. 
 
Three MXenes were studied: Ti3C2, Ti3CN, and Mo2TiC2. The MXenes were spray cast[4] onto 
heating+biasing nanochips[5]. The basic sample morphology is shown in Fig. 1a-c. Heating and biasing 
experiments were performed with the DENSsolutions Lightning D9+ holder and a JEOL 2100F TEM. 
EELS experiments were performed with a GIF Quantum and Gatan K2 summit operated in electron 
counting mode[3]. 
 
The results for the Ti3CNTx sample are shown in Figure 1d-g. For this sample, the initial terminations 
are –O, –OH, and –F, and there is intercalation of H2O. Theory predicts this MXene to be metallic[6], 
but to date, this has not been confirmed experimentally. In Fig. 2d, the post-annealing room temperature 
(RT) resistance is plotted versus the annealing temperature. Figure 2e shows the resistance versus 
temperature behavior observed during each annealing step. Clearly, annealing resulted in a reduction in 
sample resistance and a transition from semiconductor-like to metallic transport (as inferred from the 
sign of dR/dT). To understand these changes in electronic transport, we look to in situ EELS data. The O 
K edge (Fig. 2f) shows a large decrease in peak ii relative to peak i between RT and 400 °C, indicating 
loss of O which is not strongly bonded with Ti, i.e. the loss of intercalated H2O. Thus the transition from 
semiconductor-like to metallic transport is attributed to the loss of intercalated H2O. This finding 
confirms metallic conductivity in Ti3CN and demonstrates that intercalated H2O – present in all as-
prepared MXenes – can induce semiconductor-like behavior in nominally metallic MXenes. At 
temperatures above 400 °C, the loss of H2O is complete, and –F begins to desorb (Fig. 2g). Thus the 
decrease in resistance for annealing steps above 400 °C is attributed to the loss of –F terminations. This 
result is the first direct correlation of MXene termination and electronic properties and confirms 
predications that de-functionalization of Ti3CNTx increases conductivity. In addition to the described 
Ti3CNTx results, this talk will discuss the behavior of other MXenes and the effect of large organic 
intercalants. 

https://doi.org/10.1017/S1431927618008516 Published online by Cambridge University Press

https://doi.org/10.1017/S1431927618008516


Microsc. Microanal. 24 (Suppl 1), 2018 1607

 
We note that the use of direct-detection and electron counting was highly advantageous for this 
experiment. With the combined energy resolution/field-of-view offered by DD-EELS, we were able to 
simultaneously observe all relevant elements (C through F) while maintaining sufficient energy 
resolution to detect the onset of structural transitions, e.g. Ti3CNTx → TiO2. Additionally, the reduced 
sensor noise allowed extremely low electron doses to be used, which is important since MXenes are 
somewhat beam-sensitive[7]. 
 
In summary, we have utilized advanced in situ electron spectroscopy techniques to understand 
chemistry-property relationships in a rapidly emerging family of 2D materials, MXenes. Our results 
provide a critical first step in experimentally understanding and controlling MXene surface chemistry 
for applications ranging from chemical sensors to electromagnetic interference shielding[8].  
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Figure 1. a) Optical image of a MXene film spray cast onto the in situ heating+biasing nanochip, scale 
bar = 30 µm. b) TEM image showing the layered structure of Ti3CNTx, scale bar = 10 nm. c) Electron 
diffraction taken after annealing at 700 °C demonstrating the sample is still MXene, scale bar = 5 nm-1. 
d,e) Results from in situ heating and biasing within the TEM. Schematics show the changes in MXene 
intercalation and termination. f,g) In situ DD EELS of the O K and F K edges, respectively.  
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