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An extension of the curious binomial identity of
Simons

NECDET BATIR and SEVDA ATPINAR

In 2001 Simons [1] discovered a curious binomial identity which can be
written as

∑
n

k = 0
( ) ( ) xk = ∑

n

k = 0

(−1)n + k ( ) ( ) (x + 1)k . (1)n
k

n + k
k

n
k

n + k
k

Identity (1) has received the attention of many researchers and proofs by
using a variety of techniques has been given by different authors. Chapman
[2] gave an elegant and short proof using a generating function method. In
[3] Prodinger presented another nice proof of it using the Cauchy integral
formula. Wang and Sun [4] gave a very short proof using a special linear
transformation on the space of polynomials. Munarini [5], by using the
Cauchy integral formula, offered the following generalisation of (1)

∑
n

k = 0
( ) ( ) xkyn − kα
n − k

β + k
k

= ∑
n

k = 0

(−1)n + k ( ) ( ) (x + y)k yn − k. (2)
β − α + n

n − k
β + k

k

Note that (2) reduces to (1) when we put  and . See also
the related papers [6], [7], [8] and [9]. The aim of this short Article is to
provide the following extension of identity (1) by means of basic calculus.
For any non-negative integers , and any complex number  we have

α = β = n y = 1

m, n x

∑
n

k = 0
( ) ( ) xk = ∑

n

k = 0

(−1)n + k ( ) ( ) (1 + x)k , (3)n
k

m + k
k

n
k

m + k
k

where  is counted as zero when . We can now give a

proof of (3). Our proof is a modification of the method used in [1] and uses
the Leibniz rule for the product of two differentiable functions and Taylor's
theorem. We believe that this unusual application of calculus will be
interesting and useful for undergraduate students. In order to prove this
identity we need to define

( )m + k
n

n > m + k

g (x) = ∑
n

k = 0
( ) ( ) xk, (4)n
k

m + k
k

and k = 0, 1, 2, … , n

f k (x) = xm + k (k = 0, 1, 2, … , n) . (5)
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Differentiating (5)  times with respect to  we findm x

f (m)
k (x) = (m + k) (m + k − 1) … (k + 1) xk =

(m + k)!
k!

xk,

so that

f (m)
k (x)
m!

= ( ) xk. (6)m + k
k

Thus, substituting (6) into (4) we have

g (x) = ∑
n

j = 0
( ) f (j)

k (x)
j!

=
1

m!
 

dm

dxm (xm ∑
n

k = 0
( ) xk)n

j
n
k

=
1

m!
 

dm

dxm
[xm (1 + x)n] . (7)

Since  is a polynomial of degree , we have  for .
Thus, its Taylor polynomial at  is

g n g(k) (x) = 0 k ≥ n + 1
x = −1

g (x) = ∑
n

k = 0

g(k) (−1)
k!

(1 + x)k . (8)

By (7) we have

g(k) (x) =
1

m!
 

d m + k

dx m + k
[xm (1 + x)n] . (9)

For  times differentiable functions  and  the Leibniz's rule implies that
their product is also  times differentiable and

n f g
n

(f (x) g (x))(n) = ∑
n

k = 0
( ) f (n − k) (x)  g(k) (x) .n
k

Here we adopt the notation  for . Applying Leibniz rule to (9)
we have 

h (x)(n) h(n) (x)

g(k) (x) =
1

m! ∑
m + k

p = 0
( ) (xm)(m + k − p) ((1 + x)n)(p)

. (10)
m + k

p

Note that  for . Then we can easily show that for(xm)(m + k − p) = 0 p < k
p ≥ k

(xm)(m + k − p)
=

m! xp − k

(p − k)!
and ((1 + x)n)(p)

=
n! (1 + x)n − p

(n − p)!
.

Substituting these two identities in (10) and simplifying the resulting
identity one gets that

g(k) (x)
k!

= ∑
m + k

p = k
( ) ( ) ( ) xp − k (1 + x)n − p .
m + k

p
p
k

n
p
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Putting  givesx = −1

g(k) (−1)
k!

= (−1)n + k ( ) ( ) . (11)m + k
n

n
k

Substituting (11) into (8), the conclusion follows. It is worth noting that

 appears on the right-hand side of (3), not  as in (1). Clearly

(3) reduces to (1) when we set .
( )m + k

n ( )m + k
k

m = n

Remark 
Formula (2) enables us to derive many binomial coefficient identities by

specialising the parameters  and . If we set  and , and note
that

α β α = n y = 1

( ) ( ) = ( ) ( ) ,
β

n − k
β + k

k
n
k

β + k
n

we can rewrite (2) as follows: For real numbers , other than negative
integers, integers , and ,

β
n ≥ 0 x ∈ �

∑
n

k = 0
( ) ( ) xk = ∑

n

k = 0

(−1)n + k ( ) ( ) (1 + x)k . (12)n
k

β + k
k

n
k

β + k
n

(a)  If we set  in (12), we getβ = −1
2

∑
n

k = 0
( ) ( ) xk = ∑

n

k = 0

(−1)n + k ( ) ( ) (1 + x)k . (13)n
k

−1
2 + k

k
n
k

−1
2 + k

n

We have

( ) =
Γ (k + 1

2)
k! Γ (1

2) =
1
4k ( )−1

2 + k
k

2k
k

and

( ) =
Γ (k + 1

2)
n! Γ (1

2 + k − n) =
(−1)n + k ( ) ( )

4n ( ) ,
−1

2 + k
k

2k
k

2n − 2k
n − k

n
k

both of which follow from Legendre's duplication and reflection formulas
for the classical gamma function . See, for example, [10]. Replacing the
last two identities in (13) it follows that

Γ

∑
n

k = 0
( ) ( ) xk

22k =
1

22n ∑
n

k = 0
( ) ( ) (1 + x)k . (14)n

k
2k
k

2k
k

2n − 2k
n − k
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(b)  For brevity we write . For the values  and  in

(14) we obtain the following interesting identities, respectively:

Bk = ( )2k
k

x = 0 x = −1

∑
n

k = 0

BkBn − k = 4n, (15)

and

∑
n

k = 0

(−1)k ( ) Bk

4k =
Bn

4n .n
k

(c)  If we set  and  in (12) we obtainβ = −1
2 + n x = 0

∑
n

k = 0

(−1)k ( ) ( ) = (−1)n .n
k

−1
2 + n + k

n

Using the Legendre duplication formula for the gamma function once more
we find immediately that

( ) ( ) =
n!

k! (n − k)!
Γ (n + k + 1

2)
n! Γ (k + 1

2)
n
k

−1
2 + n + k

n

=
1
4n ( ) ( ) ,2n + 2k

2k
2n

n + k

which leads to

∑
n

k = 0

(−1)k ( ) ( ) = (−4)n .2n + 2k
2k

2n
n + k

Identity (15) is not new and was posed as a problem in Sved [11]. In the
literature, many different proofs of it appeared. For a brief account of this
nice identity we refer to [12] and [13].

(d)  Putting  in (12) and proceeding as above we getβ = −1
2 − n

∑
n

k = 0

(−1)k

4k ( ) ( ) xk =
1
4n ∑

n

k = 0

(−1)k ( ) ( ) (1 + x)k .2n
2k

2k
k

2n
k

4n − 2k
2n

For  this leads tox = −1

∑
n

k = 0

1
4k ( ) ( ) =

1
4n ( )2n

2k
2k
k

4n
2n
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