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Abstract

Stationary Poisson processes of lines in the plane are studied, whose directional
distributions are concentrated on k ≥ 3 equally spread directions. The random lines of
such processes decompose the plane into a collection of random polygons, which form a
so-called Poisson line tessellation. The focus of this paper is to determine the proportion
of triangles in such tessellations, or equivalently, the probability that the typical cell is
a triangle. As a by-product, a new deviation of Miles’s classical result for the isotropic
case is obtained by an approximation argument.
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1. Introduction and results

The study of random polygons induced by a Poisson process of random lines in the plane is
among the most classical topics in stochastic geometry. The distribution of a stationary Poisson
line process X = X(γ, G) in the plane is completely determined by its intensity γ > 0 and its
directional distribution G. For us, the latter is a probability measure on the interval [0, π )
satisfying G(θ ) < 1 for each θ ∈ [0, π ). We refer to the monographs [9] and [15] for further
background material and detailed descriptions and explanations. The typical cell Z = Z(γ, G)
of a stationary Poisson line tessellation with intensity γ and directional distribution G can
intuitively be thought of as a random polygon selected ‘uniformly at random’ among the col-
lection of all polygons (in a very large observation window) induced by X, regardless of size
and shape. It is a classical descriptor of the statistical properties of the random polygons gener-
ated by this Poisson line process. Formally, its distribution can be defined using Palm calculus
as explained in detail in [15]; see also (2.4) below. The geometry of the typical cell of a Poisson
line tessellation and its analogue in higher dimensions has been investigated intensively over
the past few decades, and numerous articles are dedicated to the study of its size or its com-
binatorial structure. As examples we mention the articles [3], [5], [11], [12], and [16], which
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Proportion of triangles in anisotropic Poisson line tessellations 215

deal with first- and second-order moments as well as integral expressions in the planar case,
and the works [2], [4], [6], [10], [13], and [14], which mainly discuss first-order properties in
higher-dimensional situations.

However, despite the many results just mentioned, even in the planar case, for most of
the geometric and combinatorial quantities the precise distribution is unknown and even good
approximation results are rarely available. In particular, this is the case for the number of ver-
tices of the typical cell Z, which is the principal object we study in this paper. More precisely,
we are interested in the exact probability that Z takes the simplest possible shape: a triangle.
Since the intensity γ only acts as a scaling parameter, this probability cannot depend on γ

and we can take γ = 1 for simplicity and write Z(G) instead of Z(1, G). Further, we define the
triangle probability

p3(G) := P[Z(G) is a triangle],

which can equivalently be described as the proportion of triangles among the polygons of the
Poisson line tessellation:

p3(G) = lim
R→∞

1∑
c⊂BR

1

∑
c⊂BR

1{c is a triangle},

where BR stands for a disk of radius R > 0 centred at the origin and the sum runs over all
tessellation cells c contained in BR. If the directional distribution G = Gunif is the uniform
distribution on [0, π ) and the Poisson line tessellation is isotropic, it has been known since
[11] (see Theorem 6 therein) that

p3(Gunif) = 2 − π2

6
≈ 0.35507; (1.1)

compare also with [12] and with the computations indicated in Section 3. A realization of
an isotropic Poisson line process is shown in Figure 1(c). In Section 5 we will provide an
alternative proof for (1.1) using new results from the present paper. We further remark that in
the isotropic case too the probability

P[Z(Gunif) is a quadrangle] = π2 log 2 − 1

3
− 7π2

36
− 7

2

∞∑
i=1

1

i3
≈ 0.381466

is known from [16]. However, for k ≥ 5 the probabilities P[Z(Gunif) has exactly k vertices] can
be expressed only as rather involved multiple integrals, which can be evaluated numerically;
see [3]. On the other hand, it is well known that the expected number of vertices of the typical
cell is 4, independently of the choice of the directional distribution G; see [15, Section 10.5.1].

At the other extreme, if G is concentrated on only two different values, all cells are almost
surely parallelograms. So in this case we have p3(G) = 0. Thus the next non-trivial case arises
if the directional distribution G is concentrated on three different values. For simplicity and
concreteness we start with the case where G is given by

G3(p, q) := pδ0 + qδπ/3 + (1 − p − q)δ(2π )/3, (1.2)

where we write δ(·) for the Dirac measure and where p, q ∈ (0, 1) are weights satisfying 0 <

p + q < 1. In other words, G3(p, q) is concentrated on the angles 0, π/3, and 2π/3 with weights
p, q, and 1 − p − q, respectively. A simulation of a Poisson line tessellation with directional
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FIGURE 1. Simulation of a Poisson line tessellation with directional distribution G3 (a), G4 (b), and
Gunif (c).

distribution G3(1/3, 1/3) is shown in Figure 1(a). We remark that a stationary Poisson line
process with directional distribution G3(1/3, 1/3) is of course not invariant under all rotations
in the plane. However, it is invariant under rotations whose angle is an integer multiple of π/3.
The corresponding Poisson line tessellation can thus be called G3(1/3, 1/3)-pseudo-isotropic.

Our first result is a formula for p3(G3(p, q)) in terms of the weights p and q. Also, we
determine those weights for which p3(G3(p, q)) attains its maximal value; see Figure 2.

Theorem 1.1. For all 0 < p, q < 1 with 0 < p + q < 1, we have

p3(G3(p, q)) = 2pq(1 − p − q)

p + q − p2 − q2 − pq
.

The maximal value for p3(G3(p, q)) is attained precisely if p = q = 1/3 and is given by

max
0<p+q<1

p3(G3(p, q)) = p3(G3(1/3, 1/3)) = 2

9
.

It is a special feature of the case of three directions that the formula for the triangle
probability carries over to general orientation angles.

Corollary 1.1. Fix 0 ≤ ϕ1 < ϕ2 < ϕ3 < π , weights p, q ∈ (0, 1) with 0 < p + q < 1, and
consider the directional distribution G := pδϕ1 + qδϕ2 + (1 − p − q)δϕ3 . Then p3(G) =
p3(G3(p, q)) with p3(G3(p, q)) as in Theorem 1.1.

In analogy with the case of three directions just studied, one can consider a Poisson line
tessellation with directional distribution G4(p, q, r) := pδ0 + qδπ/4 + rδπ/2 + (1 − p − q −
r)δ(3π )/4 with weights 0 < p, q, r < 1 satisfying 0 < p + q + r < 1, as shown in Figure 1(b).
The corresponding triangle probability is in this case given by

p3(G4(p, q, r))

= 2p√
2p + 2q + √

2r − √
2p2 − 2q2 − √

2r2 − 2pq + (2 − 2
√

2)pr − 2qr

×
(

3qr

2 + p(−2 + √
2) − q + r(−2 + √

2)
+ 3

√
2q(1 − p − q − r)

2 + (−2 + √
2)p + r(−2 + 2

√
2)

+ 2r
√

2(1 − p − q − r)√
2 + p(2 − √

2) + √
2q + r(2 − √

2)

)
,
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FIGURE 2. A plot of p3(G3(p, q)).

as demonstrated in [8]. Since the triangle probabilities for five or more directions with arbitrary
weights become increasingly more involved, from now on we concentrate on the special case
where all weights are equal. Namely, for integers k ≥ 3 we take as directional distribution the
probability measure

Gk := 1

k

k−1∑
�=0

δ(�π )/k,

which for k = 3 and k = 4 reduces to G3(1/3, 1/3) and G4(1/4, 1/4, 1/4), respectively. In
other words, Gk puts weight 1/k onto k equally spread directions. The Poisson line tessellation
induced by such a directional distribution is Gk-pseudo-isotropic in the sense that it is invariant
under rotations in the plane whose angle is an integer multiple of π/k. In our second result we
determine the triangle probabilities p3(Gk).

Theorem 1.2. For k ≥ 3 we have that

p3(Gk) = 4

k
tan2 π

2k

k−2∑
i=1

[
(k − i)

k−i−1∑
j=1

sin iπ
k sin jπ

k sin (i+j)π
k

sin iπ
k + sin jπ

k + sin (i+j)π
k

]
.

The exact and approximate values for p3(Gk) for k ∈ {3, 4, 5, 6} are summarized in the table
in Figure 3(a), some further values are visualized in Figure 3(b). The latter also shows that, as
k → ∞, the value p3(Gk) tends to 2 − π2/6 = p3(Gunif), the triangle probability appearing in
the isotropic case. This observation is confirmed in the following corollary.

Corollary 1.2. For k ≥ 3, let p3(Gk) be as in Theorem 1.2. Then limk→∞ p3(Gk) = p3(Gunif).

The proof of both Theorem 1.1 and Theorem 1.2 is based on the sampling procedure for
the typical cell of stationary Poisson line tessellation developed in [5]. It generalizes one of
the stochastic constructions described in [12] to general directional distributions. To keep the
paper reasonably self-contained we recall the relevant elements of this construction in the next
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(a) (b)

FIGURE 3. (a) Concrete values of p3(Gk) for k = 3, 4, 5, 6. (b) Visualization of values of p3(Gk) for
k = 3, 4, . . . , 15 and the limiting value p3(Gunif) (dashed line).

FIGURE 4. A line L parametrized by (d, θ ).

section. Then in Section 3 we show how the probability p3(Gunif) can be determined using this
sampling procedure. Using the same approach, the proofs of Theorem 1.1, Theorem 1.2, and
Corollary 1.2 are the subject of Section 4. The final section of this paper provides an alternative
proof of Miles’s result (1.1) regarding the proportion of triangles in an isotropic Poisson line
tessellation.

2. Sampling random triangles

In this paper a line is parametrized by a pair (θ, d), where d ∈R is the signed distance of
the line to the origin and θ ∈ [0, π ) is the north-east angle this line makes with the horizontal;
see Figure 4. We refer to θ as the orientation angle of the line.

Following [5], it will turn out to be convenient to extend the range of the possible orientation
angles to the larger interval [−π, π ), where negative angles should be thought of modulo π .
For example, we identify the orientation angles −π/3 and 2π/3.

Throughout the remainder of this work, we denote random variables by a capital letter
and their realizations by small ones; for example, � denotes a random angle and φ a given
realization.

2.1. General facts about Poisson line processes

We consider a stationary Poisson line process X = X(γ, G) with intensity γ > 0 and direc-
tional distribution G. We assume G to be non-degenerate, meaning that G(θ ) < 1 for each
θ ∈ [0, π ). The following facts are taken from [5], but see also [15].
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(a) (b)

FIGURE 5. (a) Intersection of a Poisson line process X (thin lines) with a fixed line L = (θ, d) (thick).
(b) Lines of X (thin lines) intersecting triangle sides T1 and T2 but not T3.

Intersection with a fixed line. Let L be a fixed line with orientation angle θ ∈ [0, π ). Its
intersection with X is a stationary Poisson point process on L with intensity γ λ(θ ), where

λ(θ ) :=
∫

[0,π )
| sin(θ − θ ′)| G(dθ ′), (2.1)

see Figure 5(a). Furthermore, the random orientation angles of the lines associated with these
points of intersection are independent and identically distributed with common conditional
density

θ ′ �→ 1

λ(θ )
| sin(θ − θ ′)|, 0 ≤ θ ′ < π,

with respect to G.

Intersection of two random lines. Let L and L′ be two different lines from X, and let (�, �′)
be the two orientation angles at the intersection point L ∩ L′. Then the pair (�, �′) has joint
density

(θ, θ ′) �→ 1

λ
| sin(θ − θ ′)|, 0 ≤ θ, θ ′ < π, (2.2)

with respect to the product measure G ⊗ G on [0, π ) × [0, π ), where

λ :=
∫ π

0
λ(θ ) G(dθ ). (2.3)

Intersection with a triangle. Consider an arbitrary triangle T in the plane with sides T1, T2,
and T3 having lengths t1, t2, t3 and whose supporting lines have orientation angles θ1, θ2, θ3,
respectively. Then the number of lines of X intersecting T but do not intersect T3 has a Poisson
distribution with mean

γ

2
(t1λ(θ1) + t2λ(θ2) − t3λ(θ3));

see Figure 5(b).

2.2. Stochastic construction of a typical triangle

A stochastic construction of the typical cell of a stationary Poisson line tessellation induced
by a Poisson line process X with intensity γ > 0 and a general directional distribution G was
introduced in [5], adopting previously developed methods of [12] for the isotropic case. We
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(a) (b)

FIGURE 6. (a) Construction of the random triangle �. (b) The random triangle � (thick lines) and the
random line process X′′ (thin lines). The intersection (2.5) is the shaded polygon.

rephrase it here in the special case of a triangle, that is, we describe the distribution of the
typical cell given that it is a triangle; for brevity we refer to it as the typical triangle. Formally,
the distribution PZ of the typical cell Z of the Poisson line tessellation induced by X is given
as follows. Namely, if for a polygon c ⊂R

2, m(c) is the lexicographically smallest vertex, the
distribution PZ of the random polygon Z is given by

PZ( · ) := 1

E
∑

c : m(c)∈[0,1]2 1
E

∑
c : m(c)∈[0,1]2

1{c − m(c) ∈ · }, (2.4)

where each sum runs over all cells c of the Poisson line tessellation with m(c) ∈ [0, 1]2 (or any
other Borel set with unit area). The distribution of the typical triangle is then the conditional
distribution PZ(·|Z is a triangle).

Starting with the lexicographically smallest vertex of the typical triangle, we label the ver-
tices consecutively in clockwise direction by v1, v2, v3. For i ∈ {1, 2, 3}, let zi be the length of
the segment vivi+1, where we formally put v4 := v1. Moreover, we denote the angle between
vivi+1 and the eastern horizontal at vi by φi; see Figure 6(a). Hence φ0 denotes the initial angle.
The typical triangle is completely determined by the 4-tuple (�0, �1, Z1, �2); all other angles
and edge lengths (especially �3, Z2, and Z3) can be computed from these data.

We shall now describe the (conditional) distribution of the random variables �0, �1, Z1,
and �2, which are clearly dependent.

• The joint density with respect to G ⊗ G of (�0, �1) is given by (2.2).

• Given �1 = φ1, the intersection of X with the line having orientation angle �1 is a sta-
tionary Poisson point process with intensity λ(φ1) according to (2.1). The distance from
v1 to the first point of this process above the horizontal line is exponentially distributed
with mean λ(φ1). As a result, the conditional Lebesgue density of Z1 given �1 = φ1
equals

z1 �→ λ(φ1) e−λ(φ1)z1 , z1 > 0.

• Given �1 = φ1 and Z1 = z1, the random variable �2 has density

φ2 �→ sin(φ1 − φ2)∫ φ1
a(z1) sin(φ1 − θ ) G(dθ )

, a(z1) ≤ φ2 < φ1,

with respect to G. Here a(z1) is given by

a(z1) := arctan

(
y1

x1

)
− π,

where (x1, y1) are the coordinates of the first vertex v1.
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The construction just described leads to a random triangle � in the plane, which is determined
by the four random variables �0, �1, �2, and Z1. It has the conditional distribution of the
typical cell Z = Z(γ, G), given that Z is a triangle. To obtain from � the (unconditional) typical
cell Z = Z(γ, G), let X′ be an independent stationary Poisson line process with intensity γ and
directional distribution G. From X′ we remove all lines hitting the first edge of � with length
Z1 and call X′′ the resulting collection of random lines; see Figure 6(b). Then the typical cell Z
has the same distribution as

� ∩
⋂

L∈X′′
L+, (2.5)

where for each line L, L+ denotes the closed half-space bounded by L and containing the
origin; see [5].

3. Triangle probability in the isotropic case

In this section we consider the isotropic case and indicate how to compute p3 := p3(Gunif)
using the stochastic construction outlined in the previous section. So, let G := Gunif be the
uniform distribution on [0, π ) with constant density θ �→ θ/π . We also recall our choice γ = 1.
It follows from (2.1) and (2.3) that

λ = λ(φ) = 1/π

∫ π

0
|sin(φ − θ )| dθ = 2/π for any φ ∈ [0, π ).

Due to the rotation invariance of the Poisson line tessellation in the isotropic case, the distribu-
tion of the initial angle �0 is irrelevant and we can just choose �0 ≡ 0 in the construction of
the typical triangle for simplicity. Then the following hold.

• The random variable �1 has density φ1 �→ (π − φ1) sin(φ1)/π , for 0 ≤ φ1 < π , which is
the marginal density of the pair (�0, �1) with respect to the second coordinate.

• The random variable Z1 is independent of �1 and has density z1 �→ 2e−2z1/π/π , for
z1 > 0.

• The random variable �2 only depends on �1 and has conditional density φ2 �→ sin(φ1 −
φ2)/2, given �1 = φ1. Here φ1 − π ≤ φ2 < 0, since x1 = z1 cos φ1, y1 = z1 sin φ1, which
in turn implies a(z1) = φ1 − π , independently of z1.

Given these distributions, the probability p3 that the typical cell is a triangle can now be written
as follows:

p3 =
∫ π

0

∫ ∞

0

∫ φ1−π

0
e−(λ(φ2)z2+λ(φ3)z3−λ(φ1)z1)/2

× π − φ1

π
sin φ1 × 2

π
e−2z1/π × 1

2
sin(φ1 − φ2) dφ2 dz1 dφ1.

In fact, in order to ensure that the typical cell is a triangle, we need to ensure that after
the stochastic construction of the typical triangle, given �1 = φ1, Z1 = z1, and �2 = φ2, the
two edges with length z2 and z3 are not intersected by lines of the random line process X′′;
recall (2.5). Thus, by the intersection-with-a-triangle property, the above event has probability
exp (−(λ(φ2)z2 + λ(φ3)z3 − λ(φ1)z1)/2), which is the probability that a Poisson random vari-
able with mean (λ(φ2)z2 + λ(φ3)z3 − λ(φ1)z1)/2 takes the value zero. The other terms in the
above integral representation are just the densities of the random variables �1, Z1, and �2.
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It is not difficult to verify that

z2 = −z1
sin φ1

sin φ2
, z3 = z2 cos φ1 − z1

sin φ1

sin φ2
cos φ2 and φ3 = φ0 − π, (3.1)

which yields

z1 + z2 + z3 = z1
sin φ2 − sin φ1 − sin(φ1 − φ2)

sin φ2
.

Inserting this together with the values of λ(φ1) = λ(φ2) = λ(φ3) = 2/π , we arrive at

p3 =
∫ π

0

π − φ1

π

∫ 0

φ1−π

sin φ1 sin φ2 sin(φ1 − φ2)

sin φ2 − sin φ1 − sin(φ1 − φ2)
dφ2 dφ1, (3.2)

where we have already carried out the integration with respect to z1. Rewriting the integrand
by means of trigonometric identities eventually leads to (1.1); all details of the computation
are contained in [8].

4. Proofs

4.1. Triangle probability in the G3(p, q) case: Proof of Theorem 1.1

In this section we compute the triangle probability p3 := p3(G3(p, q)) if the underlying
directional distribution is given by (1.2), again using the stochastic construction of the typical
cell. We recall that we choose γ = 1 as our intensity.

Before we actually compute p3, we deal with the possible constructions for triangles with
only three edge directions corresponding to the orientation angles 0, π/3, and 2π/3. In fact we
only have two ways to construct a triangle with these orientation angles, as demonstrated in
Figure 7. Further, writing G for G3(p, q) for brevity, we can now compute

λ(0) =
∫ π

0
| sin θ | G(dθ ) = q sin

π

3
+ (1 − p − q) sin

2π

3
=

√
3

2
(1 − p),

λ

(
π

3

)
=

∫ π

0

∣∣∣∣sin

(
θ − π

3

)∣∣∣∣ G(dθ )

= p

∣∣∣∣sin

(
−π

3

)∣∣∣∣ + (1 − p − q)

∣∣∣∣sin

(
2π

3
− π

3

)∣∣∣∣ =
√

3

2
(1 − q),

λ

(
2π

3

)
=

∫ π

0

∣∣∣∣sin

(
θ − 2π

3

)∣∣∣∣ G(dθ )

= p

∣∣∣∣sin

(
−2π

3

)∣∣∣∣ + q

∣∣∣∣sin

(
π

3
− 2π

3

)∣∣∣∣ =
√

3

2
(p + q),

according to (2.1), which implies that

λ =
∫ π

0
λ(θ ) G(dθ )

= pλ(0) + qλ

(
π

3

)
+ (1 − p − q)λ

(
2π

3

)
= √

3(p + q − p2 − q2 − pq).

https://doi.org/10.1017/jpr.2023.45 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.45


Proportion of triangles in anisotropic Poisson line tessellations 223

(a) (b)

FIGURE 7. The two possible triangles in a Poisson line tessellation with directional distribution G3(p, q):
(a) with angles φ0 = 0, φ1 = 1

3 π , and φ2 = − 1
3 π , (b) with angles φ0 = 1

3 π , φ1 = 2
3 π , and φ2 = 0.

Moreover, from (2.2) it follows that the pair (�0, �1) has joint density

(φ0, φ1) �→ 2√
3(p + q − p2 − q2 − pq)

sin(φ0 − φ1), 0 ≤ φ0, φ1 < π,

with respect to G ⊗ G. Given �1 = φ1, the random variable Z1 is exponentially distributed
with mean λ(φ1). Finally, as in the isotropic case, we have a(z1) = φ1 − π and so the random
variable �2 has conditional density

φ2 �→ 1

λ(φ1)
sin(φ1 − φ2), φ1 − π ≤ φ2 < 0,

with respect to G, given �1 = φ1.
With the same argument as in the isotropic case, we can now represent the triangle

probability as follows:

p3 =
∫ π

0

∫ π

0

∫ 0

φ1−π

∫ ∞

0
e−(λ(φ2)z2+λ(φ3)z3−λ(φ1)z1)/2

× 2√
3(p + q − p2 − q2 − pq)

sin(φ0 − φ1)

× 1

λ(φ1)
sin(φ1 − φ2) × λ(φ1) e−λ(φ1)z1 dz1G(dφ2)(G ⊗ G)(d(φ0, φ1))

=
∫ π

0

∫ π

0

∫ 0

φ1−π

∫ ∞

0
e−(λ(φ1)z1+λ(φ2)z2+λ(φ3)z3)/2 × 2√

3(p + q − p2 − q2 − pq)

× sin(φ0 − φ1) sin(φ1 − φ2) dz1G(dφ2)(G ⊗ G)(d(φ0, φ1));

the term e−(λ(φ2)z2+λ(φ3)z3−λ(φ1)z1)/2 represents the probability that after the stochastic construc-
tion of the typical triangle the random line process X′′ does not intersect the two edges with
lengths z2 and z2, whereas the other terms are the (conditional) densities of (�0, �1), �2, and
Z1. From the discussion at the beginning of this section we know the three outer integrals are
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just a sum of two terms corresponding to the following angles:

case 1 φ0 = 0, φ1 = π

3
, φ2 = 2π

3
, φ3 = −π,

case 2 φ0 = π

3
, φ1 = 2π

3
, φ2 = 0, φ3 = −2π

3
.

In both cases, using (3.1), we conclude that, given �1 = φ1, Z1 = z1, and �2 = φ2, we have
z1 = z2 = z3, formally confirming that we are dealing with regular triangles. Moreover, in both
cases we have λ(φ1) + λ(φ2) + λ(φ3) = √

3, implying that∫ ∞

0
e−(λ(φ1)z1+λ(φ2)z2+λ(φ3)z3)/2 dz1 =

∫ ∞

0
e−√

3z1/2 dz1 = 2√
3

.

Hence

p3 = 2√
3

× 2√
3(p + q − p2 − q2 − pq)

×
∫ π

0

∫ π

0

∫ 0

φ1−π

sin(φ0 − φ1) sin(φ1 − φ2) G(dφ2)(G ⊗ G)(d(φ0, φ1)).

Finally, in case 1, which has weight pq(1 − p − q), the integrand equals 3/4, and in case 2,
which has weight p(1 − p − q)p, the integrand equals 3/4 as well. This eventually leads to

p3 = 2√
3

× 2√
3(p + q − p2 − q2 − pq)

× 2 × pq(1 − p − q) × 3

4
= 2pq(1 − p − q)

p + q − p2 − q2 − pq

and concludes the proof of the first part of Theorem 1.1.
For the second part, define the function

F(p, q) := 2pq(1 − p − q)

p + q − p2 − q2 − pq

on the domain D := {(p, q) ∈ (0, 1)2 : 0 < p + q < 1} whose gradient is

gradF(p, q) = 2

(p + q − p2 − q2 − pq)2
(q(1 − p − q) − pq, p(1 − p − q) − pq).

Solving gradF(p, q) = (0, 0) leads to the only solution (p, q) = (1/3, 1/3) on D. One can easily
check that this is indeed the global maximum of F(p, q) on D. Since p3(G3(1/3, 1/3)) = 2/9,
the proof of Theorem 1.1 is complete. �

4.2. Triangle probability for three general directions: Proof of Corollary 1.1

Recall the definition of the directional distribution G from the statement of Corollary 1.1
and define the unit vectors

v1 := (0, 1), v2 :=
(

1

2
,

√
3

2

)
, v3 :=

(
−1

2
,

√
3

2

)
,

w1 := (cos ϕ1, sin ϕ1), w2 := (cos ϕ2, sin ϕ2), w3 := (cos ϕ3, sin ϕ3).
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Then we can find a non-degenerate affine map A : R2 →R
2 which satisfies A(vi) = wi for

i ∈ {1, 2, 3}. Applying A to a Poisson line tessellation X with intensity one and directional
distribution G3(p, q) leads again to a Poisson line tessellation AX by the well-known mapping
property of general Poisson processes. By definition of A, its directional distribution equals
G = AG3(p, q) and the intensity is given by the determinant of A. Moreover, the application
of A leaves invariant the number of vertices of each of the cells of X. As a consequence,
the two tessellations X and AX have the same proportion of triangles. As this quantity only
depends on the directional distribution and not on the intensity parameter, it follows that
p3(G3(p, q)) = p3(G). �

4.3. Triangle probability in the case of k directions: Proof of Theorem 1.2

Recall the construction of a typical triangle based on the random angles �0, �1, �2 and the
random edge length Z1. Since the Poisson line tessellation with directional distribution Gk is
Gk-pseudo-isotropic, the initial angle �0 is irrelevant and we can just take �0 = 0. Moreover,
recall that �3 = �0 − π = −π . It is now a crucial observation that the stochastic construction
described above leads to a triangle if and only if

(φ1, φ2) ∈
{(

iπ

k
, − jπ

k

)
:

1 ≤ i ≤ k − 2
1 ≤ j ≤ k − i − 1

}
,

since the angle sum of a triangle is equal to π and since we require the vertex v1 to be the
lexicographically smallest vertex of the triangle. Moreover, for fixed 1 ≤ i ≤ k − 2 each such
triangle can be rotated by the angles 0, π/k, . . . , (k − i − 1)π/k to yield another admissible
triangle.

We now determine the distribution of the relevant random variables and start with �1.
According to (2.1) and using the identity for sums of sines in arithmetic progressions from
[7] (with a = 0 and d = π/k there), we have

λ(0) =
∫ π

0
| sin(θ )| Gk(dθ ) = 1

k

k−1∑
�=0

sin
�π

k
= 1

k

sin (k−1)π
2k

sin π
2k

= 1

k
cot

π

2k
,

and because of Gk-pseudo-isotropy we also have λ(π/k) = · · · = λ((k − 1)π/k) = λ(0). Thus
it follows from (2.3) that

λ =
∫ π

0
λ(θ ) Gk(dθ ) = 1

k
cot

π

2k
.

We can now conclude from (2.2) that the pair (�0, �1) has joint density

(φ0, φ1) �→ 2k

cot π
2k

sin(φ1 − φ0), 0 ≤ φ0, φ1 < π,

with respect to Gk ⊗ Gk. Integration with respect to φ0 now yields the marginal density

φ1 �→ 2k

cot π
2k

∫ π−φ1

0
sin(φ1 − φ0) Gk(dφ0) = 2
k(φ1)

cot π
2k

sin(φ1), 0 ≤ φ1 < π,

of �1 with respect to Gk, where


k(φ1) :=
∑

φ0∈{0,π/k,...,((k−1)π )/k}
φ0<π−φ1

1.
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FIGURE 8. Determination of z2 and z3.

Note that 
k(φ1) = k − � if φ1 = �π/k for some � ∈ {0, . . . , k − 1}. The distribution of Z1 is
an exponential distribution with mean (cot π/2k)/k and so Z1 has density

z1 �→ 1

k
cot

π

2k
exp

(
−1

k
cot

π

2k
z1

)
, z1 > 0,

with respect to the Lebesgue measure. Finally, we deal with the conditional distribution of
�2 given �1. As above, we have that the conditional density with respect to Gk of �2 given
�1 = φ1 equals

φ2 �→ sin(φ1 − φ2)∫ φ1
φ1−π

sin(φ1 − φ) Gk(dφ)
, φ1 − π ≤ φ2 < φ1.

Since the integral in the denominator is just λ(φ1), we arrive at

φ2 �→ k

cot π
2k

sin(φ1 − φ2), φ1 − π ≤ φ2 < φ1,

for the conditional density of �2.
As in the two previous sections, we can now express p3 := p3(Gk) as follows:

p3 =
∫ π

0

∫ 0

φ1−π

∫ ∞

0

2
k(φ1)

cot π
2k

sin(φ1) × 1

k
cot

π

2k
exp

(
−1

k
cot

π

2k
z1

)

× k

cot π
2k

sin(φ1 − φ2) × e−(λ(φ2)z2+λ(φ3)z3−λ(φ1)z1)/2 dz1Gk(dφ2)Gk(dφ1)

= 2

cot π
2k

∫ π

0

∫ 0

φ1−π


k(φ1) sin(φ1) sin(φ1 − φ2)

×
∫ ∞

0
exp

(
− 1

2k
cot

π

2k
(z1 + z2 + z3)

)
dz1Gk(dφ2)Gk(dφ1),

where in the last step we used that λ(φ) = λ(0) for all angles φ in the support of Gk.
To determine z2 and z3 we can use the law of sines as illustrated in Figure 8.
If φ1 = iπ/k, 1 ≤ i ≤ n − 2, and φ2 = −jπ/k, 1 ≤ j ≤ n − i − 1, this yields

z2 = z1
sin iπ

k

sin jπ
k

and z3 = z1
sin (i+j)π

k

sin jπ
k

.
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Thus

1

2k
cot

π

2k
(z1 + z2 + z3) = 1

2k
cot

π

2k

sin iπ
k + sin jπ

k + sin (i+j)π
k

sin jπ
k

z1,

and the integral with respect to z1 evaluates to

∫ ∞

0
exp

(
− 1

2k
cot

π

2k
(z1 + z2 + z3)

)
dz1 = 2k sin jπ

k

cot π
2k

(
sin iπ

k + sin jπ
k + sin (i+j)π

k

) .

Plugging this back into the expression for p3, we see that

p3 = 4k

cot2 π
2k

1

k2

k−2∑
i=1


k

(
iπ

k

) k−i−1∑
j=1

sin iπ
k sin jπ

k sin (i+j)π
k

sin iπ
k + sin jπ

k + sin (i+j)π
k

. (4.1)

Using 
k(iπ/k) = k − i, we can complete the proof of Theorem 1.2. �

4.4. The convergence to the isotropic case: Proof of Corollary 1.2

We start with the observation that

4

k
tan2 π

2k
= π2

k3
+ O(k−5), (4.2)

as k → ∞. Combining this with the representation for p3(Gk) in Theorem 1.2 implies

lim
k→∞ p3(Gk) = lim

k→∞
4

k
tan2 π

2k

k−2∑
i=1

[
(k − i)

k−i−1∑
j=1

sin iπ
k sin jπ

k sin (i+j)π
k

sin iπ
k + sin jπ

k + sin (i+j)π
k

]

= lim
k→∞

π2

k3

k−2∑
i=1

[
(k − i)

k−i−1∑
j=1

sin iπ
k sin jπ

k sin (i+j)π
k

sin iπ
k + sin jπ

k + sin (i+j)π
k

]

= lim
k→∞ π2 1

k

k−2∑
i=1

[(
1 − i

k

)
1

k

k−i−1∑
j=1

sin iπ
k sin jπ

k sin (i+j)π
k

sin iπ
k + sin jπ

k + sin (i+j)π
k

]
.

Interpreting the two sums as Riemann sums with i/k → dt and j/k → ds, as k → ∞, and noting
that the condition j ≤ k − i − 1 asymptotically translates to s < 1 − t, we conclude that

lim
k→∞ p3(Gk) = π2

∫ 1

0
(1 − t)

∫ 1−t

0

sin(π t) sin(πs) sin((t + s)π )

sin(π t) + sin(πs) + sin((t + s)π )
ds dt. (4.3)

This, up to the substitutions u = π t and v = −πs, is exactly the integral expression for p3(Gunif)
we encountered already in (3.2). This completes the argument. �

5. Alternative proof of Miles’s result (1.1)

As mentioned in Section 1, it is known from [11] that p3(Gunif) = 2 − π2/6. In this section,
we use our Theorem 1.2 to give a ‘continuous-mapping-type’ argument leading to the same
result. Our strategy is to prove that the weak convergence of Gk to Gunif implies the conver-
gence of p3(Gk) to p3(Gunif), as k → ∞. To conclude, we can then use Corollary 1.2, which
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shows that p3(Gunif) = limk→∞ p3(Gk). The value of this limit is given by the integral (4.3),
which has the value 2 − π2/6. The approach can be summarized in the following chain of
equalities, in which limw stands for the weak limit of probability measures:

p3

( w
lim

k→∞ Gk

)
shown below= lim

k→∞ p3(Gk)
Corollary 1.2= p3(Gunif)

(1.1)= 2 − π2

6
.

To prove the first equality, we recall that the weak convergence of Gk to Gunif implies
the weak convergence of the product measures Gk ⊗ Gk ⊗ Gk to Gunif ⊗ Gunif ⊗ Gunif; see
[1, Proposition 2.7.7]. For each k ≥ 3, the triangle probability p3(Gk) can be represented as the
integral

p3(Gk) =
∫

[0,π )×[0,π )×[0,π )
fk(φ0, φ1, φ2) (Gk ⊗ Gk ⊗ Gk)(d(φ0, φ1, φ2))

with the function fk : [0, π ) × [0, π ) × [0, π ) →R given by

fk(φ0, φ1, φ2) := 4k2 tan2 π

2k
T(φ0, φ1, φ2)1{φ0 < π − φ1, φ1 < φ2},

where

T(φ0, φ1, φ2) := sin(φ0 − φ1) sin φ1 sin φ2 sin(φ1 − φ2)

sin φ1 + sin φ2 + sin(φ1 − φ2)
.

Note that if the integration with respect to φ0 is carried out, we arrive precisely at
(4.1). It remains to observe that 4k2 tan2 (π/2k) → π2 as k → ∞ by (4.2) and that
the function (φ0, φ1, φ2) �→ T(φ0, φ1, φ2)1{φ0 < π − φ1, φ1 < φ2} is bounded and Gunif ⊗
Gunif ⊗ Gunif-a.e. continuous on [0, π ) × [0, π ) × [0, π ). The result thus follows from
[1, Corollary 2.2.10]. �
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