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Abstract. We study recurrence in the real quadratic family and give a sufficient condition
on the recurrence rate (δn) of the critical orbit such that, for almost every non-regular
parameter a, the set of n such that |Fn(0; a)| < δn is infinite. In particular, when δn = n−1,
this extends an earlier result by Avila and Moreira [Statistical properties of unimodal maps:
the quadratic family. Ann. of Math. (2) 161(2) (2005), 831–881].
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1. Introduction
1.1. Regular and non-regular parameters. Given a real parameter a, we let x �→ 1 −
ax2 = F(x; a) denote the corresponding real quadratic map. We will study the recurrent
behaviour of the critical point x = 0 when the parameter belongs to the interval [1, 2]. For
such a choice of parameter, there exists an invariant interval Ia ⊂ [−1, 1], that is,

F(Ia ; a) ⊂ Ia ,

containing the critical point x = 0. The parameter interval is naturally divided into a
regular (R) and non-regular (NR) part

[1, 2] = R ∪ NR,

with a ∈ R being such that x �→ 1 − ax2 has an attracting cycle, and NR = [1, 2] \ R.
These two sets turn out to be intertwined in an intricate manner, and this has led to
an extensive study of the real quadratic family. We briefly mention some of the more
fundamental results and refer to [Lyu00b] for an overview.

The regular maps are, from a dynamic point of view, well behaved, with almost every
point, including the critical point, tending to the attracting cycle. This set of parameters,
which with an application of the inverse function theorem is seen to be open, constitutes a
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large portion of [1, 2]. The celebrated genericity result, known as the real Fatou conjecture,
was settled independently by Graczyk and Świątek [GS97] and Lyubich [Lyu97]: R is
(open and) dense. This has later been extended to real polynomials of arbitrary degree
by Kozlovski, Shen and van Strien [KSvS07], solving the second part of the eleventh
problem of Smale [Sma98]. The corresponding result for complex quadratic maps, the
Fatou conjecture, is still to this day open.

The non-regular maps, in contrast to the regular ones, exhibit chaotic behaviour. In
[Jak81], Jakobson showed the abundance of stochastic maps, proving that the set of
parameters a ∈ S for which the corresponding quadratic map has an absolutely continuous
(with respect to Lebesgue) invariant measure (a.c.i.m), is of positive Lebesgue measure.
This showed that, from a probabilistic point of view, non-regular maps are not negligible:
for a regular map, any (finite) a.c.i.m is necessarily singular with respect to Lebesgue
measure.

Chaotic dynamics is often associated with the notion of sensitive dependence on initial
conditions. A compelling way to capture this property was introduced by Collet and
Eckmann in [CE80] where they studied certain maps of the interval having expansion
along the critical orbit, proving the abundance of chaotic behaviour. This condition is now
known as the Collet–Eckmann condition and, for a real quadratic map, it states that

lim inf
n→∞

log |∂xF
n(1; a)|

n
> 0. (1)

Focusing on this condition, Benedicks and Carleson gave, in their seminal papers [BC85,
BC91], another proof of Jakobson’s theorem by proving the stronger result that the set CE
of Collet–Eckmann parameters is of positive measure. As a matter of fact, subexponential
increase of the derivative along the critical orbit is enough to imply the existence of an
a.c.i.m, but the stronger Collet–Eckmann condition implies, and is sometimes equivalent
to, ergodic properties such as exponential decay of correlations [KN92, NS98, You92] and
stochastic stability [BV96]. For a survey on the role of the Collet–Eckmann condition in
one-dimensional dynamics, we refer to [Ś01].

Further investigating the stochastic behaviour of non-regular maps, supported by the
results in [Lyu00a, MN00], Lyubich [Lyu02] established the following famous dichotomy:
almost all real quadratic maps are either regular or stochastic. Thus, it turned out that the
stochastic behaviour described by Jakobson is in fact typical for a non-regular map. In
[AM05], Avila and Moreira later proved the strong result that expansion along the critical
orbit is no exception either: almost all non-regular maps are Collet–Eckmann. Thus, a
typical non-regular map has excellent ergodic properties.

1.2. Recurrence and Theorem A. In this paper, we will study recurrence of the critical
orbit to the critical point for a typical non-regular (stochastic, Collet–Eckmann) real
quadratic map. For this reason, we introduce the following set.

Definition 1.1. (Recurrence set) Given a sequence (δn)
∞
n=1 of real numbers, we define the

recurrence set as

�(δn) = {a ∈ NR : |Fn(0; a)| < δn for finitely many n}.
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In [AM05], Avila and Moreira also established the following recurrence result, proving
a conjecture by Sinai: for almost every non-regular parameter a,

lim sup
n→∞

− log |Fn(0; a)|
log n

= 1.

Another way to state this result is as follows: for almost every non-regular parameter a, the
set of n such that |Fn(0; a)| < n−θ is finite if θ > 1 and infinite if θ < 1. In terms of the
above defined recurrence set, this result translates to

Leb �(n−θ ) =
{

Leb NR if θ > 1,

0 if θ < 1.

In [GS14], as a special case, a new proof of the positive measure case in the above
stated result was obtained, together with a new proof that almost every non-regular map
is Collet–Eckmann. In this paper, we will give a new proof of the measure zero case.
In particular, we will fill in the missing case of θ = 1, and thus complete the picture of
polynomial recurrence. Our result will be restricted to the following class of recurrence
rates.

Definition 1.2. A non-increasing sequence (δn) of positive real numbers is called
admissible if there exists a constant 0 ≤ e < ∞ and an integer N ≥ 1, such that

δn ≥ 1
ne

(n ≥ N).

The following is the main result of this paper.

THEOREM A. There exists τ ∈ (0, 1) such that if (δn) is admissible and∑ δn

log n
τ (log∗ n)3 = ∞,

then Leb(�(δn) ∩ CE) = 0.

Here, log∗ denotes to so-called iterated logarithm, which is defined recursively as

log∗ x =
{

0 if x ≤ 1,

1 + log∗ log x if x > 1.

That is, log∗ x is the number of times one has to iteratively apply the logarithm to
x for the result to be less than or equal to 1. In particular, log∗ grows slower than
logj = log ◦ logj−1 for any j ≥ 1.

Theorem A, together with the fact that almost every non-regular real quadratic map is
Collet–Eckmann, clearly implies the following.

COROLLARY 1.3. Leb �(n−1) = 0.

Remark 1.4. In fact, one can conclude the stronger statement

Leb �(1/(n log log n)) = 0.
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At this moment, we do not get any result for when δn = 1/(n log n) and this would be
interesting to investigate further.

One of the key points in the proof of Theorem A is the introduction of unbounded
distortion estimates; this differs from the classical Benedicks–Carleson techniques.

2. Reduction and outline of proof
2.1. Some definitions and Theorem B. We reduce the proof of Theorem A to that of
Theorem B stated below. For this, we begin with some suitable definitions.

It will be convenient to explicitly express the constant in the Collet–Eckmann condition
of equation (1) and, for this reason, we agree on the following definition.

Definition 2.1. Given γ , C > 0, we call a parameter a(γ , C)-Collet–Eckmann if

|∂xF
n(1; a)| ≥ Ceγn (n ≥ 0).

The set of all (γ , C)-Collet–Eckmann parameters is denoted CE(γ , C).

Our parameter exclusion will be carried out on intervals centred at Collet–Eckmann
parameters satisfying the following recurrence assumption.

Definition 2.2. A Collet–Eckmann parameter a is said to have polynomial recurrence (PR)
if there exist constants K = K(a) > 0 and σ = σ(a) ≥ 0 such that

|Fn(0; a)| ≥ K

nσ
(n ≥ 1).

The set of all PR-parameters is denoted PR.

Finally, we consider parameters for which the corresponding quadratic maps satisfy the
reversed recurrence condition after some fixed time N ≥ 1:

�N(δn) = {a ∈ NR : |Fn(0; a)| ≥ δn for all n ≥ N}.
Clearly, we have that

�(δn) =
⋃
N≥1

�N(δn).

Theorem A will be deduced from the following theorem.

THEOREM B. There exists τ ∈ (0, 1) such that if (δn) is admissible and∑ δn

log n
τ (log∗ n)3 = ∞,

then for all N ≥ 1, γ > 0, C > 0, and for all a ∈ PR, there exists an interval ωa centred
at a such that

Leb(�N(δn) ∩ CE(γ , C) ∩ ωa) = 0.
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2.2. Proof of Theorem A. Using Theorem B, Theorem A is proved by a standard
covering argument. Since ωa is centred at a, so is the smaller interval ω′

a = ωa/5. By
Vitali’s covering lemma, there exists a countable collection (aj ) of PR-parameters such
that

PR ⊂
⋃

a∈PR
ω′

a ⊂
∞⋃

j=1

ωaj
.

It now follows directly that

Leb(�N(δn) ∩ CE(γ , C) ∩ PR) ≤
∞∑

j=1

Leb(�N(δn) ∩ CE(γ , C) ∩ ωaj
) = 0,

and therefore

Leb(�(δn) ∩ CE ∩ PR) ≤
∑

N ,k,l≥1

Leb(�N(δn) ∩ CE(k−1 log 2, l−1) ∩ PR)

= 0.

Finally, we notice that �(δn) ∩ CE ⊂ PR; indeed, this is clearly the case since (δn) is
assumed to be admissible.

Remark 2.3. With the introduction of the set PR, we are avoiding the use of previous
recurrence results (e.g. Avila–Moreira) to prove Theorem A, by (a priori) allowing PR to
be a set of measure zero. In either case, the statement of Theorem A is true.

2.3. Outline of proof of Theorem B. The proof of Theorem B will rely on the classical
parameter exclusion techniques developed by Benedicks and Carleson [BC85, BC91],
complemented with more recent results. In particular, we allow for perturbation around
a parameter in a more general position than a = 2. In contrast to the usual application of
these techniques, our goal here is the show that what remains after excluding parameters is
a set of zero Lebesgue measure. One of the key points in our approach is the introduction
of unbounded distortion estimates.

We will carefully study the returns of the critical orbit, simultaneously for maps
corresponding to parameters in a suitable interval ω ⊂ [1, 2], to a small and fixed interval
(−δ, δ) = (−e−
, e−
). These returns to (−δ, δ) will be classified as either inessential,
essential, escape, or complete. Per definition of a complete return, we return close enough
to x = 0 to be able to remove a large portion of (−δn, δn) in phase space. To estimate
what is removed in parameter space, we need distortion estimates. This will be achieved
by (i) enforcing a (γ , C)-Collet–Eckmann condition and (ii) continuously making suitable
partitions in phase space: (−δ, δ) is subdivided into partition elements Ir = (e−r−1, e−r )

for r > 0, and Ir = −I−r for r < 0. Furthermore, each Ir is subdivided into r2 smaller
intervals Irl ⊂ Ir , of equal length |Ir |/r2. After partitioning, we consider iterations of
each partition element individually, and the proof of Theorem B will be one by induction.

We make a few comments on the summability condition appearing in the statement of
Theorems A and B. To prove our result, we need to estimate how much is removed at a
complete return, but also how long it takes from one complete return to the next. The factor
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τ (log∗ n)3
is connected to the estimate of what is removed at complete returns and, more

specifically, it is connected to distortion; as will be seen, our distortion estimates are
unbounded. The factor (log n)−1 is directly connected to the time between two complete
returns: if n is the index of a complete return, it will take � log n iterations until we reach
the next complete return.

In the next section, we prove a couple of preliminary lemmas and confirm the existence
of a suitable start-up interval ωa centred at a ∈ PR, for which the parameter exclusion
will be carried out. After that, the induction step will be proved and an estimate for the
measure of �N(δn) ∩ CE(γ , C) ∩ ωa will be given.

3. Preliminary lemmas
In this section, we establish three important lemmas that will be used in the induction step.
These are derived from Lemmas 2.6, 2.10, and 3.1 in [Asp21], respectively, where they are
proved in the more general setting of a complex rational map.

3.1. Outside expansion lemma. The first result we will need is the following version of
the classical Mañé hyperbolicity theorem (see [dMvS93], for instance).

LEMMA 3.1. (Outside expansion) Given a Collet–Eckmann parameter a0, there exist
constants γM , CM > 0 such that, for all δ > 0 sufficiently small, there is a constant
εM = εM(δ) > 0 such that, for all a ∈ (a0 − εM , a0 + εM), if

x, F(x; a), F 2(x; a), . . . , Fn−1(x; a) /∈ (−δ, δ),

then

|∂xF
n(x; a)| ≥ δCMeγMn.

Furthermore, if we also have that Fn(x; a) ∈ (−2δ, 2δ), then

|∂xF
n(x; a)| ≥ CMeγMn.

A similar lemma for the quadratic family can be found in [BBS15, Tsu93], for instance.
The version stated here allows for δ-independence at a more shallow return to the interval
(−2δ, 2δ). To get this kind of annular result constitutes a minor modification of Lemma
4.1 in [Tsu93]. We refer to Lemma 2.6 in [Asp21] and the proof therein, however, for a
proof of the above result. This proof is based on Przytycki’s telescope lemma (see [Prz90]
and also [PRLS03]). In contrast to the techniques in [Tsu93], in the case of the quadratic
family, no recurrence assumption is needed.

3.2. Phase-parameter distortion. If t �→ F(x; a + t) is a family of (analytic) perturba-
tions of (x; a) �→ F(x; a) at a, we may expand each such perturbation as

F(x; a + t) = F(x; a) + t∂aF (x; a) + higher order terms,

and it is easy to verify that

∂aF
n(x; a)

∂xFn−1(F (x; a); a)
= ∂aF

n−1(x; a)

∂xFn−2(F (x; a); a)
+ ∂aF (Fn−1(x; a); a)

∂xFn−1(F (x; a); a)
.
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Our concern is with the quadratic family x �→ 1 − ax2 = F(x; a), with a being the
parameter value. In particular, we are interested in the critical orbit of each such member
and, to this end, we introduce the functions a �→ ξj (a) = Fj (0; a) for j ≥ 0. In view of
our notation and the above relationship, we see that

∂aF
n(0; a)

∂xFn−1(1; a)
=

n−1∑
k=0

∂aF (ξk(a); a)

∂xF k(1; a)
.

Throughout the proof of Theorem B, it will be of importance to be able to compare phase
and parameter derivatives. Under the assumption of exponential increase of the phase
derivative along the critical orbit, this can be done, as is formulated in the following lemma.
The proof is that of Lemma 2.10 in [Asp21].

LEMMA 3.2. (Phase-parameter distortion) Let a0 be (γ0, C0)-Collet–Eckmann, γT ∈
(0, γ0), CT ∈ (0, C0), and A ∈ (0, 1). There exist T , NT , εT > 0 such that if a ∈ (a0 −
εT , a0 + εT ) satisfies

|∂xF
j (1; a)| ≥ CT eγT j (j = 1, 2, . . . , NT , . . . n − 1)

for some n − 1 ≥ NT , then

(1 − A)T ≤
∣∣∣∣ ∂aF

n(0; a)

∂xFn−1(1; a)

∣∣∣∣ ≤ (1 + A)T .

Proof. According to Theorem 3 in [Tsu00] (see also Theorem 1 in [Lev14]),

lim
j→∞

∂aF
j (0; a0)

∂xF j−1(1; a0)
=

∞∑
k=0

∂aF (ξk(a0); a0)

∂xF k(1; a0)
= T ∈ R>0.

Let NT > 0 be large enough so that∣∣∣∣ ∞∑
k=NT

∂aF (ξk(a0); a0)

∂xF k(1; a0)

∣∣∣∣ ≤
∞∑

k=NT

1
C0eγ0k

≤
∞∑

k=NT

1
CT eγT k

≤ 1
3
AT .

Since a �→ ∂aF (ξk(a); a)/∂xF
k(1; a) is continuous, there exists εT > 0 such that given

a ∈ (a0 − εT , a0 + εT ), ∣∣∣∣
NT −1∑
k=0

∂aF (ξk(a); a)

∂xF (1; a)
− T

∣∣∣∣ ≤ 1
2
AT .

Assuming x �→ 1 − ax2 to be (γT , CT )-Collet–Eckmann up to time n > NT , the result
now follows since ∣∣∣∣ n∑

k=0

∂aF (ξk(a); a)

∂xF k(1; a)
− T

∣∣∣∣ ≤ AT .

Remark 3.3. The quotient (1 + A)/(1 − A) = DA can be chosen arbitrarily close to 1 by
increasing NT and decreasing εT .

https://doi.org/10.1017/etds.2022.78 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.78


3262 M. Bylund

3.3. Start-up lemma. With the above two lemmas, we now prove the existence of a
suitable interval in parameter space on which the parameter exclusion will be carried out.

Given an admissible sequence (δn), let NA be the integer in Definition 1.2. Fix NB ≥ 1,
γB > 0, and CB > 0, and let a0 be a PR-parameter satisfying a (γ0, C0)-Collet–Eckmann
condition. In Lemma 3.2, we make the choice

γT = min(γB , γ0, γM)/20 and CT = min(CB , C0)/3.

Furthermore, let

γ = min(γB , γ0, γM)/2 and C = min(CB , C0)/2,

and let m−1 = max(NA, NB , NT ).

LEMMA 3.4. (Start-up lemma) There exist an interval ω0 = (a0 − ε, a0 + ε), an integer
m0 ≥ m−1, and a constant S = ε1δ such that the following hold.

(i) ξm0 : ω0 → [−1, 1] is injective, and

|ξm0(ω0)| ≥
{

e−r/r2 if ξm0(ω0) ∩ Ir �= ∅,

S if ξm0 ∩ (−δ, δ) = ∅.

(ii) Each a ∈ ω0 is (γ , C)-Collet–Eckmann up to time m0:

|∂xF
j (1; a)| ≥ Ceγj (j = 0, 1, . . . , m0 − 1).

(iii) Each a ∈ ω0 enjoys polynomial recurrence up to time m0: there exist absolute
constants K > 0 and σ ≥ 0 such that, for a ∈ ω0,

|ξj (a)| ≥ K

jσ
(j = 1, 2, . . . , m0 − 1).

Proof. Given x, y ∈ ξj (ω0), j ≥ 1, consider the following distance condition:

|x − y| ≤
{

e−r/r2 if ξj (ω0) ∩ Ir �= ∅,

S = ε1δ if ξj (ω0) ∩ (−δ, δ) = ∅.
(2)

By making ε smaller, we may assume that equation (2) is satisfied up to time m−1.
Moreover, we make sure that ε is small enough to comply with Lemma 3.2. Whenever
equation (2) is satisfied, phase derivatives are comparable as follows:

1
C1

≤
∣∣∣∣∂xF (x; a)

∂xF (y; b)

∣∣∣∣ ≤ C1, (3)

with C1 > 1 a constant. This can be seen through the following estimate:∣∣∣∣∂xF (x; a)

∂xF (y; b)

∣∣∣∣ =
∣∣∣∣−2ax

−2by

∣∣∣∣ ≤ a0 + ε

a0 − ε

(∣∣∣∣x − y

y

∣∣∣∣ + 1
)

.

If we are outside (−δ, δ), then ∣∣∣∣x − y

y

∣∣∣∣ ≤ S

δ
= ε1,
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and if we are hitting Ir with largest possible r,∣∣∣∣x − y

y

∣∣∣∣ ≤ e−r

r2
1

e−(r+1)
= e

r2 ≤ e


2 .

By making sure that ε, ε1, and δ are small enough, C1 can be made as close to 1 as we
want. In particular, we make C1 close enough to 1 so that

C
−j

1 C0e
γ0j ≥ Ceγj (j ≥ 0). (4)

As long as the distance condition in equation (2) is satisfied, we will have good
expansion along the critical orbits. Indeed, by equations (3) and (4), it follows that, given
a ∈ ω0,

|∂xF
j (1; a)| ≥ C

−j

1 |∂xF
j (1; a0)|

≥ C
−j

1 C0e
γ0j

≥ Ceγj (j ≥ 0 such that equation (2) is satisfied).

This tells us that, during the time for which equation (2) is satisfied, each a ∈ ω0

is (γ , C)-Collet–Eckmann. In particular, since γ > γT and C > CT , we can apply
Lemma 3.2 and, together with the mean value theorem, we have that

|ξj (ω0)| = |∂aF
j (0; a′)||ω0|

≥ (1 − A)T |∂xF
j−1(1; a′)||ω0|

≥ (1 − A)T Ceγ (j−1)|ω0|.
Our interval is thus expanding, and we let m0 = j , with j ≥ m−1 the smallest integer for
which equation (2) is no longer satisfied. This proves statements (i) and (ii).

To prove statement (iii), let K0 > 0 and σ0 ≥ 0 be the constants associated to a0 for
which

|ξj (a0)| ≥ K0

jσ0
(j ≥ 1).

In view of equation (2), when we hit (−δ, δ) at some time j < m0,

|ξj (a)| ≥ |ξj (a0)| − |ξj (ω0)| ≥ |ξj (a0)| − e−r

r2 .

Here, r is such that

e−r−1 ≤ |ξj (a0)|,
and therefore, given δ small enough,

|ξj (a)| ≥ |ξj (a0)|
(

1 − e


2

)
≥ K0/2

jσ0
(j = 1, 2, . . . , m0 − 1).

Remark 3.5. By making δ small enough so that 1/
2 < ε1, S will be larger than any
partition element Irl ⊂ (−δ, δ). This S is usually referred to as the large scale.
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Since �NB
(δn) ⊂ �m0(δn), Theorem B follows if

Leb(�m0(δn) ∩ CE(γB , CB) ∩ ω0) = 0.

4. Induction step
4.1. Initial iterates. Let ω0 = 
0 be the start-up interval obtained in Lemma 3.4.
Iterating this interval under ξ and successively excluding parameters that do not satisfy
the recurrence condition, or the Collet–Eckmann condition, we will inductively define a
nested sequence 
0 ⊃ 
1 ⊃ · · · ⊃ 
k ⊃ · · · of sets of parameters satisfying

�m0(δn) ∩ CE(γB , CB) ∩ ω0 ⊂ 
∞ =
∞⋂

k=0


k ,

and our goal is to estimate the Lebesgue measure of 
∞. This will require a careful
analysis of the so-called returns to (−δ, δ), and we will distinguish between four types
of returns: inessential, essential, escape, and complete. At the kth complete return, we
will be in the position of excluding parameters and form the partition that will make up
the set 
k . Below, we will describe the iterations from the kth complete return to the
(k + 1)th complete return, and hence the forming of 
k+1. Before indicating the partition
and giving a definition of the different returns, we begin by considering the first initial
iterates of ξm0(ω0).

If ξm0(ω0) ∩ (−δ, δ) �= ∅, then we have reached a return and we proceed accordingly as
is described below. If this is not the case, then we are in the situation

ξm0(ω0) ∩ (−δ, δ) = ∅ and |ξm0(ω0)| ≥ S,

with S larger than any partition element Irl ⊂ (−δ, δ) (see Remark 3.5). Since the length
of the image is bounded from below, there is an integer n∗ = n∗(S) such that, for some
smallest n ≤ n∗, we have

ξm0+n(ω0) ∩ (−δ, δ) �= ∅.

In this case, m0 + n is the index of the first return. We claim that if m0 is large enough,
we can assume a good derivative up to time m0 + n. To realize this, consider for j < n the
distortion quotient∣∣∣∣∂xF

m0+j (1; a)

∂xFm0+j (1; b)

∣∣∣∣ =
∣∣∣∣∂xF

m0−1(1; a)

∂xFm0−1(1; b)

∣∣∣∣
∣∣∣∣∂xF

j+1(ξm0(a); a)

∂xF j+1(ξm0(b); b)

∣∣∣∣.
Since the distance conditions in equation (2) are satisfied up to time m0 − 1, the first factor
in the above right-hand side is bounded from above by the constant C

m0−1
1 , with C1 > 1

being very close to 1 (see equation (3)). Furthermore, since j < n < n∗(S), and since we,
by assumption, are iterating outside (−δ, δ), the second factor in the above right-hand side
is bounded from above by some positive constant CS,δ dependent on S and δ.

If there is no parameter a′ ∈ ω0 such that |∂xF
m0+j (1; a′)| ≥ CBeγB(m0+j), then we

have already reached our desired result. If, however, there is such a parameter a′, then for
all a ∈ ω0, it follows from the above distortion estimate and our choice of γ that
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|∂xF
m0+j (1; a)| ≥ CBeγB(m0+j)

C
m0−1
1 CS,δ

≥ Ceγ (m0+j),

provided m0 is large enough. We conclude that

|∂xF
j (1; a)| ≥ Ceγj (a ∈ ω0, j = 0, 1, . . . , m0 + n − 1). (5)

In the case where we have to iterate ξm0(ω0) further to hit (−δ, δ), we still let m0 denote
the index of the first return.

4.2. The partition. At the (k + 1)th step in our process of excluding parameters, 
k

consists of disjoint intervals ωrl
k , and for each such interval, there is an associated time

mrl
k for which either ξmrl

k
(ωrl

k ) = Irl ⊂ (−4δ, 4δ) or ξmrl
k
(ωrl

k ) is mapped onto ±(δ, x),

with |x − δ| ≥ 3δ. We iterate each such interval individually and let mrl
k+1 be the time for

which ξmrl
k+1

(ωrl
k ) hits deep enough for us to be able to remove a significant portion of

(−δmrl
k+1

, δmrl
k+1

) in phase space, and let Erl
k denote the corresponding set that is removed

in parameter space. We now form the set ω̂rl
k ⊂ 
k+1 and make the partition

ω̂rl
k = ωrl

k
\ Erl

k =
( ⋃

r ′,l′
ωr ′l′

k+1

)
∪ Tk+1 = Nk+1 ∪ Tk+1.

Here, each ωr ′l′
k+1 ⊂ Nk+1 is such that ξmrl

k+1
(ωr ′l′

k+1) = Ir ′l′ ⊂ (−4δ, 4δ), and Tk+1 consists
of (at most) two intervals whose image under ξmrl

k+1
is ±(δ, x), with |x − δ| ≥ 3δ.

Remark 4.1. At most four intervals ωr ′l′
k+1 ⊂ Nk+1 will be mapped onto an interval slightly

larger than Ir ′l′ , that is,

Ir ′l′ ⊂ ξmrl
k+1

(ωr ′l′
k+1) ⊂ Ir ′l′ ∪ Ir"l",

with Ir ′l′ and Ir ′′l′′ adjacent partition elements.

Remark 4.2. At essential returns and escape returns we will, if possible, make a partial
partition. To these partitioned parameter intervals, we associate a complete return time
even though nothing is removed at these times. This is described in more detail in §§4.8
and 4.9.

Remark 4.3. Notice that our way of partitioning differs slightly from the original one
considered in [BC85], since here we do not continue to iterate what is mapped outside of
(−δ, δ), but instead stop and make a partition.

4.3. The different returns to (−δ, δ). At time mrl
k+1, we say that ωrl

k has reached the
(k + 1)th complete return to (−δ, δ). In between the two complete returns of index mrl

k

and mrl
k+1, we might have returns which are not complete. Given a return at time n > mrl

k ,
we classify it as follows.
(i) If ξn(ω

rl
k ) ⊂ Ir ′l′ ∪ Ir ′′l′′ , with Ir ′l′ and Ir ′′l′′ adjacent partition elements (r ′ ≥ r ′′),

and if |ξn(ω
rl
k )| < |Ir ′l′ |, we call this an inessential return. The interval Ir ′l′ ∪ Ir ′′l′′

is called the host interval.
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(ii) If the return is not inessential, it is called an essential return. The outer most
partition element Ir contained in the image is called the essential interval.

(iii) If ξn(ω
rl
k ) ∩ (−δ, δ) �= ∅ and |ξn(ω

rl
k ) \ (−δ, δ)| ≥ 3δ, we call this an escape return.

The interval ξn(ω
rl
k ) \ (−δ, δ) is called the escape interval.

(iv) Finally, if a return satisfies ξn(ω
rl
k ) ∩ (−δn/3, δn/3) �= ∅, it is called a complete

return.
We use these terms exclusively, that is, an inessential return is not essential, an essential
return is not an escape, and an escape return is not complete.

Given ωrl
k ⊂ 
k , we want to find an upper bound for the index of the next complete

return. In the worst case scenario, we encounter all of the above kinds of returns, in the
order

complete → inessential → essential → escape → complete.

Given such behaviour, we show below that there is an absolute constant κ > 0 such that
the index of the (k + 1)th complete return satisfies mrl

k+1 ≤ mrl
k + κ log mrl

k .

4.4. Induction assumptions. Up until the start time m0, we do not want to assume
anything regarding recurrence with respect to our recurrence rate (δn). Since the pertur-
bation is made around a PR-parameter a0, we do however have the following polynomial
recurrence to rely on (Lemma 3.4).

(PR) |Fj (0; a)| ≥ K/jσ for all a ∈ ωrl
k and j = 1, 2, . . . , m0 − 1.

After m0 we start excluding parameters according to the following basic assumption.

(BA) |Fj (0; a)| ≥ δj /3 for all a ∈ ωrl
k and j = m0, m0 + 1, . . . , mrl

k .

Since our sequence δj is assumed to be admissible, we will frequently use the fact that
δj /3 ≥ 1/(3je).

From equation (5), we know that every a ∈ ωrl
k is (γ , C)-Collet–Eckmann up to time

m0, and this condition is strong enough to ensure phase-parameter distortion (Lemma 3.2).
We will continue to assume this condition at complete returns, but in between two complete
returns, we will allow the exponent to drop slightly due to the loss of derivative when
returning close to the critical point x = 0. We define the basic exponent conditions as
follows.

(BE)(1) |∂xF
mrl

k −1(1; a)| ≥ Ceγ (mrl
k −1) for all a ∈ ωrl

k .
(BE)(2) |∂xF

j (1; a)| ≥ Ce(γ/3)j for all a ∈ ωrl
k and j = 0, 1, . . . , mrl

k − 1.

Assuming (BA) and (BE)(1,2) for a ∈ ωrl
k ⊂ 
k , we will prove it for a′ ∈ ωr ′l′

k+1 ⊂

k+1 ⊂ 
k . Before considering the iteration of ωrl

k , we define the bound period and the
free period, and prove some useful lemmas connected to them. For technical reasons, these
lemmas will be proved using the following weaker assumption on the derivative. Given a
time n ≥ mrl

k , we consider the following condition.

(BE)(3) |∂xF
j (1; a)| ≥ Ce(γ/9)j for all a ∈ ωrl

k and j = 0, 1, . . . , n − 1.

Notice that γ /9 > γT and hence we will be able to apply Lemma 3.2 at all times.
To rid ourselves of cumbersome notation, we drop the indices from this point on and

write ω = ωrl
k and m = mrl

k .
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4.5. The bound and free periods. Assuming we are in the situation of a return for which
ξn(ω) ⊂ Ir+1 ∪ Ir ∪ Ir−1 ⊂ (−4δ, 4δ), we are relatively close to the critical point, and
therefore the next iterates ξn+j (ω) will closely resemble those of ξj (ω). We quantify this
and define the bound period associated to this return as the maximal p such that
(BC) |ξν(a) − Fν(η; a)| ≤ |ξν(a)|/(10ν2) for ν = 1, 2, . . . , p

holds for all a ∈ ω and all η ∈ (0, e−|r−1|). We refer to (BC) as the binding condition.

Remark 4.4. In the proof of Lemma 4.12, we will refer to pointwise binding, meaning that
for a given parameter a, we associate a bound period p = p(a) according to when (BC)
breaks for this specific parameter. We notice that the conclusions of Lemmas 4.5 and 4.6
below are still true if we only consider iterations of one specific parameter.

The bound period is of central importance and we establish some results connected to
it (compare with [BC85]). An important fact is that during this period, the derivatives are
comparable in the following sense.

LEMMA 4.5. (Bound distortion) Let n be the index of a return for which ξn(ω) ⊂ Ir+1 ∪
Ir ∪ Ir−1, and let p be the bound period. Then, for all a ∈ ω and η ∈ (0, e−|r−1|),

1
2

≤
∣∣∣∣∂xF

j (1 − aη2; a)

∂xF j (1; a)

∣∣∣∣ ≤ 2 (j = 1, 2, . . . , p).

Proof. It is enough to prove that∣∣∣∣∂xF
j (1 − aη2; a)

∂xF j (1; a)
− 1

∣∣∣∣ ≤ 1
2

. (6)

The quotient can be expressed as

∂xF
j (1 − aη2; a)

∂xF j (1; a)
=

j∏
ν=1

(
Fν(η; a) − ξν(a)

ξν(a)
+ 1

)
,

and applying the elementary inequality∣∣∣∣
j∏

ν=1

(un + 1) − 1
∣∣∣∣ ≤ exp

( j∑
ν=1

|un|
)

− 1,

valid for complex un, equation (6) now follows since

j∑
ν=1

|Fν(η; a) − ξν(a)|
|ξν(a)| ≤ 1

10

j∑
ν=1

1
ν2 ≤ log

3
2

.

The next result gives us an estimate of the length of the bound period. As will be seen, if
(BA) and (BE)(3) are assumed up to time n ≥ m = mrl

k , the bound period is never longer
than n, and we are therefore allowed to use the induction assumptions during this period.
In particular, in view of the above distortion result and (BE)(3), we inherit expansion along
the critical orbit during the bound period; making sure m0 is large enough, and using (BA)
together with the assumption that (δn) is admissible, we have
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|∂xF
n+j (1; a)| = 2a|ξn(a)||∂xF

n−1(1; a)||∂xF
j (1 − aξn(a)2; a)|

≥ 2
3ne

C2e(γ /9)(n+j−1)

= 2
3
C2e−γ /9 exp

{(
γ

9
− e log n

n + j

)
(n + j)

}
≥ CT eγT (n+j) (j = 0, 1, . . . , p). (7)

This above estimate is an a priori one, and will allow us to use Lemma 3.2 in the proof of
Lemma 4.10.

LEMMA 4.6. (Bound length) Let n be the index of a return such that ξn(ω) ⊂ Ir+1 ∪ Ir ∪
Ir−1, and suppose that (BA) and (BE)(3) are satisfied up to time n. Then there exists a
constant κ1 > 0 such that the corresponding bound period satisfies

κ−1
1 r ≤ p ≤ κ1r . (8)

Proof. By the mean value theorem and Lemma 4.5, we have that

|ξj (a) − Fj (η; a)| = |Fj−1(1; a) − Fj−1(1 − aη2; a)|
= aη2|∂xF

j−1(1 − aη′2; a)| (9)

≥ aη2

2
|∂xF

j−1(1; a)|,

as long as j ≤ p. (Here, 0 < η′ < η.) Furthermore, as long as we also have j ≤ (log n)2,
say, we can use the induction assumptions: using (BE)(3), we find that

1
2
e−2(r+1)Ce(γ /9)(j−1) ≤ aη2

2
|∂xF

j−1(1; a)| ≤ |ξj (a)|
10j2 ≤ 1.

Taking the logarithm, using (BA), and making sure that m0 is large enough, we therefore
have

j ≤ 1 + 9
γ

(2r + 2 + log 2 − log C) � r � log n ≤ (log n)2,

as long as j ≤ p and j ≤ (log n)2. This tells us that j ≤ p must break before j ≤ (log n)2;
in particular, there is a constant κ1 > 0 such that p ≤ κ1r .

For the lower bound, consider j = p + 1 and the equality in equation (9). With a ∈ ω

being the parameter for which the inequality in the binding condition is reversed, using
Lemma 4.5, we find that

|ξp+1(a)|
10(p + 1)2 ≤ |ξp+1(a) − Fp+1(η; a)| ≤ 4e−2r |∂xF

p(1; a)| ≤ 4e−2r4p.

Using the upper bound for p, we know that (BA) (or (PR)) is valid at time p + 1, and hence

|ξp+1(a)|
10(p + 1)2 ≥ 1

30(p + 1)2+ê
,
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where ê = max(e, σ). Therefore,

1
30(p + 1)2+ê

≤ 4e−2r4p,

and taking the logarithm proves the lower bound.

Remark 4.7. Notice that the lower bound is true without assuming the upper bound (which
in our proof requires (BE)(3) at time n) as long as we assume (BA) to hold at time p + 1.

The next result will concern the growth of ξn(ω) during the bound period.

LEMMA 4.8. (Bound growth) Let n be the index of a return such that ξn(ω) ⊂ I with
Irl ⊂ I ⊂ Ir+1 ∪ Ir ∪ Ir−1, and suppose that (BA) and (BE)(3) are satisfied up to time n.
Then there exists a constant κ2 > 0 such that

|ξn+p+1(ω)| ≥ 1
rκ2

|ξn(ω)|
|I | .

Proof. Denote � = ξn+p+1(ω) and notice that for any two given parameters a, b ∈ ω,
we have

|�| ≥ |Fn+p+1(0; a) − Fn+p+1(0; b)|
= |Fp+1(ξn(a); a) − Fp+1(ξn(b); b)|
≥ |Fp+1(ξn(a); a) − Fp+1(ξn(b); a)|

− |Fp+1(ξn(b); a) − Fp+1(ξn(b); b)|. (10)

Due to the exponential increase of the phase derivative along the critical orbit, the
dependence on the parameters is inessential in the following sense:

|Fp+1(ξn(b); a) − Fp+1(ξn(b); b)| ≤ e−(γ /18)n|ξn(ω)|. (11)

To realize this, first notice that we have the following (somewhat crude) estimate for the
parameter derivative:

|∂aF
j (x; a)| ≤ 5j (j = 1, 2, . . .).

Indeed, |∂aF (x; a)| ≤ 1 < 5, and by induction,

|∂aF
j+1(x; a)| = |∂a(1 − aF j (x; a)2)|

= | − Fj (x; a)2 − 2aF j (x; a)∂aF
j (x; a)|

≤ 1 + 4 · 5j

≤ 5j+1.

Using the mean value theorem twice, Lemma 3.2, and (BE)(3), we find that

|Fp+1(ξn(b); a) − Fp+1(ξn(b); b)| ≤ [(1 − A)T ]−15p+1C−1e−(γ /9)(n−1)|ξn(ω)|.
In view of equation (8) and (BA), making m0 larger if needed, the inequality in equation
(11) can be achieved.
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Assume now that at time p + 1, (BC) is broken for parameter a, and let b be an endpoint
of ω such that

|ξn(a) − ξn(b)| ≥ |ξn(ω)|
2

.

Continuing the estimate of |�|, using equation (11), we find that

|�| ≥ |Fp(1 − aξn(a)2; a) − Fp(1 − aξn(b)2; a)|
− |Fp+1(ξn(b); a) − Fp+1(ξn(b); b)|

≥ (a|ξn(a) + ξn(b)||∂xF
p(1 − aξn(a

′)2; a)| − 2e−(γ /18)n)
|ξn(ω)|

2

≥ (2ae−r |∂xF
p(1 − aξn(a

′)2; a)| − 2e−(γ /18)n)
|ξn(ω)|

2
. (12)

Using Lemma 4.5 twice and the equality in equation (9) (with p + 1 instead of p) together
with (BC) (now reversed inequality), we continue the estimate in equation (12) to find that

|�| ≥
(

2ae−r 1
4aη2

|ξp+1(a)|
10(p + 1)2 − 2e−(γ /18)n

) |ξn(ω)|
2

≥
(

er |ξp+1(a)|
20(p + 1)2 − 2e−(γ /18)n

) |ξn(ω)|
2

. (13)

In either case of p ≤ m0 or p > m0, we have that (using (BA), (PR), and the assumption
that our recurrence rate is admissible)

|ξp+1(a)|
(p + 1)2 ≥ K

3(p + 1)2+ê
,

where ê = max(e, σ). We can make sure that the second term in the parenthesis in equation
(13) is always less than a fraction, say 1/2, of the first term and therefore, using (BC),
equation (8), and that er ≥ 1/(2r2|I |), we finish the estimate as follows:

|�| ≥ K

240
1

(p + 1)2+ê
|ξn(ω)|er

≥ K

480
1

r2(p + 1)2+ê

|ξn(ω)|
|I |

≥ K

480(2κ1)2+ê

1
r4+ê

|ξn(ω)|
|I |

≥ 1
rκ2

|ξn(ω)|
|I | , (14)

where we can choose κ2 = 5 + ê as long as δ is sufficiently small.

Remark 4.9. Using the lower bound for p, the upper bound

|ξn+p+1(ω)| ≤ 1
r

|ξn(ω)|
|I |

can be proved similarly.

https://doi.org/10.1017/etds.2022.78 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.78


Critical recurrence in the real quadratic family 3271

This finishes the analysis of the bound period, and we continue with describing the free
period. A free period will always follow a bound period, and during this period, we will be
iterating outside (−δ, δ). We let L denote the length of this period, that is, L is the smallest
integer for which

ξn+p+L(ω) ∩ (−δ, δ) �= ∅.

The following lemma gives an upper bound for the length of the free period, following the
bound period of a complete return or an essential return.

LEMMA 4.10. (Free length) Let ξn(ω) ⊂ Ir+1 ∪ Ir ∪ Ir−1 with n being the index of a
complete return or an essential return, and suppose that (BA) and (BE)(3) are satisfied
up to time n. Let p be the associated bound period and let L be the free period. Then there
exists a constant κ3 > 0 such that

L ≤ κ3r .

Proof. Assuming j ≤ L and j ≤ (log n)2, similar calculations as in the proof of
Lemma 4.8 gives us parameter independence (see equation (11) and notice that from
equation (7), we are allowed to apply Lemma 3.2); using Lemmas 4.8 and 3.1, we find that

2 ≥ |ξn+p+j (ω)| ≥ δCM

2
eγM(j−1) 1

rκ2
.

Taking the logarithm, using (BA), and making sure that m0 is large enough, we therefore
have

j ≤ 1 + 1
γM

(κ2 log r + 
 + log 4 − log CM) � r � log n <
1
2
(log n)2,

as long as j ≤ L and j ≤ (log n)2. This tells us that j ≤ L must break before j ≤ (log n)2;
in particular, there is a constant κ3 > 0 such that L ≤ κ3r .

Remark 4.11. If the return ξn+p+L(ω) is inessential or essential, then there is no
δ-dependence in the growth factor; more generally, if the prerequisites of Lemma 4.8 are
satisfied, then

|ξn+p+L(ω)| ≥ CM

2
eγM(L−1) 1

rκ2

|ξn(ω)|
|I | .

Before considering iterations of ω = ωrl
k ⊂ 
k from m = mrl

k to mrl
k+1, we make the

following observation that as long as (BA) is assumed in a time window [n, 2n], the
derivative will not drop too much.

LEMMA 4.12. Suppose that a is a parameter such that

|∂xF
j (1; a)| ≥ Ceγ ′j (j = 0, 1, . . . , n − 1), (15)

with γ ′ ≥ γ /3. Then, if (BA) is satisfied up to time 2n, we have

|∂xF
n+j (1; a)| ≥ Ce(γ ′/3)(n+j) (j = 0, 1, . . . , n − 1).

In other words, if (BA) and (BE)(1) [(BE)(2)] are satisfied up to time n, then (BE)(2)
[(BE)(3)] is satisfied up to time 2n, as long as (BA) is.
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Proof. The proof is based on the fact that we trivially have no loss of derivative during
the bound and free periods. Indeed, suppose ξn′(a) ∼ e−r , with n′ ≥ n, and let p be the
bound period (here we use pointwise binding, see Remark 4.4) and L the free period.
Moreover, we assume that n′ + p + L < 2n; in particular, this implies p < n and we can
use equation (15) during this period. Introducing Dp = |∂xF

p(1; a)| and using similar
calculations as in Lemma 4.8 (e.g. the equality in equation (9) and reversed inequality in
(BC)), we find that

e−2rDp � aη2|∂xF
p(1 − aη2; a)| ≥ |ξp+1(a)|

10(p + 1)2 � 1
(p + 1)2+ê

,

where we used (BA) (or (PR)). Since p < n, we are free to use equation (15) and therefore,
the above inequalities yield

e−rDp � D
1/2
p

1√
(p + 1)2+ê

� e(γ ′/2)p√
(p + 1)2+ê

≥ C−1
M ,

provided δ is small enough. Here, in the last inequality, we used the lower bound
in equation (8) (see Remark 4.7). Assuming ξn′+p+L(a) is a return (and that n′ + p +
L < 2n), we therefore have

|∂xF
p+L(ξn′(a); a)| ≥ 2a|ξn′(a)||∂xF

p(1 − aξn′(a)2; a)||∂xF
L−1(ξn′+p+1(a); a)|

� e−rDpCMeγM(L−1)

≥ 1.

We conclude that the combination of a return, a bound period, and a free period does not
decrease the derivative.

Let us now follow a parameter a satisfying equation (15) and (BA) up to time 2n. If the
iterates ξn+j (a) are always outside (−δ, δ), then

|∂xF
n+j (1; a)| = |∂xF

n−1(1; a)||∂xF
j+1(ξn(a); a)|

≥ Ceγ ′(n−1)δCMeγM(j+1)

≥ Ce(γ ′/3)(n+j)δCMe(2γ ′/3)(n+j)

≥ Ce(γ ′/3)(n+j) (j = 0, 1, . . . , n − 1),

provided m0 is big enough.
Otherwise, the worst case is if we have a short free period followed by a return, a bound

period, a free period, and so on, and which ends with a return together with a short bound
period. In this case, using the above argument, the estimate is as follows:

|∂xF
n+j (1; a)| ≥ |∂xF

n−1(1; a)| · CM · 1 · 1 · · · 1 · 2a|ξn+j (a)| · C

≥ Ceγ ′(n−1)CMC2a
δn+j

3

≥ Ce(γ ′/3)(n+j)CMC
2

3a
e(γ ′/3)n−e log(2n)

≥ Ce(γ ′/3)(n+j) (j = 0, 1, . . . , n − 1),

provided m0 is big enough. This proves the lemma.
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4.6. From the kth complete return to the first inessential return. If ω ⊂ Tk , then we have
already reached an escape situation and proceed accordingly as is described below in the
section about escape. We therefore assume ω ⊂ Nk and ξm(ω) = Ir0l ⊂ (−4δ, 4δ).

If it happens that for some j ≤ p,

ξm+j (ω) ∩ (−δm+j /3, δm+j /3) �= ∅,

then we stop and consider this return complete. If not, we notice that ξm+p(ω) can not be
a return, unless it is escape or complete; indeed, we would otherwise have |ξm+p+1(ω)| <

|ξm+p(ω)|, due to the fact that we return close to the critical point, and thus contradict
the definition of the bound period. We therefore assume that ξm+p(ω) does not intersect
(−δ, δ).

Up until the next return, we will therefore experience an orbit outside of (−δ, δ), that is,
we will be in a free period. After the free period, our return is either inessential, essential,
escape, or complete. In the next section, we consider the situation of an inessential return.

4.7. From the first inessential return to the first essential return. Let i1 = m + p0 + L0

denote the index of the first inessential return to (−δ, δ). We will keep iterating ξi1(ω)

until we once again return. If this next return is again inessential, we denote its index
by i2 = i1 + p1 + L1, where p1 and L1 are the associated bound period and free period,
respectively. Continuing like this, let ij be the index of the j th inessential return.

The following lemma gives an upper bound for the total time spent doing inessential
returns (compare with Lemma 2.3 in [BC91]).

LEMMA 4.13. (Inessential length) Let ξn(ω) ⊂ Ir+1 ∪ Ir ∪ Ir−1 with n being the index of
a complete return or an essential return, and suppose that (BA) and (BE)(2) are satisfied
up to time n. Then there exists a constant κ4 > 0 such that the total time o spent doing
inessential returns satisfies

o ≤ κ4r .

Proof. Let i1 = n + p + L be the index of the first inessential return, that is, ξi1(ω) ⊂ Ir1 ,
with Ir1 being the host interval. From Lemmas 4.6 and 4.10, together with (BA), we have
that

i1 = n + p + L ≤ n + (κ1 + κ3)r ≤ 2n,

provided m0 is large enough. We can therefore apply Lemma 4.12 and conclude that
(BE)(3) is satisfied at time i1. To this first inessential return, we associate a bound period of
length p1 (satisfying p1 ≤ κ1r1 due to the fact that (BE)(3) is satisfied at time i1) and a free
period of length L1. We let i2 = i1 + p1 + L1 denote the index of the second inessential
return. Continuing like this, we denote by ij = ij−1 + pj−1 + Lj−1 the index of the j th
inessential return. With oj denoting the total time spent doing inessential returns up to
time ij , we have that oj = ij − i1 = ∑j−1

k=1(pk + Lk). Suppose that the return with index
is is the first that is not inessential. We estimate o = os as follows. Suppose that oj is as
above and that pk ≤ κ1rk for k = 1, 2, . . . , j − 1. Using Remark 4.11, we find that

|ξik+1(ω)|
|ξik (ω)| ≥ CMeγM(Lk−1)

2r
κ2
k |Irk |

≥ CM

2
eγM(Lk−1)+rk

r
κ2
k

, (16)
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and therefore,

2 ≥ |ξij (ω)| = |ξi1(ω)|
j−1∏
k=1

|ξik+1(ω)|
|ξik (ω)| ≥ δCMeγM

2rκ2

j−1∏
k=1

CM

2
eγM(Lk−1)+rk

r
κ2
k

. (17)

Here, the δ is added to make sure that the estimate also holds for the last free orbit, when
the return can be escape or complete. This gives us a rather poor estimate, but since p � r ,
it is good enough.

Taking the logarithm of equation (17), we find that

j−1∑
k=1

(log CM − log 2 + γM(Lk − 1) + rk − κ2 log rk) ≤ κ2 log r + 
 + const.

Provided δ is small enough, we have rk ≥ 4κ2 log rk and rk ≥ − log δ > −2(log CM +
γM + log 2). Therefore, using pk ≤ κ1rk , we find that

oj = ij − i1 =
j−1∑
k=1

(pk + Lk) ≤ κ4r ,

with κ4 being an absolute constant. In particular,

ij = i1 + oj ≤ 2n,

and therefore (BE)(3) is still valid at time ij . Consequently, the associated bound period
satisfies pj ≤ κ1rj , and the above argument can therefore be repeated. With this, we
conclude that os ≤ κ4r .

We proceed in the next section with describing the situation if our return is assumed to
be essential.

4.8. From the first essential return to the first escape return. With n1 denoting the index
of the first essential return, we are in the following situation:

ξn1(ω) ∩ Irl �= ∅, |ξn1(ω)| ≥ |Irl |,
and ξn1(ω) ⊂ (−4δ, 4δ) \ (−δn1/3, δn1/3)

for some r , l. At this point, to not lose too much distortion, we will make a partition of
as much as possible, and keep iterating what is left. That is, we will consider iterations of
larger partition elements Ir = (e−r−1, e−r ) ⊂ (−4δ, 4δ), and we establish an upper bound
for the number of essential returns needed to reach an escape return or a complete return.

Let �1 = ξn1(ω) and let I1 = Ir1 ⊂ �1 for smallest such r1. (In fact, we extend I1 to
the closest endpoint of �1, and therefore have I1 ⊂ Ir1 ∪ Ir1−1.) If there is no such r,
we instead let I1 = �1. Moreover, let ω1 be the interval in parameter space for which
ξn1(ω

1) = I1. The interval I1 is referred to as the essential interval, and this is the interval
we will iterate. If ω̂ = ω \ ω1 is non-empty, we make a partition

ω̂ =
⋃
r ,l

ωrl ⊂ 
k+1,
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where each ωrl is such that Irl ⊂ ξn1(ω
rl) = Irl ∪ Ir ′l′ ⊂ (−4δ, 4δ). (If there is not enough

left for a partition, we extend I1 further so that I1 ⊂ Ir1+1 ∪ Ir1 ∪ Ir1−1.) Notice that, since
the intervals Ir are dyadic, the proportion of what remains after partitioning satisfies

|I1|
|�1| ≥ 1 − 1

e
≥ 1

2
. (18)

We associate for each partitioned parameter interval ωrl the complete return time n1

(even though nothing is removed from these intervals). From the conclusions made in
the previous sections, we know that

n1 = m + p0 + L0 + o0 ≤ m + (κ1 + κ3 + κ4)r0 ≤ 2m,

provided m0 is large enough. In particular, Lemma 4.12 tells us that (BE)(2) is satisfied
up to time n1 for all a ∈ ω. At this step, to make sure that (BE)(1) is satisfied for our
partitioned parameter intervals ωrl ⊂ 
k+1, we make the following rule (compare with
the initial iterates at the beginning of the induction step). If there is no a′ ∈ ω such that

|∂xF
n1−1(1; a′)| ≥ CBeγB(n1−1),

then we remove the entire interval. If there is such a parameter, however, using Lemma 5.1,
we have that

|∂xF
n1−1(1; a)| ≥ D

−(log∗ m)2

1 |∂xF
n1−1(1; a′)|

≥ CB exp
{(

γB − (log∗ m)2

n1 − 1
log D1

)
(n1 − 1)

}
≥ Ceγ (n1−1),

provided m0 is large enough.
With the above rules applied at each essential return to come, we now describe the

iterations. Since ξm(ω) = Ir0l , using Lemma 4.8, we know that the length of �1 satisfies

|�1| ≥ CMeγM

2
1

r
κ2
0

≥ 1

r
κ2+1
0

.

Notice that since e−r1+1 ≥ |�1|, we have that r1 ≤ 2κ2 log r0. Iterating I1 with the same
rules as before, we will eventually reach a second non-inessential return, and if this return is
essential, we denote its index by n2. This index constitutes the addition of a bound period,
a free period, and an inessential period: n2 = n1 + p1 + L1 + o1. Similarly as before, we
let �2 = ξn2(ω

1), and let I2 ⊂ �2 denote the essential interval of �2. Let ω2 ⊂ ω1 be
such that ξn2(ω

2) = I2, and make a complete partition of ω1 \ ω2. By applying Lemma 4.8
again, we find that

|�2| ≥ 1

r
κ2+1
1

≥ 1
(2κ2 log r0)κ2+1 .
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If we have yet to reach an escape return or a complete return, let nj be the index of the
j th essential return, and realize that we are in the following situation:

ξnj
(ωj ) = Ij ⊂ �j = ξnj

(ωj−1) and |�j | ≥ 1

r
κ2+1
j−1

. (19)

Introducing the function r �→ 2κ2 log r = ϕ(r), we see from the above that rj ≤ ϕj (r0).
The orbit ϕj (r0) will tend to the attracting fixed point r̂ = −2κ2W(−1/(2κ2)), where W
is the Lambert W function. The following simple lemma gives an upper bound for the
number of essential returns needed to reach an escape return or a complete return.

LEMMA 4.14. Let ϕ(r) = 2κ2 log r , and let s = s(r) be the integer defined by

logs r ≤ 2κ2 ≤ logs−1 r .

Then,

ϕs(r) ≤ 12κ2
2 .

Proof. Using the fact that 3 ≤ 2κ2 ≤ logj r , for j = 0, 1, . . . , s − 1, it is straightforward
to check that

ϕj (r) ≤ 6κ2 logj r . (20)

Therefore,

ϕs(r) ≤ 2κ2 log(6κ2 logs−1 r) = 2κ2(log 3 + log 2κ2 + logs r) ≤ 12κ2
2 .

Given s = s(r0) as in the above lemma, we have that rs ≤ ϕs(r0) ≤ 12κ2
2 . By making

sure δ is small enough, we therefore conclude that

|�s+1| ≥ 1
(12κ2

2 )κ2+1
≥ 4δ.

To express s in terms of r0, we introduce the so-called iterated logarithm, which is defined
recursively as

log∗ x =
{

0 if x ≤ 1,

1 + log∗ log x if x > 1.

That is, log∗ x is the number of times one has to apply to logarithm to x for the result to be
less than or equal to one.

Since s satisfies logs r0 ≤ 2κ2 ≤ logs−1 r0 and since 2κ2 > 1, we have

s ≤ log∗ r0 ≤ log∗ m. (21)

We finish by giving an upper bound for the index of the first escape return (or (k + 1)th
complete return), that is, we wish to estimate

ns+1 = m +
s∑

j=0

(pj + Lj + oj ).
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From Lemmas 4.6, 4.10, and 4.13, we have that

pj ≤ κ1rj , Lj ≤ κ3rj , and oj ≤ κ4rj .

Together with the inequalities rj ≤ ϕj (r0) and equation (20), we find that

s∑
j=0

(pj + Lj + oj ) � r0 +
s∑

j=1

ϕj (r0)

� r0 +
s∑

j=1

logj r0

� r0.

Using (BA), we conclude that ns+1 − m � log m, provided m0 is large enough.

4.9. From the first escape return to the (k + 1)th complete return. Keeping the notation
from the previous section, �s+1 = ξns+1(ω

s) is the first escape return, satisfying

�s+1 ∩ (−δ,δ) �= ∅, �s+1 ∩ (−δns /3, δns /3) = ∅
and |�s+1 \ (−δ, δ)| ≥ 3δ.

We will keep iterating ωs until we get a complete return, and we show below that this must
happen within finite (uniform) time. To not run into problems with distortion, we will,
as in the case of essential returns, whenever possible make a partition of everything that
is mapped inside of (−δ, δ), and the corresponding parameter intervals will be a part of

k+1; that is, at time ns+1+j = ns+1 + j let Is+1+j = �s+1+j \ (�s+1+j ∩ (−δ, δ)), let
ωs+1+j be such that ξns+1+j

(ωs+1+j ) = Is+1+j , and make a partition of ωs+j \ ωs+1+j .
As in the case of essential returns, we associate to each partitioned parameter interval the
complete time ns+1+j and, as before, we make sure that at these times, (BE)(1) is satisfied.

Let ωe = ωL ∪ ωM ∪ ωR be the disjoint union of parameter intervals for which

ξns+1(ωL) = (δ, 2δ), ξns+1(ωM) = (2δ, 3δ) and ξns+1(ωR) = (3δ, 4δ).

Clearly, it is enough to show that ωe reaches a complete return within finite time. Let t∗ be
the smallest integer for which

CMeγMt∗ ≥ 4.

If δ is small enough, and if |ω0| = 2ε is small enough, we can make sure that

ξns+1+j (ωe) ∩ (−2δ, 2δ) = ∅ (1 ≤ j ≤ t∗).

Suppose that, for some j ≥ t∗, ξns+1+j
(ωe) ∩ (−δ, δ) �= ∅, and that this return is not

complete. Assuming that ωL returns, we can not have ξns+1+j
(ωL) ⊂ (−2δ, 2δ). Indeed,

if this was the case, then (using Lemma 3.1 and parameter independence)

|ξns+1+j
(ωL)| > 2|ξns+1(ωL)| > 2δ,

which contradicts the return not being complete. We conclude that after partitioning what
is mapped inside of (−δ, δ), what is left is of size at least δ, and we are back to the original
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setting. In particular, ωM did not return to (−δ, δ). Repeating this argument, ωL and ωR

will return, but ωM will stay outside of (−δ, δ). (Here, we abuse the notation: if ωL returns,
we update it so that it maps onto (δ, 2δ), and similarly if ωR returns.) Due to Lemma 3.1,
we therefore have

2 ≥ |ξns+1+j
(ωM)| � |ξns+1(ωM)|δCMeγMj ≥ δ2CMeγMj (j ≥ 0),

and clearly we must reach a complete return after j = t iterations, with

t � 2
 − log CM

γM

.

With this, we conclude that if m0 is large enough, then there exists a constant κ > 0 such
that

mrl
k+1 ≤ mrl

k + κ log mrl
k . (22)

We finish by estimating how much of �s+1+j is being partitioned at each iteration. By
definition of an escape return, we have that |�s+1| ≥ 3δ, and since it takes a long time for
ωe to return, the following estimate is valid:

|Is+1+j |
|�s+1+j | ≥ |�s+1+j | − δ

|�s+1+j | ≥ 1 − 1
3

= 2
3

. (23)

4.10. Parameter exclusion. We are finally in the position to estimate how much of ω is
being removed at the next complete return. Up until the first free return, nothing is removed
(unless we have a bound return, for which we either remove nothing, or remove enough to
consider the return complete). Let E be what is removed in parameter space, and write
ω = ω0. Taking into account what we partition in between mk and mk+1, we have that

|E|
|ω0| = |E|

|ωs+t |
t−1∏
ν=0

|ωs+1+ν |
|ωs+ν |

s−1∏
ν=0

|ω1+ν |
|ων | .

Using the the mean value theorem, we find that for each factor in the above expression,

|ωj |
|ωj−1| = |aj − bj |

|aj−1 − bj−1|
= |aj − bj |

|ξnj
(aj ) − ξnj

(bj )|
|ξnj

(aj−1) − ξnj
(bj−1)|

|aj−1 − bj−1|
|ξnj

(aj ) − ξnj
(bj )|

|ξnj
(aj−1) − ξnj

(bj−1)|
= 1

|∂aξnj
(cj )| |∂aξnj

(cj−1)| |Ij |
|�j |

= |∂xF
nj −1(1; cj )|

|∂aξnj
(cj )|

|∂aξnj
(cj−1)|

|∂xF
nj −1(1; cj−1)|

|∂xF
nj −1(1; cj−1)|

|∂xF
nj −1(1; cj )|

|Ij |
|�j | .

Making use of Lemmas 3.2 and 5.1, we find that

|ωj |
|ωj−1| :

|Ij |
|�j | ∼ DAD

(log∗ mk)
2

1 ,
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and therefore, using equations (21), (18), and (23), there is, provided m0 is large enough,
an absolute constant 0 < τ < 1 such that

|E|
|ω0| ≥ (δmk+1/3)

1

(
1
3
D−1

A D
−(log∗ mk)

2

1

)t+log∗ mk

≥ δmk+1τ
(log∗ mk+1)

3
.

In particular, for the remaining interval ω̂ = ω \ E, we have that

|ω̂| ≤ |ω|(1 − δmk+1τ
(log∗ mk+1)

3
). (24)

5. Main distortion lemma
Before giving a proof of Theorem B, we give a proof of the very important distortion
lemma that, together with Lemma 3.2, allow us to restore the derivative and to estimate
what is removed in parameter space at the (k + 1)th complete return. The proof is similar
to that of Lemma 5 in [BC85], with the main difference being how we proceed at essential
returns. As will be seen, our estimate is unbounded.

If not otherwise stated, the notation is consistent with that of the induction step.
Recall that


k = Nk ∪ Tk ,

with ωk ⊂ Nk being mapped onto some Irl ⊂ (−4δ, 4δ), and ωk ⊂ Tk being mapped onto
an interval ±(δ, x) with |x − δ| ≥ 3δ. Moreover, we let mk+1(a, b) denote the largest time
for which parameters a, b ∈ ωk belong to the same parameter interval ω

j
k ⊂ ωk , e.g. if

a, b ∈ ω
j
k , then mk+1(a, b) ≥ nj+1.

LEMMA 5.1. (Main distortion lemma) Let ωk ⊂ 
k and let mk be the index of the kth
complete return. There exists a constant D1 > 1 such that, for a, b ∈ ωk and j < mk+1 =
mk+1(a, b),

|∂xF
j (1; a)|

|∂xF j (1; b)| ≤ D
(log∗ mk)

2

1 .

Proof. Using the chain rule and the elementary inequality x + 1 ≤ ex , we have

|∂xF
j (1; a)|

|∂xF j (1; b)| =
j−1∏
ν=0

|∂xF (F ν(1; a); a)|
|∂xF (F ν(1; b); b)|

=
(

a

b

)j j∏
ν=1

|ξν(a)|
|ξν(b)|

≤
(

a

b

)j j∏
ν=1

( |ξν(a) − ξν(b)|
|ξν(b)| + 1

)

≤
(

a

b

)j

exp
( j∑

ν=1

|ξν(a) − ξν(b)|
|ξν(b)|

)
.
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We claim that the first factor in the above expression can be made arbitrarily close to 1.
To see this, notice that (

a

b

)j

≤ (1 + |ωk|)j .

Using (BE)(1) and Lemma 3.2, we have that |ωk| � e−γmk , and for m0 large enough,
we have from equation (22) that j < mk+1 ≤ mk + κ log mk ≤ 2mk; therefore,

(1 + |ωk|)j ≤ (1 + e−(γ /2)mk )2mk .

Since

(1 + e−(γ /2)mk )2mk ≤ (1 + e−(γ /2)m0)2m0 → 1 as m0 → ∞,

making m0 larger if needed proves the claim. It is therefore enough to only consider
the sum

� =
mk+1−1∑

ν=1

|ξν(a) − ξν(b)|
|ξν(b)| .

With m∗
k ≤ mk+1 being the last index of a return, that is, ξmk∗ (ωk) ⊂ Ir∗

k
⊂ (−4δ, 4δ),

we divide � as

� =
m∗

k−1∑
ν=1

+
mk+1−1∑
ν=m∗

k

= �1 + �2,

and begin with estimating �1.
The history of ωk will be that of ω0, ω1, . . . , ωk−1. Let {tj }Nj=0 be all the inessential,

essential, escape, and complete returns. We further divide �1 as

m∗
k−1∑

ν=1

|ξν(a) − ξν(b)|
|ξν(b)| =

N−1∑
j=0

tj+1−1∑
ν=tj

|ξν(a) − ξν(b)|
|ξν(b)| =

N−1∑
j=0

Sj .

The contribution to Sj from the bound period is

pj∑
ν=0

|ξtj +ν(a) − ξtj +ν(b)|
|ξtj +ν(b)| �

|ξtj (ω)|
|ξtj (b)| + |ξtj (ω)|

|ξtj (b)|
pj∑

ν=1

e−2rj |∂xF
ν−1(1; a)|

|ξν(b)| .

Let ι = (κ1 log 4)−1 and further divide the sum in the above right-hand side as

ιpj∑
ν=1

+
pj∑

ν=ιpj +1

.

To estimate the first sum, we use the inequalities |∂xF
ν | ≤ 4ν and |ξν(b)| ≥ δν/3 � ν−e,

and that pj ≤ κ1rj , to find that
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ιpj∑
ν=1

e−2rj |∂xF
ν−1(1; a)|

|ξν(b)| � e−2rj

ιpj∑
ν=1

4ννe

� e−2rj 4ιpj pe
j

�
re
j

erj
.

To estimate the second sum, we use (BC) and the equality in equation (9), and find that

pj∑
ν=ιpj +1

e−2rj |∂xF
ν−1(1; a)|

|ξν(b)| � 1
r2
j

.

Therefore, the contribution from the bound period adds up to

tj +pj∑
ν=tj

|ξν(a) − ξν(b)|
|ξν(b)| �

|ξtj (ω)|
|ξtj (b)| + |ξtj (ω)|

|ξtj (b)|
(

1
r2
j

+ re
j

erj

)

�
|ξtj (ω)|
|ξtj (b)| .

After the bound period and up to time tj+1, we have a free period of length Lj during
which we have exponential increase of the derivative. We wish to estimate

tj+1−1∑
ν=tj +pj +1

|ξν(a) − ξν(b)|
|ξν(b)| =

Lj −1∑
ν=1

|ξtj +pj +ν(a) − ξtj +pj +ν(b)|
|ξtj +pj +ν(b)| .

Using the mean value theorem, parameter independence, and Lemma 3.1, we have that for
1 ≤ ν ≤ Lj − 1,

|ξtj+1(a) − ξtj+1(b)| = |ξtj +pj +Lj
(a) − ξtj +pj +Lj

(b)|
� |FLj −ν(ξtj +pj +ν(a); a) − FLj −ν(ξtj +pj +ν(b); a)|
= |∂xF

Lj −ν(ξtj +pj +ν(a
′); a)||ξtj +pj +ν(a) − ξtj +pj +ν(b)|

� eγM(Lj −ν)|ξtj +pj +ν(a) − ξtj +pj +ν(b)|,
and therefore,

|ξtj +pj +ν(a) − ξtj +pj +ν(b)| � |ξtj+1(a) − ξtj+1(b)|
eγM(Lj −ν)

, (25)

provided ξtj+1(ω) does not belong to an escape interval. If ξtj+1(ω) belongs to an escape
interval, then we simply extend the above estimate to tj+2, tj+3, . . . , until we end up
inside some Irl ⊂ (−4δ, 4δ) (which will eventually happen, per definition of m∗

k). Hence,
we may disregard escape returns, and see them as an extended free period.

Since |ξtj+1(b)| ≤ |ξtj +pj +ν(b)| for 1 ≤ ν ≤ Lj − 1, it follows from the above
inequality that
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Lj −1∑
ν=1

|ξtj +pj +ν(a) − ξtj +pj +ν(b)|
|ξtj +pj +ν(b)| ≤ |ξtj+1(a) − ξtj+1(b)|

|ξtj+1(b)|
Lj −1∑
ν=1

e−γM(Lj −ν)

�
|ξtj+1(a) − ξtj+1(b)|

|ξtj+1(b)| ,

thus the contribution from the free period is absorbed in Sj+1.
What is left is to give an estimate of

m∗
k−1∑

ν=m0

|ξν(a) − ξν(b)|
|ξν(b)| �

N∑
j=0

|ξtj (ω)|
|ξtj (b)| �

N∑
j=0

|ξtj (ω)|
|Irj |

,

where, with the above argument, {tj }Nj=0 are now considered to be indices of inessential,
essential, and complete returns only. Because of the rapid growth rate, we will see that
among the returns to the same interval, only the last return will be significant. From
Lemma 4.8, we have that |ξtj +1(ω)| � (erj /r

κ2
j )|ξtj (ω)| � 2|ξtj (ω)|, and hence with J (ν)

the last j for which rj = ν,

N∑
j=0

|ξtj (ω)|
|Irj |

=
∑

ν∈{rj }

1
|Iν |

∑
rj =ν

|ξtj (ω)| �
∑

ν∈{rj }

|ξtJ (ν)
(ω)|

|Iν | .

If tJ (ν) is the index of an inessential return, then |ξtJ (ν)
(ωk)|/|Iν | � ν−2, and therefore the

contribution from the inessential returns to the above left most sum is bound by some small
constant. It is therefore enough to only consider the contribution from essential returns and
complete returns. To estimate this contribution, we may assume that m∗

k ≥ mk , and that
ξmk

(ω) = Irkl . Moreover, we assume that ξmj
(ω) = Irj l for all j.

With nj ,0 = mj being the index of the j th complete return, and nj ,ν ∈ (mj , mj+1)

being the index of the νth essential return for which ξnj ,ν (ω) ⊂ Irj ,ν , we write

∑
ν∈{rj }

|ξtJ (ν)
(ω)|

|Iν | �
k∑

j=0

νj∑
ν=0

|ξnj ,ν (ω)|
|Irj ,ν |

=
k∑

j=0

Smj
.

For the last partial sum, we use the trivial estimate Smk
≤ log∗ mk . To estimate Smj

for
j �= k, we realize that between any two free returns nj ,ν and nj ,ν+1, the distortion is
uniformly bound by some constant C1 > 1. Therefore,

|ξnk−1,νk−1−j
(ω)|

|Irk−1,νk−1−j
| ≤ C

j

1

r2
k

,

and consequently, since νj ≤ log∗ rj (see equation (21)),

Smk−1 ≤ C
log∗ rk−1
2

r2
k
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for some uniform constant C2 > 1. Continuing like this, we find that

Smk−j
≤ C

log∗ rk−j

2 C
log∗ rk−j+1
2 . . . C

log∗ rk−1
2

r2
k−j+1r

2
k−j+2 . . . r2

k

≤ C
log∗ rk−j

2

r
3/2
k−j+1r

3/2
k−j+2 . . . r2

k

,

where we, in the last inequality, used the (very crude) estimate

C
log∗ x

2 ≤ √
x.

Let us call the estimate of Smk−j
good if C

log∗ rk−j

2 ≤ rk−j+1. For such Smk−j
, we clearly

have

Smk−j
≤ 1


j/2 .

Let j1 ≥ 1 be the smallest integer for which Smk−j1
is not good, that is,

log∗ rk−j1 ≥ (log C2)
−1 log rk−j1+1 ≥ (log C2)

−1 log 
.

We call this the first bad estimate, and for the contribution from Smk−j1
to the distortion,

we instead use the trivial estimate

Smk−j1
≤ log∗ rk−j1 ≤ log∗ mk .

Suppose that j2 > j1 is the next integer for which

C
log∗ rk−j2
2 ≥ rk−j2+1.

If it turns out that

C
log∗ rk−j2
2 ≤ rk−j1 ,

then

Smk−j2 ≤ 1

j/2 ,

and we still call this estimate good. If not, then

log∗ rk−j2 ≥ (log C2)
−1 log rk−j1 ,

and j2 is the index of the second bad estimate. Continuing like this, we get a number s of
bad estimates and an associated sequence Ri = rk−ji

satisfying

log∗ R1 ≥ (log C2)
−1 log 
,

log∗ R2 ≥ (log C2)
−1 log R1,

...

log∗ Rs ≥ (log C2)
−1 log Rs−1.
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This sequence grows incredibly fast, and its not difficult to convince oneself that

Rs � ee..
.e︸︷︷︸

s copies of e

.

In particular, since Rs ≤ mk , we find that

s � log∗ Rs ≤ log∗ mk .

We conclude that ( ∑
good

+
∑
bad

)
Smj

≤
∞∑

j=1

1

j/2 + s log∗ mk

� (log∗ mk)
2,

and hence

m∗
k−1∑

ν=1

|ξν(a) − ξν(b)|
|ξν(b)| � (log∗ mk)

2.

From mk∗ to mk+1 − 1, the assumption is that we only experience an orbit outside
(−δ, δ). By a similar estimate as equation (25), we find that for ν ≥ 1,

|ξmk∗+ν(a) − ξmk∗+ν(b)| � |ξmk−1(a) − ξmk−1(b)|
δeγM(mk−1−mk∗−ν)

,

and therefore

mk+1−1∑
ν=m∗

k

|ξν(a) − ξν(b)|
|ξν(b)| � 1 + 1

δ2 ≤ (log∗ mk)
2,

provided m0 is large enough. This proves the lemma.

6. Proof of Theorem B
Returning to the more cumbersome notation used in the beginning of the induction step,
let ωrl

k ⊂ 
k . We claim that a similar inequality as equation (24) is still true if we replace
ω̂ and ω with 
k+1 and 
k , respectively. To realize this, write 
k+1 as the disjoint union


k+1 =
⋃

ωrl
k+1 =

⋃
ω̂rl

k .

With m0 being the start time, consider the sequence of integers defined by the equality

mk+1 = �mk + κ log mk� (k ≥ 0),

where �x� denotes the smallest integer satisfying x ≤ �x�. By induction, using
equation (22),

mrl
k+1 ≤ mr ′l′

k + κ log mr ′l′
k ≤ mk + κ log mk ≤ mk+1.
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Hence, the sequence (mk) dominates every other sequence (mrl
k ), and therefore it follows

from equation (24) that

|
k+1| =
∑

|ω̂rl
k |

=
∑

|ωrl
k |(1 − δmrl

k+1
τ (log∗ mrl

k+1)
3
)

≤
( ∑

|ωrl
k |

)
(1 − δmk+1τ

(log∗ mk+1)
3
)

= |
k|(1 − δmk+1τ
(log∗ mk+1)

3
).

By construction,

�m0(δn) ∩ CE(γB , CB) ∩ ω0 ⊂ 
∞ =
∞⋂

k=0


k ,

and therefore, to prove Theorem B, it is sufficient to show that
∞∏

k=0

(1 − δmk
τ (log∗ mk)

3
) = 0.

By standard theory of infinite products, this is the case if and only if
∞∑

k=0

δmk
τ (log∗ mk)

3 = ∞.

To evaluate the above sum, we make use of the following classical result, due to Schlömilch
[Schl73] (see also [Kno56], for instance).

PROPOSITION 6.1. (Schlömilch condensation test) Let q0 < q1 < q2 . . . be a strictly
increasing sequence of positive integers such that there exists a positive real number α

such that
qk+1 − qk

qk − qk−1
< α (k ≥ 0).

Then, for a non-increasing sequence an of positive non-negative real numbers,
∞∑

n=0

an = ∞ if and only if
∞∑

k=0

(qk+1 − qk)aqk
= ∞.

Proof. We have

(qk+1 − qk)aqk+1 ≤
qk+1−qk−1∑

n=0

aqk+n ≤ (qk+1 − qk)aqk
,

and therefore,

α−1
∞∑

k=0

(qk+2 − qk+1)aqk+1 ≤
∞∑

n=q0

an ≤
∞∑

k=0

(qk+1 − qk)aqk
.
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Since mk+1 − mk ∼ log mk is only dependent on mk , we can easily apply the above
result in a backwards manner. Indeed, we have that

mk+1 − mk

mk − mk−1
≤ κ log mk + 1

κ log mk−1

≤ κ log(mk−1 + κ log mk−1 + 1) + 1
κ log mk−1

≤ 1 + const.
log m0

(k ≥ 0),

and therefore with qk = mk and an = δnτ
(log∗ n)3

/ log n, the preconditions of Schlömilch’s
test are satisfied. We conclude that

∞∑
n=m0

δn

log n
τ (log∗ n)3 = ∞

if and only if
∞∑

k=0

(mk+1 − mk)
δmk

log mk

τ (log∗ mk)
3 ∼

∞∑
k=0

δmk
τ (log∗ mk)

3 = ∞.

This proves Theorem B.
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