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ABSTRACT

We prove that there exists at least one positive Einstein metric on HP™ ! {HP i

for m > 2. Based on the existence of the first Einstein metric, we give a criterion to
check the existence of a second Einstein metric on HIP’mHﬁmmH. We also investigate
the existence of cohomogeneity-one positive Einstein metrics on S¥?*4 and prove the
existence of a non-standard Einstein metric on S%.

1. Introduction

A Riemannian manifold (M, g) is Finstein if its Ricci curvature is a constant multiple of g:
Ric(g) = Ag.

The metric g is then called an Finstein metric and A is the Finstein constant. Depending on the
sign of A, we call g a positive Einstein (A > 0) metric, a negative Einstein (A < 0) metric or a
Ricci-flat (A = 0) metric. A positive Einstein manifold is compact by Myers’ theorem [Mye41].

In this paper we investigate the existence of positive Einstein metrics of cohomogeneity one.
A Riemannian manifold (M, g) is of cohomogeneity one if a Lie group G acts isometrically on M
such that the principal orbit G/K is of codimension one. The first example of an inhomogeneous
positive Einstein metric was constructed in [Pag78]. The metric is defined on CPQﬁ@Q and
is of cohomogeneity one. The result was later generalized in [Ber82, KS86, Sak86, PP87, KS88,
WW098]. A common feature shared by positive Einstein metrics constructed in this series of works
is that the principal orbits are principal U(1) bundles over either a Fano manifold or a product of
Fano manifolds. From this perspective, one can view the Einstein metric on HP? ﬁ@Q in [B6h98|
as another type of generalization to the Page metric, whose principal orbit is a principal Sp(1)
bundle over HP*.

A natural question arises whether there exists a positive Einstein metric of cohomogeneity
one on HIP’mHﬁWmH with m > 2, where the principal orbit is the total space of the quaternionic
Hopf fibration formed by the following group triple:

(K, H,G) = (Sp(m)ASp(1), Sp(m)Sp(1)Sp(1), Sp(m + 1)Sp(1)). (1.1)
The condition of being G-invariant reduces the Einstein equations to an ordinary differential
equation (ODE) system defined on the one-dimensional orbit space. The solution takes the form
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g = dt? + g(t), where g(t) is a G-invariant metric on S¥**3 for each ¢. One looks for a g(t)
that is defined on a closed interval [0,7] with an initial condition and a terminal condition.
If g(t) collapses to the quaternionic Kéhler metric on the singular orbit HP™ at ¢t =0 and

t =T, then g defines a positive Einstein metric on the connected sum HP’”“ﬁW’”“, or equiv-
alently, an S* bundle over HP™. It has been conjectured that such an Einstein metric exists
on ]I-]HP””‘Hjjmm—H for all m > 2, as indicated by numerical evidence provided in [PP86, B6h98,
DHW13].

Some well-known Einstein metrics are realized as integral curves to the cohomogeneity-
one Einstein equation. For example, the standard sphere metric, the sine cone over Jensen’s
sphere and the quaternionic Kahler metric on HP™*! are represented by integral curves to the
cohomogeneity-one system. Furthermore, the cone solution is an attractor to the system. It
was realized in [B6h98] that the winding of integral curves around the cone solution plays an
important role in the existence problem described above. To investigate the winding, one studies
a quantity (denoted by #C,, (k) in [B6h98]) that is assigned to each local solution that does not
globally define a complete Einstein metric on HIP’mHﬂWmH. From the point of view of geometry,
the quantity records the number of times that the principal orbit becomes isoparametric while
its mean curvature remains positive. In general, an estimate for C,(h) can be obtained from
the linearization along the cone solution. For m = 1, the estimate is good enough to prove the
global existence. This is not the case, however, if m > 2. For higher-dimensional cases, it is from
the global analysis of the system that we obtain a further estimate for #Cy,(h) and we prove the
following existence theorem.

THEOREM 1.1. On each HIP’mﬂﬁmmH with m > 2, there exists at least one positive Einstein

metric with G/K = S$*™*3 as its principal orbit.
Numerical studies in [B6h98, DHW13] indicate that there exists another Einstein metric

on HIP)mHﬁmmH with m > 2. Based on Theorem 1.1, an estimate for #C,, (k) in a limiting
subsystem (essentially obtained from the linearization along the cone solution) helps us propose
a criterion to check the existence of the second Einstein metric. Let n be the dimension of G/K.
Such a criterion only depends on n (or m).

THEOREM 1.2. Let 6y be the solution to the following initial value problem:

dn ~ 2n (2m + 3)2 + 2m
Let Q =lim, .o 0y. For m > 2, there exist at least two positive Einstein metrics on
HP™HHP ™ if Q < 37/4.

The upper bound for € in Theorem 1.2 is not sharp. Although it is difficult to solve the initial
value problem (1.2) explicitly, one can use the Runge-Kutta fourth-order algorithm to approx-
imate 2. Since the right-hand side of (1.2) does not vanish at n = 0, the initial Runge-Kutta
step is well defined. Our numerical study shows that Q < 37 /4 for integers m € [2, 100].

We also look into the case where G/K completely collapses at two ends of a compact manifold.
In that case, the cohomogeneity-one space is S**4. No new Einstein metric is found on S*"+4
for m > 2. For m = 1, however, we obtained a non-standard positive Einstein metric on S®. Such
a metric is inhomogeneous by the classification in [Zil82].

THEOREM 1.3. There exists a non-standard Sp(2)Sp(1)-invariant positive Einstein metric jgs
on S8.
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It is worth mentioning that all new solutions found are symmetric. Metrics that are
represented by these solutions all have a totally geodesic principal orbit.

This paper is structured as follows. In §2 we present the dynamical system for positive
Einstein metrics of cohomogeneity one with G/K as the principal orbit. Then we apply a coordi-
nate change that makes the cohomogeneity-one Ricci-flat system serve as a limiting subsystem.
Initial conditions and terminal conditions are transformed into critical points of the new system.
The new system admits Zo-symmetry. By a sign change, one can transform initial conditions
into terminal conditions. Hence, the problem of finding globally defined positive Einstein metrics
boils down to finding heteroclines that join two different critical points.

In §3 we compute linearizations of the critical points mentioned above and obtain two one-
parameter families of locally defined positive Einstein metrics. One family is defined on a tubular
neighborhood around HIP™, represented by a one-parameter family of integral curves 7s,. The
other family is defined on a neighborhood of a point in S*"*4, represented by another one-
parameter family of integral curves (s, .

In §4 we make a little modification to the quantity $C,,(h) in [B6h98] and assign it to both
vs; and (s, (hence denoted by §C(~vs,) and §C((s,)). We construct a compact set to obtain an
estimate for §C(vs,) of some local solutions. Then we apply Lemma 4.4 in [B6h98] and prove
Theorem 1.1.

In §5 we apply another coordinate change that allows us to obtain more information on
8C(vs, ) and §C((s,), which is encoded in the initial value problem (1.2) in Theorem 1.2. We also
prove Theorem 1.3.

Visual summaries of Theorem 1.1-1.3 are presented at the end of this paper.

2. Cohomogeneity-one system

Consider the group triple (K,H,G) in (1.1). The isotropy representation g/¢ consists of two
inequivalent irreducible summands p; = /€ and p2 = g/h. Let the standard sphere metric ggam-+s
on G/K = S$*m+3 be the background metric. As any G-invariant metric on G/K is determined by
its restriction to one tangent space g/€, the metric takes the form
fRgsimspy + f39gam+s]p,-

Let f; and fo be functions that are defined on the one-dimensional orbit space. We consider
Einstein equations for the cohomogeneity-one metric

g = dt? + fggim+s|p + f3g5im5]p,-
By [EWO00], the metric ¢ is an Einstein metric on (. — €, 1. 4+ €) x G/K if (f1, f2) is a solution to

A (hY (fl f2>f1 1 f—l—A
1 <f1> f1Jr4 fo f1+2f1+4 f3 ’
ﬁ_<ﬁ>2

fo fo

1
< 30 4 f2>f2 (4m +8)——6f—1—A,
with a conservation law

N fo) fa f2 f2
3(;1) +4m (ﬁ) —(d §1+d §z> +6ﬂ—|—4m(4m+8)f2 12m£ (n—1)A—((2).2)

To fix homothety, we set A = n in this paper. We leave A in the equations for readers to trace
the Einstein constant.

(2.1)
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Remark 2.1. If we replace the principal orbit G/K by S*™+3 = [Sp(m + 1)U (1)]/[Sp(m)AU(1)],
then the isotropy representation g/€ consists of three inequivalent irreducible summands. The
principal orbit can collapse either as HP™ or CP?"*+!, depending on the choice of intermediate
group. For such a principal orbit, the dynamical system of cohomogeneity-one Einstein metrics
involves three functions and has (2.1) as its subsystem. A numerical solution in [HYT03] indicates
the existence of a positive Einstein metric where G/K collapses to HP™ at one end and CP*™+!
at the other end.

We consider (2.1) and (2.2) with the following two initial conditions. By [EWO00], for the
metric g to extend smoothly to the singular orbit HP", we have

P_I%(flaf27flaf2):(07f71’0) (23)

for some f > 0. On the other hand, for g to extend smoothly to a point where G/K fully collapses,
one considers

}E%(flaf%fl)f?):(0707171)' (24)

By Myers’ theorem, any solution obtained from (2.1) that represents an Einstein metric on

HP™ HP ! must be defined on [0, T'] for some finite T > 0. Specifically, one looks for solutions
with the initial condition (2.3) and the terminal condition

}iirjl,(flyf%flafZ):(07.f7_170) (25)

for some f > 0. Similarly, to construct an Einstein metric on S**4, one looks for solutions with
the initial condition (2.4) and the terminal condition

}L%(fl7f27flaf2) = <0707_17_1>' (26)

Remark 2.2. In [Koi81], one takes a non-collapsed principal orbit G/K as the initial data.
Specifically, consider

(f1, fo, f1, f2) = (f1, fo, Pa, Bo)

for some positive f;. To construct a positive Einstein metric, one looks for a solution that extends
backward and forward smoothly to either HP™ or a point on S*™*4 in finite time.

Inspired by the coordinate change in [DW09] and a personal communication from Wei Yuan,
we introduce a coordinate change that transforms (2.1) into a polynomial ODE system. Let L
be the shape operator of principal orbit. Define

PR 7/ S 1/ SO 1) W N Vi S
Also, define

H:=3X; +4mXo, G :=3X?+4mX3,
Ry :=2Y? +4mZ? Ry:= (4m+8)YZ — 672
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Consider dn = /tr(L)? 4+ nAdt. Let ' denote taking the derivative with respect to n. Then (2.1)

becomes
_ ) ) -
X1H<G+ ~(1-H? - 1) + Ry — —(1— H?)
n n
! 1 1
? X2H(G+(1—H2)—1> YRy — ~(1— H?)
n n
Y2 = V(X17X27Y7 Z) = 1 (2.7)
7 Y<H<G+n(1—H2)> —Xl)
1
Z<H<G+ —(1- H2)> + X7 — 2X2>
n
The conservation law (2.2) becomes
1
Crs0: G+ —(1— H?) +6Y? +4m(4m +8)YZ —12mZ°* = 1. (2.8)
= n
Or equivalently,
12m 9 9 9 1
CA>0 : 7(X1 — XQ) +6Y“ + 4m(4m + 8>YZ —12mZc =1 — —. (29)
= n n

We can retrieve the original system by

t_/ﬂ e O e LS Y I 2.10)
. nh N Ty nh T vz nA '

It is clear that H? < 1 by the definition of H and the X;. However, such a piece of information
can be obtained from the new system alone without (2.1) and (2.2). Note that

H' = (VH,V)

1
= H? (G +-(1—H?) - 1) +6Y?% +4m(4m +8)YZ —12mZ* — (1 — H?)
n

:H2<G+711(1—H2)—1) +1—G—%(1—H2)—(1—H2) by (2.8)

1

= (H? - 1) (G +-(1- H2)> = (H? - 1)(1 2m - X2)2>. (2.11)

— + -
n n
Therefore, the algebraic surface in R* with boundary

E ::CAzoﬂ{Y,Z > O}Q{HQ < 1}

is invariant. Moreover, £ N {H = 1} are two invariant sets of lower dimension. The Zy-symmetry
on the sign of (X7, X2) gives a one-to-one correspondence between integral curves on € N {H = 1}
and those on EN{H = —1}.

Remark 2.3. The restricted system of (2.7) on €N {H = 1} is in fact (2.1) with A = 0 under the
coordinate change dn = (trL)dt. The dynamical system is essentially the same as the one that
appears in [Winl7]. An integral curve on the subsystem is known for representing a complete
Ricci-flat metric defined on the non-compact manifold HIP™ ™1\ {x} [B6h98]. The Ricci-flat metric
on HP™ '\ {x} is the limit cone for locally defined positive Einstein metrics on the tubular
neighborhood around HP"™.
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Remark 2.4. If an integral curve to (2.7) enters £ N {H < 1} and is defined on R, then from
(2.11) it must cross €N {H = 0} transversally. The crossing point corresponds to the turning
point in [Boh98]. For any integral curve to (2.7) that has a turning point, we choose the 7, in
(2.10) so that t, := fq? (1 — H?)/nA dij is the value at which trL vanishes. By our choice of 7,
the integral curve crosses £ N {H = 0} at n = 0. There are cohomogeneity-one Einstein systems
with additional geometric structure, such as the one considered in [FH17], where every trajectory
has a turning point.

Remark 2.5. From (2.9), the inequality 6Y2 +4m(4m +8)YZ —12mZ% <1 —1/n is always
valid. Therefore, the set EN{Z —pY <0} is compact for any fixed p € [0, (m(4dm + 8) +
/m2(4m + 8)2 + 18m)/6m). If the maximal interval of existence of an integral curve to (2.7)
is (—o0,7) for some 77 € R, it must escape £ N{Z — pY < 0}. The crossing point corresponds
to the W-intersection point in [B6h98|. In Proposition 3.3 and Definition 4.9, we introduce an
invariant set VW and a modified definition for the W-intersection point, which fixes p = 1 in the
original definition in [B6h98|.

3. Linearization at critical points

The local existence of positive Einstein metrics around the singular orbit HIP™ is well established
in [B6h98]. We interpret the result using the new coordinate. For m > 2, the vector field V' has
in total 10 critical points (12 critical points for m = 1) on €. As indicated by their superscripts,
these critical points lie on either EN{H =1} or EN{H = —1}.

- py = (£350,5,0)
These points represent the initial condition (2.3) and the terminal condition (2.5). Integral
curves that emanate from pg and enter £ N {H < 1} represent positive Einstein metrics defined
on a tubular neighborhood around HIP™. A complete Einstein metric on HIP’mHﬁWmH is
represented by a heterocline that joins pa—L.

- pit = (i(l/n)v +(1/n), 1/n7 1/”)
These points represent the initial condition (2.4) and the terminal condition (2.6). Integral
curves that emanate from pg and enter € N {H < 1} represent positive Einstein metrics defined
on a tubular neighborhood around a point on S*"*4. The standard sphere metric is represented
by a straight line that joins pic. It is also worth mentioning that the quaternionic Kahler

metric on HP™ ! (respectively, WH) is represented by an integral curve that joins pg and
p; (respectively, p, and p;).

~ py = (£(1/n), £(1/n), (2m + 3)z0, 20), 20 = (1/n)y/(2m +1)/(2m + (2m + 3)?)
These points represent the initial condition and the terminal condition where the principal
orbit collapses as Jensen’s sphere [Jen73]. There is only one integral curve that emanates from
p; and it represents the singular sine metric cone with its base as Jensen’s sphere [Jen73]. Tt
is also worth mentioning that pJ is a sink for the Ricci-flat subsystem of (2.7) restricted on
EN{H = 1}, representing the asymptotically conical limit.

— ¢f = (£((3+2V12m2 4 6m)/3n), +((4m — 23/12m2 + 6m) /4mn),0,0),
¢ = (£((3 = 2v/12m2 + 6m) /3n), £((4m + 2v/12m? 4 6m)/4mn), 0, 0)
These critical points are in general ‘bad’ points for our study. Integral curves that converge
to q; or gy represent metrics with blown-up fl and fz. Straightforward computations show
that for m > 2, critical points ¢ and g5 are sources for (2.7) on (2.8). By the Zy symmetry,
critical points ¢; and ¢, are sinks for m > 2.

~ g5 = (F1,£(2/4m), 0,3 =2m/6m)
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These critical points are also ‘bad’ points as qli and q2i. They only exist for m = 1. Integral
curves that converge to g; represent metrics with blown-up fi. For m = 1, critical points qf
and qgr are sources and ¢, and g5 are sinks; q; and ¢, are saddles.

PRrorosITION 3.1. The list above exhausts all critical points on £.

Proof. By (2.11), it is clear that critical points on & must lie on {H? = 1}. The list is complete
by considering the vanishing of the Y-entry and Z-entry. ([l

For any m, linearizations at qii show that the phase space £ is ‘filled” with integral curves
that emanate from ql-+ or those that converge to ¢, . Hence, most integral curves that emanate
from pg or pf are anticipated to converge to one of these ¢; . In the following, we give a detailed
analysis of the linearizations at par and pi“ and integral curves that emanate from these critical
points.

The linearization at pg is

[ 8m—6  32m* —24m 4 0 ]
3n In 3
6 16m — 6 0 4m + 8
n 3n 3
8 16m? — 12
8m m? —12m
3n In
2
0 0 0 =
L 3
Eigenvalues and eigenvectors are
2 2 8m
AM=X==, Ag=—-, M=—;
1 2 37 3 37 4 3n )
—(8m? + 18m + 18) —4m(m + 2) —4m —2(4m — 3)
- -9 v — 3(m+2) e — 3 oy — 18
70 —@m2+18m) |7 2 |—2mm+2)|0 P | 2m |0 YT | 4m-3
9 3 0 0

The first three eigenvectors are tangent to £. Consider linearized solutions of the form
p(T + 6(2/3)17121 + 816(2/3)7]’(}2 (31)

for some s; € R. By the Hartman—Grobman theorem, there is a one-to-one correspondence
between each choice of s; € R and an actual solution curve that emanates from pg and leaves
EN{H =1} initially. Hence, we use ~,, to denote an actual solution that approaches the lin-
earized solution (3.1) near pj. Moreover, by the unstable version of Theorem 4.5 in Chapter 13
of [CL55], there is some € > 0 such that

Vo1 = D3+ @3y, + 51/ BMyy 4 O/,

From the linearization at p('{ and (2.10), the parameter s is related to the initial condition f in

(2.3) as follows.
1 1-H? 6m+18 1
= li —— | (75) = ——— . 2
! n—lgloo(\/yz nA >(71) \/ n o 345 (32)

We set s; > —3 so that f is positive. From another perspective, in order to have 75, be in
&, we only consider v, with s; > —3 so that Z is positive initially along the integral curve.
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Note that vy is tangent to € N {H = 1}. Therefore, it makes sense to let v, denote the integral
curve that lies in £ N {H = 1} such that
Yoo ~ P+ 0- @By 4 1.2y, (3.3)
near pj. The integral curve s represents the Ricci-flat metric on HP™" !\ {*} constructed in
[B6h98]. For m = 1, the metric is the Spin(7) metric in [BS89] and [GPP90]. Furthermore, as

shown in Proposition 6.3 in [Chi21], the integral curve v lies on the one-dimensional invariant
set

Bspinry == EN{Y =27 — X3 =0} N{3Z — Xy = 0} (3.4)
and joins p('f and p;.

Remark 3.2. The defining equations in (3.4) are equivalent to the cohomogeneity-one Spin(7)
condition on HIP?\{x}. Specifically, we have the dynamical system

h_1 ,h

fl fﬁ fé (3‘5)
h_h

f2 /3

Similar to the initial value problem in Remark 3.6, the initial condition can be obtained from
the coordinate of pi and the limit lim, . —oo(X2/vVY Z)(ys(n)). Since a Ricci-flat metric is
homothety invariant, the extra freedom allows us to set f2(0) as any positive number. Solving
the initial value problem with

(£1(0), 1(0), £2(0), 2(0))) = (0,1,8,0), 3 >0,
yields the homothetic family of Spin(7) metrics in [BS89] and [GPP90].

The linearization at p]L is

[ 16m2+8m —6 16m(m+1) 4 8m
n? n? n n
12m + 12 4m 46 dm+8 4dm—4
n? n? n n
4 4
_dm o 0
n n
4 4
m;—6 _ m;—6 0 0
L n n i
Eigenvalues and eigenvectors are
2 4(m+1
pp=p2=—, p3=0, M4——( );
n n
-1 —4m —(n—1) —8m(m + 1)
v — -1 o — 3 e — —(n—1) i — 6(m+1)
1= 0 ) 2 = om 3 3 — 1 ) 4 = —om
0 —(2m +3) 1 2m + 3

The first three eigenvectors are tangent to £. Hence, there exists a one-parameter family of
integral curves (;, that emanate from pf and

Goa = 11+ ey 1 85y 4 O(c2/H). 36
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The initial condition (2.4) has a degree of freedom in the second-order derivative. Specifically, the
parameter s is related to the limit lim;_,o(f2/f2)(f1/f1). From (2.1), (2.10) and the linearization
at pf, we have

o fu . X3-HXy+ Ry~ =1 n 9
lim == = lim = = - .
t=0 fo fy  m—o—0 X7 — HXy + Ry — =K1 dm(1 + 6msy) 12m

n
Although it is clear that (s, is in £ for any sy € R, we mainly consider sy > 0 in this paper. We
have the following proposition for (s, with so < 0.

(3.7)

PROPOSITION 3.3. Each (5, with so < 0 either does not converge to any critical point in £ or
converges to g5 (g or qz ifm=1).

Proof. From the linearized solution, it is clear that each (,, with s < 0 is initially in
W:=EN{Z-Y >0} n{X; — X2 > 0}. (3.8)

As W includes all points (1/(n — 1)/12m cosh(A),0,0,/(n — 1)/12nmsinh(\)) with A > 0, the
set is non-compact. Furthermore, since

<v<§> : v> = —2%(}(1 —X3) <0 (3.9)

and
(V(X1 — X9), V) = (X1 — XQ)H(G + %(1 — H2) - 1) +2(Z-Y)(2m+3)Z-Y), (3.10)

the set WV is invariant. Note that the second term in (3.10) is non-negative in W N {X; — X3 = 0}.

By (3.9), it is clear that the function Y/Z monotonically decreases from 1 along each (s,
with s9 < 0. If the function Y/Z converges to some positive number, the function X; — Xy
would converge to zero. From (2.9), we know that both Y and Z converge to some positive
numbers with Y/Z < 1. Hence, the right-hand side of (3.10) is eventually positive as X; — X»
converges to zero, a contradiction. Hence, the function Y/Z converges to zero. Therefore, if a (,
with so < 0 converges to a critical point in £, it must be ¢; (g5 or g5 if m =1). ]

Remark 3.4. For so = 0, it is clear that (p lies on the one-dimensional invariant set

1
50{X1 :XQ}Q{Y:Z:} (311)
n
and joins p{c. The integral curve represents the standard sphere metric ggam+s on S+,

Specifically, the defining equations in (3.11) give the initial value problem
f 1 f 2 2 F\2
T + = 17
AR T (3.12)
f1(0) = f2(0) =0, f1(0) = f2(0) =1,
in the original coordinates. The solution is exactly the standard sphere metric
gsdm+a = dt* + sin® (t)ggim+3.

We define (, to be the integral curve that emanates from pf and lies in Cao>o N {H = 1}.
We have

Coo ~ Py 4 ey, (3.13)

As studied in [Chi21], the integral curve (s is known to be defined on R; it joins p{ and p3 and
represents a complete non-trivial Ricci-flat metric defined on R4 +4,
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As shown in the following proposition, there exists an integral curve that joins pg and py,
and it represents the standard quaternionic Kihler metric on HP™ ', By the Zy-symmetry of

(2.7) on the sign of (Xi,X2), we know that there also exists an integral curve that emanates

— . .. .. . = 1
from pT and tends to p, , and it represents the standard quaternionic Kéhler metric on P

ProrosiTION 3.5. The integral curve 7y lies on the one-dimensional invariant set
Boxk =&EN{X1 —Xo+Z-Y =0} n{Xo+ Z =0}.
The integral curve Cy/(2m+6) lies on the one-dimensional invariant set
Bok =EN{Xo—X1+Z-Y =0}N{X2—Z =0}
Proof. As X; — Xo =Y — Z and Xy = —Z on Bgg, we can eliminate X; and X5 in (2.9). Hence,

12 1
Y — Z) 4 6Y2 4 dm(dm + 8)Y Z — 12mZ% =1 — — (3.14)
n n

holds on Bk . Therefore,

<V(X2 + Z)v V)’BQK
1

n

= (Xo+ Z)H(G + %(1 - H2)> (1—H?) — XoH + (4m +8)YZ —62% + Z(X; — 2X3)

1
=——(1—H? —XoH +@m+8)YZ —62%+ Z(X; — 2X3)
n

1 12m n—1
n—1

= <(Z —Y)2 4+ 6Y? +4m(4m +8)YZ — 12mZ* —
n
eliminating X7 and X3 by the definition of Bgx
=0 by (3.14). (3.15)
On the other hand, we have

(V(X1 = X2+ Z - Y),V)|Box
= (X, —X2+Z—Y)<H<G+:L(1—H2) — 1) +4Z—2Y> +(n-1)( X2+ 2)(Z-Y)

= 0. (3.16)

Therefore, the set Bgx is indeed invariant.

Since X1 =Y — 27 and Xy = —Z on Bk, one can realize Bgi as a hyperbola (3.14). Note
that po+ and p; are the only critical points in Bgx and they are in the same connected component
in (3.14). Therefore, there is an integral curve that joins pg and p; and lies on Bgg. Hence, the
integral curve must be some . Let v(n) be the normalized velocity of the linearized solution
that uniquely corresponds to 7g. It is clear that lim, ._. v(n) = vi/||v1] is tangent to Box
at pg . Hence, we know that o lies on Bgk. By the Zy-symmetry on the sign of (X7, X2), we
know that (i /(2m46) lies on the invariant set

Bok :=CasoN{Xo— X1+ Z-Y =0}N{Xy—Z =0}

and joins pf and p;, . O
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Remark 3.6. The defining equations for By are equivalent to the dynamical system

! 2 (3.17)
L__h
f2 f3

While f1(0) = 0 and £1(0) = 1 can be obtained from the coordinate of pg, the initial conditions
f2(0) and f2(0) are obtained from v;. Specifically, from (3.1) we have

R0 = tim (L2 o) = o) = i (22 )t =0,

Solving the initial value problem, the standard quaternionic Kéhler metric on HP™'! is

m-+3 . / n 4(m + 3 / n
g = dt2 + T Sln2 <2 4(/’,’/L_'_3)t> gsam+3 |p1 + g COS2 < Wt) gsam+3 |p2.

n
Finally, we consider the linearization at pj. We have

[ 16m*>+8m—6 16 1 T
=2 +2 m m(n; +1 (8m +12)z 8mzg
n n
12m + 12 4m + 6
— 3 4m+2)zp  4(2m+1)(m +3)zp
Am2m +3)zo  4m(2m + 3)zo 0 0
n n
(4m 4 6)zo (4m + 6)z 0 0
L n n

Eigenvalues and eigenvectors are

2m+ 1 —+/(2m + 1)2 — 8(2m + 3)(m + 1)n2zZ

0 = -
2m + 1+ +/(2m + 1)2 — 8(2m + 3)(m + 1)n2zZ
52 = - n 5
2
03 = —, 04 =0;
n
r 2mn 7 r 2mn 7
) 1)
2m +3"" 2m +3
3n 5 3n 5
ur= | 22m+3) |, u2=| 22m+3) |,
—2mmnz —2mnz
L nzo | L nzo J
) —2n((2m + 3)2 + 2m)zo
1 —2n((2m + 3)2 + 2m) 2o
u?) - Y U4 -
0 2m + 3
0
i 1

The first three eigenvectors are tangent to £. Furthermore, the first two eigenvectors are tangent
toEN{H =1} and 5 < §; < 0. For m > 1, the critical point p; is a stable node for the restricted
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system on EN{H = 1}. Let ® be the only integral curve that emanates from p;. It converges
to p, and lies on the one-dimensional invariant set

EN{X: =X} N{Y = (2m+3)Z = (2m + 3)z0}. (3.18)

Remark 3.7. The initial value problem from the defining equations (3.18) is similar to the one
from (3.11). Specifically, we have

1 (2m + 1)(2m + 3)?

f12 - 2m+3f22’ 2m + (2m + 3)2 (f12+(f1)2) =1, o
¢ . 2 .

Hence, ® represents the sine cone over Jensen’s sphere

2m + (2m + 3)?
(2m +1)(2m + 3)

=dt* + sin2(t) JJensen -

2m + (2m + 3)?
(2m + 1)(2m + 3)

g=dt* + 5 sin? () ggam+3|p, + sin? () ggam+3|p,

4. Existence of the first Einstein metric

We prove the existence of a heterocline that joins p§ in this section. The technique is to construct
a compact set & such that a 7, that enters the set can only escape through points in £N
{H >0} N{X; — X2 =0}. Then we apply Lemma 4.4 in [B6h98] to complete the proof.

We define the compact set S as follows. Define polynomials

A=YXy— gz(xl + 2mX2>,
m

3
2 2 _
B .- 1—H* 2n°(2m+3)(m 1)YZ,
n m(2m + 1)(8m + 3)

P:=X (32 - %(1 - H2)> ~ X (}21 - %(1 - H2)) —2X, (X1 + 2;”X2> (X — Xy), (41)

1— H?

Q = —4XoY? — (4m + 8)(4mXo + 2X1)Y Z 4 (2X1 + (4m + 2)X>)
2 2
+4X, <X1 + ?T)nX2> <H + ;nX2>-
Define
S:=EN{X1 - Xo>0N{Xy>0}N{A>0}N{B>0}N{P >0}

The following proposition lists some basic properties of S.
PROPOSITION 4.1. The set S has the following properties.

(i) For m > 1, the set SN {Xs =0} is a union of {p{} and a one-dimensional curve T :=
SN{X; = Xy =0}. For m > 2, the set I" is bounded.
(ii) The variable Y is positive in S for m > 1.

(iii) For m > 1, the set SN{Z = 0} is {p§,(0,0,+/(n —1)/6n,0)}.

(iv) The set S is compact for m > 2.
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Proof. Since A > 0in S, a point in § with vanishing Xs-coordinate must have ZX; = 0. If we
further assume Z = 0 at that point, then from P > 0 we have X;(1 — H?) = X;(1 — 9X?) <0.
Hence, we obtain X; = % and that point must be par. We obtain I' if X; = 0 is further assumed.

It is obvious that I' = £ N {X; = X9 = 0} for m =1 and the set is non-compact. We prove
that I' is bounded for m > 2. From B > 0 and (2.9), we have

n—1 2n?(2m + 3)(m — 1)
2= ) e T D Em 1 3)
2n%(2m + 3)(m — 1)
m(2m +1)(8m + 3)

For m > 2, the inequality above implies mY — Z > 0. Then from (2.9) we have (n —1)/n >
6Y2 + (4m + 32)Z2. The first claim is clear.

Suppose there is a point in & with vanishing Y-coordinate. From A >0 we know that
—(3/m)Z (X1 + (2m/3)X2) = 0 at that point. If Z # 0, then X; = X9 =Y =0 at that point,
which is impossible from (2.9). If X; + (2m/3)X2 # 0, then Y = Z =0 at that point. Then
from (2.9), we have X; — X3 #0. From P >0 we know that —(1/n)(1 — H?) — 2X2(X; +
(2m/3)X,) > 0 at that point. The point has to be (3,0,0,0), which does not lie on &. The
above discussion proves the second claim.

Since P > 0 on a point with vanishing Z-coordinate in S, we have

6Y? +4m(4m +8)YZ — 12mZ? = YZ

& 6Y2 + <4m(4m +8)—(n—1) )YZ —12mZ* > 0. (4.2)

1 2m
(X5 — Xl)ﬁ(l — H?) —2X,Y?% - 2X, <X1 + 3X2> (X; — X5) > 0.

By the definition of S, each term in the above inequality is non-positive. Since Y > 0 from the
second claim, the variable X5 must vanish and the third claim is clear.

Finally, from A > 0 and X; — X3 > 0in S, we know that Xo(Y — ((2m +3)/m)Z) > 0in S.
If X9 # 0, then mY > (2m + 3)Z and the boundedness of all variables is obtained from (2.9). If
X5 =0, then the boundedness comes from the first claim. Hence, S is a compact set. ]

The case m =1 is very special. In the following proposition, we show that for m =1, the
defining inequalities A > 0 and P > 0 must be equalities. The set S is closely related to the
integral curves 7, in Remark 3.2 and ® in Remark 3.7.

PROPOSITION 4.2. For m = 1, the set S is the union
{pg,P3 } Uvee UT U (@ N{X1, X2 > 0}).

Proof. Consider § with m = 1. If Xy = 0 is imposed, we obtain either the point par or I' from
Proposition 4.1(a). Hence, we assume X2 > 0 in the following. From A > 0 it is clear that Xs(Y —
57) > Y Xy —3Z(X1+ %X3) >0 and hence Y — 52 > 0.

One can easily verify that

P=(X1—X5)(6YZ —2Xo(X1 + 2X5)) — (X1 — Xo)(1 — H?) - 2(Y — 2)A. (4.3)

If X1 = Xy =X > 0, the first two terms in (4.3) vanish while the last term is non-positive. Then
we must have A = 0, from which we deduce Y —5Z = 0. By (3.18) we obtain the line segment
o N {X;,Xs >0}

For X1 # Xo, we rewrite (4.3) as follows:

P=(X1—X2)(6YZ —2Xo (X1 + 2X,) — 20 (1 — H?)) — 2-(X1 — Xo)(1 — H?) —2(Y — 2125
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The last two terms in (4.4) are non-positive. Hence, from P > 0 we have

0<6YZ—2Xy(X1+2X0) — (1 — H?)

=6YZ —2Xo(X1 + 2X,y) — 20 (Z(6Y2 +48Y Z — 122 + (X, — X,)?) — H?)
by (2.9)
= - (5X1 +4Xo +5Y +22) (X1 — Xo — Y +52)
+ 5 (5X1 +4Xs — 5Y —2Z)(X1 — Xo + Y — 52). (4.5)
Suppose X7 — Xo — Y 4+ 57 < 0; then the first term in the last line of (4.5) is non-positive. As
the summation above is non-negative, we know that the second term in the last line of (4.5)

must be non-negative. As X1 — Xo +Y — 52 > 0, we must have %(5X1 +4X9 —2Z) > Y. From
A > 0 we have
Xo

2

Then we claim that the first term in (4.3) is non-positive since
6YZ —2X5 (X1 + 2X2) < 8(5X1 +4X, —22)Z — 2X5(X1 + 2Xa)
< 2(5X1+4Xy — 2X2) Xy — 2Xo (X1 + 2X>)
=0. (4.6)
But P > 0. Hence, assumptions X; # Xs and X1 — Xo — Y + 52 < 0 lead to the vanishing of A

and P.
Suppose X1 — Xo — Y +5Z > 0. Then A > 0 implies

(X1 — X2+ 52)Xy > 3Z(X1 + 3X3) & X2 > 3Z.
Then we claim that the first term in (4.3) is also non-positive since
6YZ — 2Xo(X1 + 2X5) < 6(X1 — X2 +52)Z — 2Xa(X1 + 2X»)
<2(X1 — Xo+ 2X2) Xo — 2Xo (X1 + 3X3)

=0. (4.7)
Hence, the assumption X; # X and X1 — Xo — Y + 57 > 0 also leads to the vanishing of A
and P.
Therefore, points in & with X; # X5 must have vanished A and P, which leads to the
equalities

H=1, 37Z=X, 3Y=3X+2Xo.

Note that the last two equations above are equivalent to the defining equations in (3.4) for m = 1.
We obtain v, and critical points pf{ and p;. O

Remark 4.3. For m = 1, there is another heterocline x that also lies on the invariant set Bgpiy(7)-
The integral curve joins qgr and pé“. Note that from the proof to Proposition 4.2, it is clear that
X1 — Xy and Y — 57 are positive along v~. These two polynomials are negative along y and
hence the integral curve is not in S.

With Proposition 4.2 established, we can take m = 1 as our ‘initial case’ for further analysis
of cases with m > 1. In particular, we prove the following technical proposition.
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PROPOSITION 4.4. For m > 1, the inequality Q > 0 holds on the set SN {P = 0}. For m =1,
the inequality reaches equality only at {par,p;} U~Yso UI'. For m > 2, the inequality reaches
equality only at par, a point on ®, and points in T".

Proof. We consider S N {P = 0} as a union of slices
Sn{P=0}= |J Ln, Le:=8n{P=0}n{X;—rX; =0}
k€[0,1]

Note that each L, contains I'. As X7 > X5 > 0in S, the function () vanishes once X; does. We
assume X1 > 0 in the following discussion.
For Ly, we have

1— H?

Q‘EO = —2(4m + 8)X1YZ =+ 2X1 ”

From A >0 we have Z =0. Then Q|z, = 2X;((1 — H?)/n), and P =0 becomes —Xi((1 —
H?)/n) = 0. Hence, Lo =T U {p{} and Q|,, = 0.
Ifk=1let X:= Xy =X5>0. Then A > 0 and P = 0 respectively become

2 3
X(Y— mT Z) >0, X(Y - (2m+3)Z)(Y —Z)=0.
m
For X >0 we must have Y = (2m + 3)Z. Then from (2.9) we find that ¥ = (2m+3)Z =
(2m + 3)zp. Hence, £; is a union of I' and a part of the invariant set (3.18). More specifically,
from B > 0 we have

1 2n?(2m + 3)(m — 1) 1 2n%(2m + 3)*(m — 1)
S X2 YZ == _—nX2_ 2> 4.
n " m(2m + 1)(8m + 3) n " m(2m +1)(8m + 3) %20 (48)
and it follows that
1 [ 36m3+90m? +11Tm+54 1
Li=TU(®N{0<X <~ < 4.9
! ( { SAs n\/m(8m+3)(4m2+14m+9) - n}) (49)

for m > 2. For m = 1, we have

1
a=rusnfo<xsopn a0
And Q|z, becomes

Qlc,

- X(— 4Y2 — (4m + 8)(dm + 2)Y Z + (n + 1)<111 _nX2> +4<1 + 2;”) <n+ 2;”>X2>

1 4
— X(— 4(2m + 3)222 — (4m + 8)(dm + 2)(2m + 3)22 + LA g (8m + 3)X2>
4 1 36m> 4+ 90m? + 117m + 54 )
= —m@Bm+3)X (= - X
g/(8m+3) <n2m(8m+3)(4m2+14m+9) )
> 0. (4.11)

Hence, for m > 1, the function Q|z, > 0 and it only vanishes on I" and boundary points of £; N ®.
Note that for m = 1, one of the boundary points of £; N ® is p;.

1018

https://doi.org/10.1112/S0010437X24007073 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007073

POSITIVE EINSTEIN METRICS WITH S*™3 AS THE PRINCIPAL ORBIT

For each £, with x € (0,1), replace X2 with X;x. Then (2.9) and P = 0 respectively become

— (1 - K)’X] =6Y?* +4m(4m + 8)Y Z — 12mZ?,
n n
k—1 k- 1

n 3n
=2xY?% — (4m + 8)Y Z + (4mk + 6) 2>

(32k%m? — 1262m + 48msk — 18k + 27) X} (4.12)

With the equations above, we can write the constant 1 as a homogeneous polynomial
One(Y,Z) of degree 2. Multiplying the constant term in B by One(Y,Z), the function B
restricted to each £, N {P = 0} then becomes a homogeneous polynomial in Y and Z. Factor
out X; in @ and multiply the constant term in Q/X; by One(Y,Z). We see that @ restricted
on each £, N {P = 0} is a homogeneous polynomial in X, ¥ and Z. In summary, we have

3 2m
A’EHQ{P:O} =X (Y/i - mZ<1 + 353));

Blg.nip=o} = b2Z> + 1Y Z + byY?,
Qle.nip=0y = X1(2Z2° + 1Y Z + qoY?).

The coefficients b; and ¢; in (4.13) are rational functions in m and k. Explicit formulas for each
coefficient are presented in the Appendix for the sake of simplicity. @s Y is positive in § from
Proposition 4.1, we factor out Y and consider Alz, ~ip—oy = X1Y Amx(Z/Y), Blz,.n{p=0y =
Y2Bmx(Z/Y) and Q| nip=oy = X1Y?Qmx(Z/Y), where

(4.13)

- 3 - -
Apw(x) =K — <m + 2/{)95, B, k(x) = box? + by + by, Qm.x(z) = @z’ + qx + qo.
(4.14)
We have

_ 4(2sm + 3)(326°m® + K2m*(96 — 68k) + kM (90 — 84k) 4 27(1 — k) <0 (4.15)
2= 3(1 — k)(2k2m(8m — 5) + 6k(4m — 1) + 9) o '

for any (m,r) € [1,00) x (0,1). Therefore, the restricted function Q|z, ~{p=o} is non-negative
if it is so on the boundary of £, N{P = 0}. The upper bound and the lower bound of Z/Y
on each slice are respectively provided by Alz ~¢p—oy >0 and B|;, ~p—oy = 0. Specifically,
from Alz, ~rp—oy = 0 we have Z/Y < mx/(3 +2mk). As shown in (A.1), we have by < 0. By
Proposition A.1 in the Appendix, the smaller real root o(m,r) of Bmﬁ is in the interval
(0,mr/(3 + 2mk)). Hence, from B|z, ~p—oy > 0 we have Z/Y > o(m, ). By the arbitrariness
of k, it is clear that the minimizing point of @ on SN {P =0} liesson SN{P =0} N {4 =0} or
SNn{P=0}n{B =0}

We have
= X.V2 ~mﬁ _mKr
Qlz.nfa=0} 1Y*Qm, <3 n 2mn)
_ X2 4(m + 3)(m — 1)(4r3m?(8m — 1) + 4x2m(8m — 3) + 18xm + 9(1 — k))x>
- 3(26m + 3)(1 — k) (262m(8m — 5) + 6k(4m — 1) + 9)
> 0. (4.16)

Therefore, for m > 2, the function @ is positive on £, N{A = 0} for any « € (0,1). For m =1,
the function ) vanishes at SN{P =0} N {A = 0}.
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Proving the non-negativity of Q|., ~{p=0yn{p=0} is a bit more computationally involved.
From Proposition 4.2, we know that for m = 1, the polynomials A, B and P identically vanish
at Yoo. Therefore, an explicit formula for the root o(1, k) can be obtained from A = 0. We have
VA . X2 N K
Y 3(X1+2Xy) 26+3
Define the function F(m, ) := Qum.x(0(m, x)). To show that Qlz,n{P=0yn{B=0} = 0, it suffices
to show that F(m,x) >0 for any (m,x) € [1,00) x (0,1). Note that the vanishing of F(m, )
means o(m, k) being also a root of @, . From the computation (4.16) we have

F(LR) = Qualo1,0) = Que( 5151 ) =0

o(l,k) =

for any x € (0,1). Furthermore, by implicit derivative, we have
do G252 4 Bb1 g 4 Gho (926 + 12023 4 1458k2 — 367k — 537)k
— | (Lk)=| — (1,k) = — ,
om 2b20 + b1 66(3 + 4k)(k + 1)(3 + 2k)?

and it follows that

oF - 8QQ 2 8q1 8q0 do do
<am>(1,/<c) = <8ma g ot g 2005 - taig (1K)

om om om
_ 4(k — 1)(184K* — 244k — 339) k>
993 +4k)(k +1)(26 + 3)

Hence, F' > 0 on a neighborhood around {(1,x) | x € (0,1)} C [1,00) x (0,1). In other words,
for an m that is slightly larger than 1, the root o(m, ) of Bmﬁ is strictly between the two real
roots of Q... Hence, proving F >0 on [1,00) x (0,1) is equivalent to showing that o(m, )
stays between the two real roots of Qmﬁ for varying (m, k). This idea leads us to consider the
resultant r(@m,m Bm,H) for the two polynomials. We have

_ - B 64r%(m — 1)(26m + 3) .
’I“(Qm,m Bm,ﬁ) - (8m + 3)2(2m 4 1)2m2(1 — H)(2/§;2m(8m — 5) + 6%(4777, - 1) + 9)2T

F = 262144k 'm0 + (516096K* + 679936x%)m®

+ (373760k* + 1233920k + 675840k%)m®
—275904k* 4 1151040%> + 11437442 + 308160k)m”
—926496k1 + 248832K° + 14325122 + 507456k + 54432)mS
—800496K1 — 1256256k> + 14726882 + 857520k + 92016)m°
—281880k" — 1525392k3 + 266328k + 1353024+ + 199584)m*
—33048k" — 644436K3 — 6726242 + 957420k + 375192)m>
—90396K> — 4330262 + 1866245 + 333882)m?
+ (—74358K% — 59049k + 133407)m + 19683(1 — k). (4.17)

> 0.

+

(
+(
+(
+(
+(
+(

As verified in Proposition A.2 in the Appendix, the inequality T(me,{,émﬁ) <0 is valid for
any (m, k) € [1,00) x (0,1). Furthermore, the function 7(Qu.x, Bm,) vanishes if and only if

= 1. In particular, both Q1 . and By, have o(1,x) = x/(2k + 3) as their roots. For m > 1,
the polynomials Qm x and By, , do not share any common root. Hence, F' >0 on [1,00) X
(0,1) and the function F' vanishes if and only if m = 1. Therefore, for m > 2, the inequality
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Qlz,.n{P=0yn{B=0} = 0 is valid and the equality occurs only at pg and a point ® N {B = 0}. The
proof is complete. 0

With the help of the proceeding proposition, we are ready to prove the following lemma.

LEMMA 4.5. For m > 2, integral curves 7,, that are in the interior of S can only escape through
some point in EN{H > 0} N{X; — X3 = 0}.

Proof. The boundary 08 is a union of the following five sets:

SN{X; —X2=0}, SN{Xy=0}, SN{A=0}, Sn{B=0}, SNn{P =0}
By Proposition 4.1, if a v, escapes § through some point with vanished Xs-coordinate, the point
must liein SN {A =0} N {P = 0}. Hence, we aim to show that V' points inward when restricted

to the last three parts of 9S.
A straightforward computation shows that

<VAa V>|A:O

= A(2H <G - %(1 - H2)> —2X; — (4m + 2)X2>

A 2m 2m\ 1 Y
Ri+—Ry—[1+4=—)=(1-H? P
TxT (2m/3)X2( I < 3 )n( )> "X empB)%
Y
Xt (2m/3)X2 since 0
> 0. (4.18)

It is confirmed that V'|4—¢ points to the interior of S.
Since

(VB,V)|p=o
= —2%(112 —1) (G + %(1 - H2)>

_ 2°(2m + 3)(m - 1§YZ <2H(G + %(1 - H2)) - 2X2>

m(16m? + 14m + 3

by (2.11)
1 4n%(2m + 3)(m — 1)
=9BH|( G+ =(1 — H? YZX
< +n( )> +m(16m2+14m+3) 2

4n2(2 -1
_ 4n7(2m + 3)(m )YZXQ since B = 0

m(16m? + 14m + 3)
>0, (4.19)

it is clear that V|p— points to the interior of S.
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Since
(VP, V)| p=o
= P(H(SG + %(1 — H? — 1) + ?Xz) + (X1 — X2)Q
= (X7 — X2)Q since P =0
>0 by Proposition 4.4, (4.20)

we learn that V|p—q also points to the interior of S.

Finally, we need to exclude the possibility of non-transversal passing of a 7,, through some
point with X7 # Xs. By (4.19) and Proposition 4.1, such a point does not exist on S N {B = 0}.
Suppose there were such a point on SN{P =0}; then P =@ =0 at that point by (4.20).
Then by Proposition 4.4, we know that such a point is either pg or a point on ®, which is
impossible. Suppose the non-transversal passing point exists on S N {A = 0}; then by (4.18) and
Proposition 4.1, we must have A = P = 0 at that point, which is also impossible. U

To show that some ~g, is initially in the set S we need the following technical proposition.

PROPOSITION 4.6. Define A :=Y Xy — ((m +2)/m)Z(X1 + (2m/3)X3). For m > 2, the func-
tion @) is positive on the set

S=EN{X; - Xo>0N{X2>0}n{A>0}n{A<0}n{P <0}
Proof. We consider S as a union of slices
S = U L., L :zSﬂ{Xg—/in = 0}.
k€(0,1)
For each £, with x € (0,1), replace X3 with xX;. Then from (2.9) and P < 0 we have
12m

(1) X3

1 _
0> ( . " (32k2m? — 126%m + 48mk — 18k + 27) —

n n(n —

6(1 — 1- 1-
(2 =N 2 sy (1 - am Yy s " 1om — (4mk + 6) | 22
n—]_ -1 n—l
_ (1 — k)(16x%*m? — 10x*m + 24xm — 6k + 9)X2
6m + 3 !
6(1 — 1 1-
_ 25+M Y24 (dm+8)(1—am— " )yz + " 19m — (4mw +6) ) 22

(4.21)

The coefficient for X? in (4.21) is obviously positive for any (m,x) € [2,00) x (0,1). On the
other hand, use (2.9) to replace the constant term in () with homogeneous polynomials in X7, Y
and Z. The polynomial @) restricted on £, becomes

—6413m? 4 (40K — 96)K>m? + (36K2 + 60K — 108)km + 54(k — 1)

3
Qle, = 18m +9 Xi
6 8m + 16 12m
X, ( (2 y2i-o——"vz—-(12 Z?). 4.22
+ 1<<”+2m+1> om + 1 <ml€+2m—|—1> > (4.22)

It is obvious that the coefficient for X3 in (4.22) is negative for any (m, k) € [2,00) x (0, 1). Note
that if (4.21) reaches equality, then one can write X? as a homogeneous polynomial in Y and Z.
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Moreover, substituting the X2 by the homogeneous polynomial in (4.22) gives the formula for
X1Y2Q(Z/Y) as in (4.14). Therefore, from (4.21) we obtain

Qlz > X1Y°Q <}Z,>

Note that Q(Z/Y) above is defined on S instead of SN {P =0}. On the other hand, the
inequalities A > 0 and A < 0 become

3mk < Z o MK
3(m+2)+2m(m+2)k Y ~ 3+2mk’

As shown in (4.15), it is clear that the coefficient ¢y is negative. It suffices to show that Q is
positive at mr/(3 4+ 2mk) and 3mk/(3(m + 2) + 2m(m + 2)k) to prove that the polynomial is
positive on the open interval in between. From (4.16) it is clear that Q(mk/(3 + 2mk)) > 0. For
any (m, k) € [2,00) x (0,1), a straightforward computation shows that

~ 3Imk
Q(3(m +2) +2m(m + 2)%)
512(m — 1)k?
3(1 = k)(26m + 3)(2k2m(8m — 5) + 6k(4m — 1) + 9)(m + 2)2

11 19 3
X <(m3 + §m2 — Zm — 8>m2/13

+3 3 O 243 3 2, 9 5 99 2+27 27 n 27 2+27
—{m’>—-m m— — |mk -m°— —m"+ —m— — |k —m 4 —
2 8 4 8 64 16 32 64 32

> 0. (4.23)

The proof is complete. ]
We are ready to prove the following lemma.

LEMMA 4.7. For m > 2, the integral curve -, Iis initially in the interior of § if s €
(3/(m —1),9(5m + 3)(4m? + 4m + 3) /n?(2m + 3)(m — 1)).

Proof. With the linearized solution (3.1), we have
1
X1(7sy) = 3 (8m? + 18m + 18 + (4m + 8)mis1 )e?/3 4 O(e2/3+m),
Xo(7s,) = (=94 3s1(m + 2))e*/27 4 O(eB/3Hm), (4.1)

A(’ysl) = M((m — 1)81 — 3)6(2/3)77 + 0(6(2/3+e)n)7
m

~2n2(2m + 3)(m — 1) (9(5m + 3)(4m? + 4m + 3)
BOs) = em T Dem+3) ( n2(2m + 3)(m — 1)

P(,) = O(c/+1),
Q) = O/, (120

_ Sl) eI | O(e2/3+m)

near p. Hence, functions X2, A and B are positive along vs, near p if s; € (3/(m — 1),
9(5m + 3)(4m? + 4m + 3)/n?(2m + 3)(m — 1)). Furthermore, the last two equalities in (4.24)
show that VP and V@ are perpendicular to the linearized solution (3.1) at pg. Hence, the inte-
gral curve 7, is tangent to {P =0} and {Q = 0} for any s;. It takes a little bit more work
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to show that the function P is initially positive along 7, . Recall in (4.20), we have
/ 3 9 4dm
P'=P(H(3G+ (11— H) ~ 1)+ "X )| + (X1 - X2)Q. (4.25)
n
Note that

4
<H <3G * %(1 B Hz) B 1> * ?T)nX2> (731)
= —(48m? + 84m + 20m(m + 2)s1)e/3"  O(e?/3+m)

near pg . If P were negative initially along 75, near p{, the first term in (4.25) would be positive.
Moreover, from the linearized solution (3.1), we have

A(751> =

Since 9(5m + 3)(4m? + 4m + 3)/n?(2m + 3)(m — 1) < 6(m + 1)/(m +2)(m — 1) for m > 2, we
know that /1(751) is initially negative along v,,. Based on the assumption that P is initially
negative along 7s,, we know that v,, is initially in S. By Proposition 4.6, we know that the
second term in (4.25) is also positive and so is P’, which is a contradiction. Therefore, the
function P must be positive initially along vs, near pa“ . O

_%(Gm L 6= (m 4+ 2)(m — 1)51)e/IN 1 O(e2/3+Im).

According to §4 in [B6h98], the existence of the heterocline that joins poi relies on the number
of critical points of \/Z/Y that appear before the turning point. The number is originally denoted
by #Cy(h) in [B6h98], where w is the ratio fi/f2 = \/Z/Y and h corresponds to the initial data
f in (2.3). We introduce the following modified definitions of #C,,(h) and W-intersection points.

DEFINITION 4.8. For a 5, that is not a heterocline (i.e., a s, that is not defined on R or
limy o0 Vs, # P )5 let 8C(7s,) be the number of critical points of the function \/Z/Y along ~s,
that appear in EN{H >0} N{Y — Z > 0}.

DEFINITION 4.9. A point where 75, or (s, intersects EN{H >0} N{Y — Z =0} is called a
W-intersection point.

We have the following proposition.

PROPOSITION 4.10. Any s, with s; > —3 (or (s, with s3 > 0) has a turning point at &N
{H = 0} or a W-intersection point at EN{Y — Z = 0}.

Proof. An integral curve vy, with s; > —3 (or (s, with sy > 0) is initially in the interior of
the compact set EN{H >0} N{Y — Z > 0}. Suppose the integral curve does not have any
turning point or any W-intersection point. Then it must be defined on R. Furthermore, such
an integral curve is in £ N {H < 1} initially. From (2.11), along the integral curve we eventually
have H? < 1 — € for some € > 0. Hence,

1 12m

H’:(H2—1)<n+(Xl—X2)2>§H2_1 ‘

n n n

eventually, meaning the function H must at vanish some point. We reach a contradiction. Each
integral curve without a turning point must have a W-intersection point. ]

We rephrase Lemma 4.4 in [B6h98] with these new definitions.

THEOREM 4.11. If 7, is not a heterocline for any s; € |a,b], then $C(~s,) is a constant for all
s1 € a, b].
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Immediately, we have the following proposition
PROPOSITION 4.12. The quantities §C(vo) and §C(C1/(2m+6)) are both zero.

Proof. From the defining equations of Bgx, we have X7 =Y — 27 and X, = —Z along 79. Then
H? < 1 becomes (3Y — (n+3)Z)? < 1. From (3.14) we have

12 -1
My 22 4 6Y2 4 dm(dm 4 8)Y Z — 12mZ% > L (3Y — (4m + 6)2)?
n n
sSnn+9)n—-1)(Y —-2)Z >0. (4.26)
Hence, X1 — X9 =Y — Z > 0 along 7. Similarly, we have Xo — X1 =Y — Z > 0 along (; /(2m+6)-
Note that X; — X5 vanishes at the critical point p; and stays positive along vo. ]

We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Consider a s, with s € (3/(m —1),9(5m + 3)(4m? + 4m + 3) /n%(2m +
3)(m —1)). From Lemma 4.7 we know that such a s, is initially in . From (2.11) we know that
such a 5, must exit S. From Lemma 4.5 we know that such a 7,, exits & through the face £N
{H>0}n{Y —Z>0}Nn{X; — Xo=0}. It is clear that (\/Z/Y)' = \/Z/Y (X1 — X»). Since
Z is initially positive along vs, with s; > 3/(m — 1), we know that §C(~s, ) is exactly the number
of times that 7, intersects EN{H > 0} N{Y — Z > 0} N {X1 — X2 = 0}. Hence, §C(vs,) > 1 for
51 € (3/(m —1),9(5m + 3)(4m? + 4m + 3)/n?(2m + 3)(m — 1)).

On the other hand, the integral curve g joins par and p; . From Proposition 4.12, the function
X1 — X, stays positive along 7g. Hence, we have §C(vy) = 0. Therefore, by Theorem 4.11 there
exists some s, € (0,9(5m + 3)(4m? 4+ 4m + 3) /n?(2m + 3)(m — 1)) such that v, is a heterocline
that joins p(jf. Theorem 1.1 is proved. O

Remark 4.13. With some small modifications, the polynomial & can be applied to prove the
existence of positive Einstein metrics on F™ %! a cohomogeneity-one space formed by the group
triple (Sp(m)U(1), Sp(m)Sp(1), Sp(m + 1)). Furthermore, some non-existence results can also be
obtained from the defining polynomial P. For some cohomogeneity-one spaces, the function P is
negative along all v, in &€ N {X; — Xy > 0}, essentially forcing X1 — X5 to be positive along these
integral curves. For example, there is no Spin(9)-invariant cohomogeneity-one positive Einstein
metric on @]P%@Q. A systematic study of the existence problem on all cohomogeneity-one
spaces with two isotropy summands will be presented in later work.

Remark 4.14. One can recover Béhm’s metric on ]HHP’%WQ by enlarging the set & for m = 1.
Specifically, we can increase the coefficient for Y in the polynomial A properly so that, first,
integral curves 75, with large enough s; are in the enlarged S initially; and second, integral
curves that are in the enlarged S must exit through the face S N {X; — X5 = 0}. Note that the
derivative of the new polynomial A still depends on the non-negativity of the same polynomial P.
Hence, §C(vs,) > 1 with large enough s; while §C() = 0, and Theorem 4.11 can be applied to
prove the existence.

We end this section with the following remark to discuss the motivation in defining S.

Remark 4.15. Inspired by Corollary 5.8 in [B6h98] and by the fact that p; is a stable node, we
realized that taking the limit s; — oo for 7,5, may not provide enough information to prove the
existence theorem for all m. From (3.2) we know that s; is related to the initial condition f.
Numerical data in Table 2 in [B6h98] indicate that the winding angle of ~,, around ® may not
be monotonic as s; increases. Hence, it is reasonable to find a bounded interval of s; for which
the winding angle of ~s, is large enough.
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From (4.19) and (4.24), it appears that the upper bound for s; can be easily controlled
by changing the coefficient of YZ in B. Looking for an appropriate lower bound for s;, on
the other hand, is relatively more difficult. Originally we choose to obtain the lower bound from
fafa > f1f1. The inequality is equivalent to Y X5 > ZX. Although the inequality is geometrically
motivated, showing it can be maintained before the winding angle gets large enough seems to
be too difficult. We eventually define the polynomial A, whose first and second derivatives are
relatively easier to control by polynomials P and Q.

5. Limiting winding angle

From [Winl7] we know that v joins pa“ and p;. By the symmetry of (2.7), we know that there
exists Yoo that joins p, and p;. As @ joins p2i, we have the set {7s0, ®, 700} of heteroclines that
joins p(jf. From this perspective, the critical point p; is anticipated to play an important role in
the qualitative analysis. Intuitively speaking, if ]92+ were a stable focus in the Ricci-flat subsystem,
the integral curve 5, would wind around ® more frequently as s; increases. From § 3, however,
we learn that p; is a stable node in the Ricci-flat subsystem. Hence, the winding behavior of
vs, around & is less obvious. The new coordinate change helps us estimate the limiting winding
angle of 75, as s; — 0o and establish Theorem 1.2. On the other hand, another set {Cso, @, (oo}
of heteroclines joins p{c. It is natural to ask if some heterocline other than (y joins pf. The new
coordinate change also helps us to answer this question and prove Theorem 1.3.

We introduce some known estimates in the Ricci-flat system in the following. The Ricci-flat
subsystem on € N {H = 1} is simply a subsystem of (2.16) in [Chi21], with Y} — /2, Y5 — v/2Y
and Y3 — 2v/2Z. From Lemma 4.4 in [Chi21], we learn that the compact set

Brp:=EN{H=1}N{Y - Z>0}n{Xo— X1 +2Y —2Z >0} n{X; < I} n{Xy >0}

is invariant. Critical points pg and pf are on the boundary of Brp while p; is in the interior.
Straightforward computations show that 7., and ( are initially in Brp. From Lemma 5.7 in
[Chi21], it is known that these two integral curves converge to pj. We construct the following
invariant set introduced in [Chil9], which gives us more information on ., near pj .

ProproSITION 5.1. The set
Brr=EN{H=1}n{Y —2m+3)Z>0}N{Xe— X1 +Y - (2m+3)Z > 0}
is compact and invariant.

Proof. The compactness is derived from Y — (2m + 3)Z > 0 and (2.9).
Since

(VY = (2m +3)2), V) Brrn{y —(2m+3)2=0}
=Y - (2m+3)2) (H(G + %(1 - H2)) — X1 — (4m + 6)Z>
+(Am+6)Z(Xe— X1 +Y — (2m+3)Z2)
=4m+6)Z(Xo—X1+Y - (2m+3)Z) sinceY —(2m+3)Z=0
> 0, (5.1)
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the vector field V points inward on the boundary Brr N{Y — (2m + 3)Z = 0}. As for Brr N
{Xo—=X14+Y — (2m+ 3)Z = 0}, from (2.9) we have
12m
n

& 18(2m + 1)Y? + 8m(8m? + 16m + 3)Y Z + 24m(2m? +4m + 3)Z* =4m + 2. (5.2)

n—1

(Y — (2m +3)2)> + 6Y? +4dm(4m +8)Y Z — 12mZ? =

Then we have
(V(Xoa = X1 +Y = (2m +3)2), V) Bren{ Xo— X14Y - (2m+3) 2)=0}

1 4 24+ 24m+1
_(XQ—X1+Y—(2m+3)Z))(H(G+n(1—H2)—1>+;”Y+8m Team 82>

+ %(Y —(2m+3)2)((4m +2)H — (12m + 6)Y — (8m? + 16m + 12)2)

= %(Y —(2m+3)Z)(4m +2— (12m +6)Y — (8m* + 16m + 12)2)

since H=1and Xo—X;+Y — (2m+3)Z =0. (5.3)

With Y, Z > 0, showing 4m + 2 — (12m + 6)Y — (8m? + 16m + 12)Z > 0 is equivalent to show-
ing (4m +2)% > ((12m + 6)Y + (8m? + 16m + 12)Z)2. Note that (4m + 2)? is simply the left-
hand side of (5.2) multiplied by 4m + 2. Hence, one can obtain the non-negativity by
verifying

(4m + 2)(18(2m + 1)Y2 + 8m(8m? + 16m + 3)Y Z + 24m(2m? + 4m + 3) Z?)
> ((12m + 6)Y + (8m? + 16m + 12)Z)?
& 16n(m — 1)((4m? + 8m + 3)Y Z + (2m* + 4m + 3)Z?) > 0. (5.4)

Note that the equality is obtained for m = 1. Hence, (5.3) is non-negative and identically vanishes
if m = 1. Hence, Bgrp is invariant. ]

Remark 5.2. With (2.9) one can easily show that
BSpin(?) =EN{Y —-2Z-X;, =0}N{3Z - Xy =0}
:gﬂ{H:1}ﬂ{X2—X1+Y—5Z:0}. (5.5)

Therefore, the fact that (5.3) identically vanishes for m = 1 recovers the invariant set Bgpin(7) as
in (3.4).

Remark 5.3. By (5.1) and (5.3), one can also show that the set
Brr:=EN{H=1}n{Y —(2m+3)Z <0} N{Xe— X1 +Y — (2m +3)Z < 0}.
is also invariant. Furthermore, we have the following proposition.

PROPOSITION 5.4. For m > 2, the integral curve v is in Bry initially. For m = 1, the integral
curve Yo stays on the boundary of Bry. For m > 1, the integral curve ( is in Brr initially.

Proof. The statement is clear by (3.3) and (3.13). Note that for m = 1, the function Xo — X; +
Y — 57 is identically zero on vuo. O

To obtain more information on how ~,, and (s, wind around ® as s1,s2 — 0o, we consider
the ‘cylindrical’ coordinates
2m + 2
2m+3

rsin(f) = X1 — Xa, 7rcos(f) = Y —(2m+3)2).

1027

https://doi.org/10.1112/S0010437X24007073 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X24007073

H. CHI

The system (2.7) is transformed into

(H? — 1)< +

n n

/ 112 o 9
H T‘H< + mq«2 sin2(0)> — Hr sin2(9) -7 0052(9) + (m—l— + 3)7“2 sin(6) 0082(9)
T n n n m + 1 n
Yy 2\/JY el cos(f) — - H sin(6) cos(0) — <m+1 + n>rcos(0) sin®(0)

M2 sin2(9))

with conservation law (2.9) rewritten as

12 . .
Orso: — 242 8in2(0) + 6Y2 + dm(dm + 8)YZ — 12mZ% =1 —
- n

Y

r cos(6)

4= <2m+3 - /@m+2)2m+3)

12 4
Y <er2 sin?(6) — o, sin(@))
n n

(5.6)

1

n

)

The set £ is then defined in the (H,r,0,Y)-coordinate accordingly. The variable r tells us the
distance from a point to ® and 6 records the winding angle around ®.
With the new conservation law, setting » = 0 implies Y = (2m + 3)zo. Restricting (5.6) to

the invariant set £ N {r = 0} gives the subsystem

(H2 - 1)2

n

[H}, - n—1
0 2¢/(2m +2)(2m + 3)z9 — TH sin(#) cos(0)

) TZO&

Y =02m+3)z. (5.7)

This subsystem is essentially the integral curve ®. Straightforward computations show that (5.6)
has the following four sequences of critical points in € N {r = 0}:

at

et A

{AF = (£1,0

bE

g A

{BF := (41,0

Furthermore, for each i € Z we have

a*e

; <i7r,1—|—i7r>, b;“G(

(2m + 3)20) }iez, ai = +arctan

(2m + 3)z0) tiez, bz;t = +arctan ( —

01

<_

2y/(2m + 3)(2m + 2)20) i

2

7T+, 7T+,
— 1T, = 1T
4 ) )

o2 ) 4+

2¢/(2m + 3)(2m + 2)29 .
(5.8)
(5.9)

b, € 7r+' 7r+' PaNS 7T+' )
: ——tawm,—— +1 . - — T .
i 9 T, 4 T, q 1 1T, 1T

Remark 5.5. Computations show that A;r and BZ-+ are transformed respectively from the two
stable eigenvectors u; and we of the linearization at p; . Recall from §3 that both u; and us
are tangent to €N {H = 1}, and the corresponding eigenvalues §; and J, are real numbers and
we have d9 < d1 < 0. Each linearized solution to the Ricci-flat subsystem around p; must have
€% < N as n — oco. Hence, integral curves 7o, and (oo converge to p; along wu;. Hence, it
is not surprising that Aj are sinks and Bl-+ are saddles in the subsystem of (5.6) restricted
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to €N {H = 1}. Furthermore, for the subsystem (5.7), critical points A; are saddles, and B;"
are Sources.

Thanks to the invariant set Bry in Proposition 5.1, whose boundary contains p; , We are now
ready to show that both ., and (, do not wind fully around p; .

PROPOSITION 5.6. Consider the (H,r,0,Y)-coordinate. For m > 2, the integral curve 7, joins
the critical points pg and Ag. For m = 1, the variable 6 remains a constant along 7~ and the

integral curve joins p('f and BJ . For m > 1, the integral curve (., joins the critical points pf
and Af.

Proof. In the new coordinate, the critical point p{f is

1 /dm+5 2m 43\ 1
1,5 72m+3,arctan om+2)3)
As v joins pa’ and p; in the (X1, Xs,Y, Z)-coordinate, it is clear that the integral curve joins
pg and one of Aj or Bj in the new coordinate. From Propositions 5.1 and 5.4 we know that
rcos(f) >0 and \/(2m + 3)/(2m + 2)r cos(9) — rsin(f) > 0 along Yoo. In particular, the second
inequality reaches equality so that 6 = arctan(/(2m + 3)/(2m + 2)) along e for m = 1. Note
that 0 < af < arctan(y/(2m + 3)/(2m + 2)) < b and the last inequality reaches equality only
for m = 1. The #-coordinate for p(')F is positive and {6 > 0} is clearly invariant. Hence, for m > 2,
the integral curve 7., converges to Ag ; for m =1, the integral curve v, converges to BO+ as
0= ba' along veo.
In the (H,r,0,Y)-coordinate, the critical point p{ is

1 2m+22m + 2 1
"Vo2m+3 n i
It is established in [Chi21] that { is an integral curve that joins pf and p; in the (X1, X2,Y, Z)-
coordinate. Therefore, in the (H,r, 6, Y )-coordinate, the integral curve (s, joins p{ and one of A;r
or Bt As (s is in Br initially, by Remark 5.3 we know that cos(6) = \/(2m + 2)/(2m + 3)(Y —
(2m +3)Z) <0 and /(2m + 3)/(2m + 2)r cos(9) — rsin(f) < 0 along (. Hence, we know that
7/2 < 6 < arctan(y/(2m + 3)/(2m + 2)) + 7 < b] along (s. Therefore, (», converges to A] for
m > 2. We claim that the integral curve (, also converges to Af for m = 1. Recall Remarks 4.3
and 5.2. The integral curve x also converges to p; and along y we have X3 — X; > 0 and X, —
X1 +Y —5Z = 0. Hence, x converges to By in the (H,r,0,Y)-coordinate. As the linearization
at Bfr has only one stable eigenvector, we know that (., converges to AT. (|

We claim the following lemma.

LEMMA 5.7. Let I be the integral curve of the subsystem (5.7) that emanates from AJ. Let
(0,0,6,, (2m + 3)zp) be the midpoint of Il at which it passes through H = 0. For m > 2, we have
0, = lims, oo 0(vs, N {H = 0}).

Proof. We think of (5.6) on £ as a dynamical system in the three-dimensional Hrf-space with YV’
as a function in (H, r,6). As mentioned in Remark 5.5, each A} is a saddle whose linearization has
two stable eigenvectors and one unstable eigenvector. Furthermore, the two stable eigenvectors
are parallel to & N {H = 1}, meaning that each A is a sink in the Ricci-flat subsystem and II
is the only integral curve that emanates from A in €N {H < 1}. By the Hartman-Grobman
theorem, there is a local homeomorphism (¢, ) defined around A0+ through which the system
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(5.6) is topologically equivalent to the linear dynamical system

!/

T -1 0 O0f |z
yl =10 =1 0| |y]|- (5.10)
Z 0 0 1 Z

In particular, we have
¢(A7) = (0,0,0), ¢UN{H =1}) C {(z,9,0) | z,y € R}, @UNTI) C {(0,0,2) | z € R}.

Let D, be an open disk on the xy-plane with radius €;. Let U; be the cylinder D, X (—e2, €2].
Note that integral curves in U; N {z > 0} can only escape through the face D, x {e2}. Choose
small enough €; and eg so that Uy := ¢~ 1(U;) is contained in U. Then p := ¢~1(0,0, €2) is a point
on U NII.

Let Up be an open neighborhood around the point (0,0, 8,) in the Hré#-space. By the continu-
ous dependence, there exists an open set Us > p in U such that any point in Us lies on an integral
curve that enters Up. It is clear that p € Uy NUs. Modify U; by shrinking €; so that D, x {e2}
is contained in ¢(Us) while leaving eo unchanged. Then correspondingly with the modified U,
an integral curve in Uy N {H < 1} must enter Us. Since o, converges to AaL , there exists a point
q € Yoo NU1. By the continuous dependence, there exists a large enough N such that s; > N
implies ~5, must enter &; N {H < 1} and hence Up. O

Note that proving Lemma 5.7 for m = 1 is more subtle. As v, converges to Bar and there
is an obvious integral curve that joins Bar and Aar , a more delicate analysis is needed to show
that 5, with a large enough s; must enter Up. On the other hand, since (, converges to Af for
m > 1, we have the following corollary to Lemma 5.7.

COROLLARY 5.8. For m > 1, the number 0, + 7 is the limiting winding angle of (s, around ®
while H > 0 as so — 00.

LEMMA 5.9. For m > 2, there exist at least two Einstein metrics on HPmHjjmmH if 0, <.
For m > 1, there exist at least two Einstein metrics on S*™** if §, > .

Proof. Consider HPerljjmmH for m > 2. Let §; = max{3/(m — 1), s, }, where s, is the het-
erocline in the proof of Theorem 1.1 that joins p(jf. The proof of Theorem 1.1 shows that we
have #C(vs,) > 1 for s1 € (51,9(5m + 3)(4m? + 4m + 3)/n?(2m + 3)(m — 1)). If 6, < 7, then
limg, 00 §C(7s,) = 0 by Lemma 5.7. By Theorem 4.11 there exists a heterocline vs,, for some
Sex € (51, oo) and Sy 7 Sy-

Consider S*"*+4 for m > 1. If 6, > 7, then IT + (0,0, 7, (2m 4 3)2g) is an integral curve that
emanates from A and passes (0,0,60, + 7, (2m + 3)20) and 0, + 7 > 27. By Proposition 4.10,
any (s, with sy > 0 has either a turning point or a W-intersection point. We learn from the
linearized solution (3.6) that along (s, with s > 0 the functions Y — Z and X3 — X are positive
initially. Since (Y/Z) = 2(Y/Z)(X2 — X1) by (3.9), the function Y — Z = Z(Y/Z — 1) can only
have a zero after Xo — X7 changes sign. In particular, the function X9 — X; must vanish first
before any W-intersection point can occur.

Replace (s1,7s,) by (s2,(s,) in Definition 4.8 and Theorem 4.11. For 6, > 7 we have
limg, 00 §C((s,) > 1 by Corollary 5.8. On the other hand, from Proposition 4.12 we know that
Xo — X1 > 0 along (j/(2m+6) and hence C((1/(2m+6)) = 0. By Theorem 4.11 there exists some
se € (1/(2m + 6), 00) such that (s, is a heterocline.

Assume 6, > 7 so that such an s, exists. We claim that the Einstein metric ggam+4 represented
by (s, is not the standard sphere metric. If ggam+4 were the standard sphere metric, it would
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(©)

N

FiGure 1. Each graph shows the horizontal line 6 =7 and the level curve
2/(2m +2)(2m + 3)zp — ((n — 1)/n)H sin(f) cos(f) = 0. The cross at {H =1} is A].
The plots show that for m =1, the graph of II must be above ¥+ (0,7) and hence
0, > m. On the other hand, for m =5, the graph of II is below W+ (0,7) and hence
O, <m (a) m=1, ¥(n),n>0.(b) m=1, ¥(n),neR. (¢c) m=1, ¥(n)+ (0,7),n € R. (d)
m =25, ¥(n),n>0.(e) m=5, ¥(n),neR. (f)m=>5, ¥(n)+(0,7),n €R.

have constant sectional curvature. In particular, we must have (fo/ f2)(f1/f1) = 1. From (3.7) we
must have so = 0. Hence, ggim+4 is not the standard sphere metric. The proof is complete. [

From Lemma 5.9 we learn that the number 6, plays an important role in proving the existence
of Einstein metrics on HIP)mHﬁmmH and S*™*4. We can apply the Runge-Kutta algorithm
to estimate II. Then one can only set the initial step near Ag , making the approximation less
accurate as m increases. To bypass this issue, we make use of the symmetry of (5.7) and estimate
0, using the fourth-order Runge-Kutta algorithm with a well-defined initial step.

Now consider the H6-plane. It is obvious that (5.7) admits Zs-symmetry in the sign of
(H, ). The system also admits translation symmetry (H,0) — (H, 6 + iw) for any i € Z. Let Oii
be either A;t or BZTJE and correspondingly, let oj.t be either azi or b;t. Let ¥ be the integral curve
with the initial condition ¥(0) = (0,0). In general, the integral curve ¥ must converge to some
O; with i > 1. By symmetry, we know that ¥ is defined on R and joins OF, and O; . Then
U + (0,7) is an integral curve that joins OJ_FZ._H and O, ; and passes through (0,7), forming
a barrier for estimating 6,. In particular, if ¥ converges to O;, then we have o; < m. Then
¥ + (0, ) passes (0,7) and joins either AJ and Ay or Bf and By . In both cases, the integral
curve II passes through (0, 6,) for some 0, < 7. On the other hand, if ¥ converges to O; with
i > 2, then ¥ + (0,7) passes (0,7) and joins OF, ; and O, . But o7, | < ag, hence II passes
through (0, 6,) for some 60, > w. We present two sets of graphs on H6f-plane for ¥ and ¥ + (0, )
in Figure 1 to illustrate our argument. Note that if ¥ converges to Ay, then IT = ¥ + (0, 7) and
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FIGURE 2. (a) m=1. (b) m=2. (c) m = 5. (d) m = 10. (e¢) m = 29. (f) m = 100.

~—

we have 0, = 7. In such a situation, a more delicate analysis is needed to obtain limg, oo 1C(7s, )
and limg, . $C((s,). In fact, Lemma 5.9 implies that as long as ¥ does not converge to A] for
a fixed m, we have either a second Einstein metric on HJP’mHﬁ@mH or a new Einstein metric
on S*mt4,

Fortunately, the fourth-order Runge—Kutta algorithm shows that for m € [2,100], the integral
curve ¥ converges to By . Hence, IT must pass (0, 6) for some 6, < 7. Therefore, by Lemma 5.9,
the second Einstein metric exists on HIP’mHﬁmmH for m € [2,100]. The function H in (5.7) can
be solved explicitly. By Remark 2.4, it is clear that H = — tanh(2n/n). Hence, the above discus-
sion can be summarized into a more compact statement as in Theorem 1.2. Since ¥ converges
to one of the O, , from (5.9) the inequality {2 < 37/4 in Theorem 1.2 essentially means that ¥
converges to By . As shown by the algorithm, for m = 1 the integral curve ¥ converges to B; ,
meaning that II must pass (0, 6,) for some 6, > 7. We show some plots of ¥ for different m on
the HO-plane in Figure 2, generated by the fourth-order Runge-Kutta algorithm with step size
0.01 in Grapher.

In the following lemma, we prove that 2 > m for m = 1. Therefore, the inequality 6, > 7 is
indeed valid for m = 1.

LEMMA 5.10. Let ¥ be an integral curve to the dynamical system
1
2
H/—VHG-— S 5.11
o — ( ) ) = 4\/5 3 ( : )

ST ?H sin(26)

with U(0) = (0,0). Then lim, . 0(¥) > 7.
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Proof. Let Hy = 2/(6‘/5”/6 +1) -1~ —0.527 and Hy =2/(m — 2 — 2a7 ) = —0.543. Define the

function
4

E"‘l—l—i_a;, _1§H§H27
g, Hs < H < Hy,

3v5H 1—-H
] H, < H<0.
5 n(1+H>’ 1S H<0

Recall that in (5.8) we have a] = 7 — arctan (2¢/5/5). Then we have
2 V5 45 1

sin(aj ) = 3 cos(ay ) = 3 sin(2ay ) = 9 cos(2ay ) = 9

The function © is non-increasing. The numbers H; and Hy are chosen so that {§ — O(H) = 0}
is a continuous curve that joins the origin and Aj .
We show that V restricted to {§ — ©(H) = 0} points upward. For (H, ) € (Hy,0) x (0,7/2),

we have <v<9_3\/51n<1H)),V>:M—3Hsin(29)+6\/5 1 H?-1

5 1+ H 21 7 5 1-H® 7
2v/5 3
= 22 0 Hsin(26
105~ 71 sn(20)
> 0. (5.12)

Therefore, the function § — ©(H) remains positive along W as H decreases from 0 to Hy. The
computation above also shows that the function § — ©(H) is positive along ¥(n) once the integral
curve leaves the origin. If = 7/2, then (V6,V) = 4v/5/21 > 0. Hence, 6 > 7/2 along ¥ as H
decreases from H; to Hs.

Finally, as H decreases from Hy to —1, the function ©(H) increases from 7/2 to a; . We first
claim that for 6 € [7/2,a] ], the inequality

D(6) := sin(20) — (9 - g) <z(9 —ap)+ 21_11(_2‘;1/)2> >0 (5.13)

is valid. It is obvious that D(a; ) = D(w/2) = 0. Hence, there exists some 6, € (7/2,a7 ) such
that D'(01) = 0 by the mean value theorem. On the other hand, we have

D'0) = 200s(20) — (G0 -y + 2COL) 20 2). 0710) = —asmian) -

Hence, D" > 0 on (m/2 + § arcsin(§), 7 — 1 arcsin(Z)). Since m — 1 arcsin() ~ 2.609 > 2.412 ~
ap, it is clear that D’ decreases in (m/2,7/2+ Jarcsin(f)) and increases in (m/2+
3 arcsin(%),ay). Since

T(m sin(2a;)
D(E) =2 (L(T_ S ) )~ 0.654
<2> <4<2 a1)+a1_—7r/2> 0.654 > 0,

(5.14)
in(2a; 7
D'(a]) = 2cos(2a7 ) — 21_11(_6;1/)2 ~1 <a1_ — g) ~ —0.068 < 0,
1
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we know that D’ only vanishes once in [7/2, a; |. Therefore, the function D is indeed positive for

0 e (n/2,a7).
Then from (5.13) we have

(o))

453

§—1/H—1—a] =0

=50 §Hsin(29) + ﬁ(H2 —1)

A o) (o )
(- 7) () B ey
since@—ﬁ—l—af:()

e (3o 5) S

(5.15)

Since 4v/5/21 — (2(ay — 7/2) + %(sin(2a1_)/(a1_ —7/2))) ~ 0.3015 > 0.3, the computation above
continues as

1 N\ - 3 3(1+H)? 1,
V(G——l—a >v> > (1+H)-° +——(H*-1)
_ 1+ H 9 o5 17 1
= <— 20H — 28H— 7). (5.16)

A straightforward computation shows that the factor —Q%H 2 %H — % is positive on [—1, —%]

As Hy < —3, it is proved that ¥ does not pass the barrier § — ©(H) = 0 where H € (—1, Hs).
Therefore, we must have lim, .. (¥) > a; .

We claim that ¥ does not converge to A . The linearization of (5.11) at A] is [ .

21 21

~o

0
N ] , whose

S

only stable eigenvalue and eigenvector are respectively —% and [73/5} Hence, the linearized

solution in {H > —1} takes the form A] + [73/5} e~ (2T Suppose ¥ is the integral curve that

tends to A]. We must have

-0 ~ @-o(m) (a; + | 2] eemn) = —eem (i 2 <

as 1 — 00, which is a contradiction. Therefore, the integral curve ¥ converges to some O; with
i>2. As A, > B, > m, we conclude that lim, .. 0(¥) > 7. O

Theorem 1.3 is proved with Lemma 5.10 established.
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Appendix A.

A.1 Coefficients for Bm"‘ and~ Qm,n
We list coefficients for B,, . and Q, x:

- Bm,n(l‘) = b25L‘2 + bll‘ + bo

by — — 96K3m3 + 264K%2m? + 216Kkm + 54 <0
T T (1 —r)(2:2m(Bm —5) + 6k(dm — 1) +9)

b 4(m + 2)(4km + 3)(2k*m + 4xm + 3) 2(4m + 3)2(2m + 3)(m — 1) (A1)
1= — , .
(1 - k)(262m(8m — 5) + 6k(4m — 1) +9) m(2m + 1)(8m + 3)

B 34+ (4m — 2)r)(4km + 3)k
b0 = AT 2m(sm = 5) + 6r(@m — 1) £ 9)

— Qmr(r) = 2* + @z + qo
4(2m + 3)(3263m3 + K2m?2(96 — 68k) + kM (90 — 84k) + 27(1 — k))

2= 3(1 — k) (22m(8m — 5) + 6r(4m — 1) + 9) <0,

165(m + 2)(1663m? — 18x3m? + 32k2m? — 24k%m + 27km — 9k + 9)
n= 3(1 — k) (262m(8m — 5) + 6k(4m — 1) + 9) >0 (&Y
w = 74/12(32/121713 —20K2m? — 6K%m + 48km? — 6km — 9k + 18m + 9) <o

3(1 — k)(26*>m(8m — 5) + 6Kk(4m — 1) +9)

PROPOSITION A.1. For any (m, &) € [1,00) x (0, 1), the function Bmfv has a real root o(m, k)
in the interval (0, mk/(3 + 2mr)). For m = 1, polynomials B, , and Q1 , share a common real
root o(1,K) = /(3 + 2k).

Proof. From (A.1), computations show that

Bmﬁ(O) = bo < 0,

~ me 768(m — 1)k B,
B =
"\ 34 2mk (8m +3)(2em + 3)(2m + 1)(1 — k) (262m(8m — 5) + 6k(dm — 1) +9)
(A.3)
where
15 5 45 45 13 163 255 9 27
(4 2 3, 2 2 = 9N\ 3 (29 4 AVS 3 499 o I 40) 2
B*—<m+8m +16m 35" 64>m/<a +<4m+32m+64m +16m 64>H
8 64 128 32 32 128
>0 (A.4)

for any (m, k) € [1,00) x (0,1). Hence, such a o(m, k) exists. Furthermore, we have

23 +4Rr)(2k+1)x — Kk —2)((26 + 3)T — K)

B, (x) =
() (22 + 65 + 3) (K — 1) ’ A3
Orn(z) = C4((126° — 4K? = 21K — 9)z 4 265 + 1167 + 98) (26 + 3)z — k) '
LR 3(262 + 65+ 3)(k — 1) '
The proof is complete. O
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A.2 Non-positivity of T(Qm rs Bm,x)
PROPOSITION A.2. The resultant r(Qum x, Bmx) in (4.17) is non-positive for any (m,r) €
[1,00) x (0,1) and vanishes if and only if m = 1.

Proof. Recall that
O B 64k2(m — 1)(2km + 3) -
r = — r
Tl T (8m + 3)2(2m + 1)2m2(1 — k) (2k2m (Sm —5)+6k(4m — 1) +9)2 "’
= 262144x'm ' + (516096x* + 6799364%)m
+ (373760k + 12339203 + 6758402)m®
(—275904k" 4 11510403 + 11437445 + 308160x)m”
(926496 + 2488323 + 1432512K2 + 507456k + 54432)m5
(—800496* — 1256256k + 1472688K2 + 857520k + 92016)m°
(—281880k% — 1525392k 4 2663282 + 1353024k + 199584)m*
(—
(—
(—

33048k — 6444363 — 672624K% + 957420k + 375192)m>

90396k3 — 433026k% + 186624~ + 333882)m>

743582 — 59049k + 133407)m + 19683(1 — k). (4.17)
It is clear that the coefficient for 7 is non-positive on [1,00) x (0,1) and vanishes if and only if
m = 1.

Consider the polynomial 7. Since coefficients for m® are obviously positive for k € (0,1) if
1 > 5, we must have

7 > 262144k m? 4 (516096x" + 679936x%)m* + (373760 + 123392053 + 6758402 )m!

+ (275904 + 1151040K> + 1143744k% + 308160k)m*
+ (—926496k" + 248832k° 4 14325122 + 507456k + 54432)m*

+ (—800496k* — 1256256k + 14726882 + 857520k + 92016)m*
+ (—281880x* — 1525392k3 + 266328k + 1353024k + 199584)m*
+ (—33048k* — 644436K3 — 6726242 + 957420k + 375192)m>
+ (—90396k> — 433026k2 + 186624k + 333882)m>
+ (—74358k% — 59049k + 133407)m + 19683(1 — k)
= (—1132776k* + 5320803 + 49911122 + 3026160x + 346032)m*
+ (—33048k* — 644436K3 — 6726242 + 957420k + 375192)m>
+ (—90396k3 — 433026k2 + 186624k + 333882)m>
+ (—74358k% — 59049k + 133407)m + 19683(1 — k)
> (—1132776x* + 532080x> 4 4991112x2 + 3026160% + 346032)m>
+ (—33048k1 — 64443653 — 672624k + 957420k + 375192)m>
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(a) (b) (©)

FIGURE A.1. The set S is degenerate as shown in Proposition 4.2. Hence, only one integral
curve s, is known to join pg and it represents the Bohm’s metric. The graphs indicate that
Vs, converges to g; for s; € (0,s,) and converges to ¢; for s1 € (s4,00). (a) 75, for m=1.
(b) 51 € (0, 84). () $2 € (8, 00).

+ (—90396x° — 433026x% + 186624 + 333882)m>
+ (—74358%% — 59049x + 133407)m + 19683(1 — k)

= (—1165824k* — 112356x> + 4318488k2 + 3983580k + 721224)m?>
+ (—90396x° — 433026x% + 186624 + 333882)m>
+ (—74358k% — 59049k + 133407)m + 19683(1 — k)

> (—1165824k% — 112356x° + 4318488k2 + 3983580k + 721224)m>
+ (—90396r> — 43302652 + 186624k + 333882)m>
+ (—74358x% — 59049k + 133407)m + 19683(1 — k)

= (—1165824k* — 202752k + 38854622 + 4170204% + 1055106)m>
+ (—74358%% — 59049k + 133407)m + 19683(1 — k)

> 0. (A.6)

Since 7 is positive on [1,00) x (0, 1), the proof is complete. O

A.3 Visual summaries

We summarize Theorem 1.1-1.3 in Figures A.1-A.4 generated by Grapher, where integral curves
presented are generated by the fourth-order Runge—Kutta algorithm with step size 0.01 and the
initial step is set in a neighborhood around pg or p{. All figures are in the X; XoZ-space and
the variable Y is eliminated by (2.8).
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(a) (b) (c) (d)
. 1A . . .
FIGURE A.2. Theorems 1.1 and 1.2 claim that for m > 2 there are at least two integral curves
vs, and vs,, that join p(f. The graphs indicate that s, converges to ¢; for s1 € (0, s4) U (Syx, 00)

and converges to g, for s1 € (s4,54). (a) vs, for m=2. (b) s1 € (0,54). () 52 € (Sx, Sux)-
(d) s2 € (Sx, 00).

(@) (b) (© (d)

FicURE A.3. These plots are a realization of Theorem 1.3. For m = 1, the graph of (y is the
straight line that joins pl As so increases from 0, the integral curve C32 converges to g; , until
C1/(2m+6) converges to py. For s2 >1/(2m + 6), the integral curve (s, converges to gz, until

S9 = Se ONCE again joins piﬁ. For the s > s,, the integral curve (s, converges again to ¢; . (a) (s,
for m =1. (b) s2 € (0,1/(2m +6)). (c) s2 € (1/(2m +6), se). (d) 52 € (Se,0).

(11

FIGURE A.4. For m > 2, the behavior of (,, is relatively simpler. For s € (0,1/(2m + 6)), the
integral curve (s, converges to g; . For so > 1/(2m + 6), the integral curve CS2 converges to q5 -

(a) Cs, for m = 1. (b) s3 € (0,1/(2m +6)). (c) 52 € (1/(2m + 6), ).
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