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Abstract In this paper, we study the functional given by the integral of the mean curvature of a convex
set with Gaussian weight with Gaussian volume constraint. It was conjectured that the ball centred at
the origin is the only minimizer of such a functional for certain values of the mass. We prove that this
is the case in dimension 2 while in higher dimension the situation is different. In fact, for small values of
mass, the ball centred at the origin is a local minimizer, while for larger values the ball is a maximizer
among convex sets with a uniform bound on the curvature.
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Let γ(E) and Pγ(E) be the Gaussian measure and the Gaussian perimeter of a set
E ⊂ Rn, see the definition in the next section. A classical result states that that among
all sets of given Gaussian measure the half space is the only one minimizing the Gaussian
perimeter [4, 18]. This inequality has also been established in a quantitative form with
different approaches (see [1, 6]), both of independent interest. Due to its large number
of applications, the nonlocal form of the Gaussian isoperimetric inequality has also been
studied. In particular, it is known that the half space is still a minimizer of the fractional
Gaussian perimeter if we define it by the means of the Stinga–Torrea extension (see
[5, 16]), while this is no longer the case if one defines the fractional perimeter by means
of a singular integral with a Gaussian weight (see [7]). On the contrary, if one restricts to
the class of symmetric sets, the characterization of perimeter minimizers under a volume
constraint is still an open problem. In [3] it was conjectured that these minimizers would
be either the ball or its complement. This conjecture has been disproved in [13], see also
[10], and in [2] it has been proven that for small values of the volume the minimizer
among symmetric sets is given by a strip. Later on, in [11], it was shown that if such
minimizer is convex and satisfies some additional condition, then it is a round cylinder.
Finally, in a very recent paper Heilman, adapting previous ideas introduced by Colding
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644 N. Fusco and D. A. La Manna

and Minicozzi in the study of the mean curvature flow proved that if the minimizer of
the Symmetric Gaussian Problem (SGP) is of the form Ω× R ⊂ Rn+1, then either Ω or
Ωc is convex [12].
In this paper, we study a problem related to the above SGP, raised in [15, p. 37,

Question 1], where it was asked whether the ball centred at the origin maximizes the
energy functional

H (E) =

∫
∂E

H∂Ee
−|x|2

2 dHn−1

among all convex, symmetric sets with a fixed Gaussian volume. Here and in the following,
H∂E denotes the mean curvature of E. In the same paper, see Proposition 3.21, it is
shown that a positive answer to the Heilman–Morgan Gaussian isoperimetric conjecture
(see [12]) would imply the maximality of the ball centred at the origin for the functional
above. The result we prove here seems to hint that also Heilman–Morgan conjecture
should be true.
More precisely, we prove the maximality of the ball centred at the origin in two dimen-

sions, even if one replaces e−
|x|2
2 with more general radial weights on the volume and on

the perimeter. Furthermore, we show that this maximality property of the disk holds in
a stronger form, in the sense that if γ(E) = γ(Br), the gap H (Br) − H (E) can be
estimated in a quantitative way both from above and below, see Theorem 1. The estimate
from above follows by a simple integration by parts, while the one from below follows by
a calibration argument.
The situation is completely different in higher dimension. A simple example given in

§ 3 shows that, already in dimension 3, one can find a symmetric cylinder E such that
γ(E) = γ(Br) but H (E) > H (Br) for sufficiently small values of r. Even worse, in
Theorem 3, we prove that if E is a symmetric set sufficiently close inW 2,∞ to the ball Br

with the same Gaussian volume, then H (Br) < H (E) provided that r2 < (n−2)(n−1)
2n .

On the other hand, if r2 > n− 2, we are able to show that the ball is a local maximizer
of H with respect to all competitors E close in W 2,∞, with the same Gaussian volume
and not necessarily symmetric. These two local minimality and maximality results are
obtained with a more or less standard second order Taylor expansion of the functional H
around the ball. However, a completely different calibration argument allows us to show
the maximality property of the ball among all convex sets satisfying a uniform bound
on the curvature, see Theorem 4. This latter result suggests that for sufficiently large
Gaussian volume, the ball should be indeed a global maximizer, but at the moment this
seems to be a difficult open problem.

1. Preliminary definitions

For a measurable set E ⊂ Rn, we denote by γ(E) its Gaussian measure

γ(E) =
1

(2π)
n
2

∫
E

e−
|x|2
2 dx, (1.1)
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normalized so that γ(Rn) = 1. We say that E has finite Gaussian perimeter if

Pγ(E) =
1

(2π)
n−1
2

sup
‖X‖L∞(Rn)61

{∫
Ω

div(e−
|x|2
2 X(x)) dx, X ∈ C1

c (Rn,Rn)

}
<∞.

Note that if E is a bounded open set with Lipschitz boundary, then

Pγ(E) =
1

(2π)
n−1
2

∫
∂E

e−
|x|2
2 dHn−1,

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure.
Let E be an open set of class C 2 and X :M → Rn a C 1 vector field. For any x ∈M ,

denoting by τ1, . . . , τn−1 an orthonormal base for the tangent space TxM with x ∈ M ,
the tangential divergence of X is given by

divτ X =
n−1∑
i=1

〈∇τi
X, τi〉,

where ∇τi
X is the derivative of X in the direction τ i. Note that if we still denote by X

a C 1 extension of the vector field in a tubular neighbourhood of ∂E, then

divτ X = divX − 〈DXν∂E , ν∂E〉,

where ν∂E is the exterior normal to E. We also recall that the mean curvature of ∂E
(actually the sum of the principal curvatures) is given by

H∂E = divτ ν∂E . (1.2)

If we extend ν∂E in a tubular neighbourhood of ∂E to obtain a vector field ν still of class
C 1, with |ν| = 1, then

H∂E = div ν. (1.3)

Observe that with this definition it turns out that if E is locally the subgraph of a
C2(Rn−1) function u then

H∂E = −div

(
Du√

1 + |Du|2

)
. (1.4)

We recall that if E is a bounded open set of class C 2 and X ∈ C1(∂E,Rn), the divergence
theorem for manifolds states that∫

∂E

divτ X dHn−1 =

∫
∂E

H∂E〈X, ν∂E〉dHn−1.
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In particular, if X is a tangent vector field, it holds∫
∂E

divτ X dHn−1 = 0.

Note that if E is an open set of class C1,1, hence it is locally the subgraph of a C1,1

function u, the mean curvature of ∂E can be defined using (1.4). With this definition,
the above divergence theorem still holds. Finally, the Laplace–Beltrami operator on ∂E
is defined for any h ∈ C2(∂E) as

∆∂Eh = divτ ∇h,

where ∇h denotes the tangential gradient of h.
Finally, if µ is a non negative Borel measure in Rn, f : Rn → R+ is a Borel function

and E is a Borel set, we denote by fµxE the measure µ̃ defined for any Borel set F ⊂ Rn

as

µ̃(F ) =

∫
F∩E

f dµ.

2. Two-dimensional case: a two-side estimate of the integral of the

curvature in weighted spaces

In this section, we provide an estimate for the weighted integral of the curvature under
suitable assumptions on the weight. Let f : [0,∞) → (0,∞) be a C 1 not increasing
function and w : (0,+∞) → [0,∞) be defined as

w(r) = −f
′(r)

r
. (2.1)

We define the weighted area |E|w of a set E as

|E|w =

∫
E

w(|x|) dx.

Note that if f = e−
r2

2 then w = e−
r2

2 . Hence, the results given in this section apply to
the particular case of the Gaussian weight.
We start by proving an isoperimetric type inequality concerning a weighted integral of

the curvature. To this aim, here and in the following, we denote by Br the ball centred
at the origin with radius r.

Proposition 1. Let r> 0, f : [0,∞) → (0,∞) a C 1 not increasing function and w be
defined as in (2.1). For any closed convex set E ⊂ R2 containing the origin of class C1,1
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with |E|w = |Br|w it holds∫
∂E

H∂Ef(|x|) dH1 6
∫
∂Br

H∂Brf(|x|) dH1. (2.2)

If w is not increasing too, (2.2) holds for any convex set E of class C1,1 with |E|w = |Br|w.

Proof. For a convex set E of class C1,1 containing the origin in the interior we denote
by ρ : R → (0,∞) a C1,1 periodic function such that ∂E = {ρ(θ)(sin θ, cos θ) : θ ∈
[0, 2π]}. Note that, for almost every θ ∈ [0, 2π], the curvature at ρ(θ)(sin θ, cos θ) is given
by

H∂E =
ρ2 + 2ρ′2 − ρρ′′

(ρ2 + ρ′2)
3
2

.

Thus, we compute

|E|w =

∫ 2π

0

dθ

∫ ρ(θ)

0

tw(t) dt

and ∫
∂E

H∂Ef(|x|) dH1 =

∫ 2π

0

ρ2 + 2ρ′2 − ρρ′′

(ρ2 + ρ′2)
3
2

f(ρ)
√
ρ2 + ρ′2 dθ.

Since |E|w = |Br|w, recalling (2.1) we have

2πf(0)−
∫ 2π

0

f(ρ) dθ =

∫ 2π

0

∫ ρ

0

−f ′(t) dt dθ

=

∫ 2π

0

∫ ρ

0

tw(t) dt dθ = 2π

∫ r

0

tw(t) dt = 2π(f(0)− f(r)),

which gives ∫ 2π

0

f(ρ) dθ = 2πf(r).

Hence, integrating by parts,∫
∂E

H∂Ef(|x|) dH1 =

∫ 2π

0

ρ′2 − ρρ′′

ρ2 + ρ′2
f(ρ) dθ +

∫ 2π

0

f(ρ) dθ

= −
∫ 2π

0

d

dθ
arctan

(
ρ′

ρ

)
f(ρ) dθ +

∫ 2π

0

f(ρ) dθ

=

∫ 2π

0

ρ′ arctan

(
ρ′

ρ

)
f ′(ρ) dθ + 2πf(r)

6 2πf(r) =

∫
∂Br

H∂Brf(r) dH1,

(2.3)
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where in the last inequality we used that t arctan t > 0 for all t ∈ R and f ′(ρ) 6 0.
When 0 ∈ ∂E, given ε> 0 small, we may translate E to get a set Eε = E + xε with

|xε| < ε and such that 0 ∈ intEε. Then, the validity of (2.2) for E follows by applying
the same inequality to Eε and then letting ε→ 0.
In the case that the closed set E does not contain the origin let x 0 be the nearest point

of E to the origin. Hence, since E is convex we have that 〈x, x0〉 > |x0|2 for all x ∈ E,
which in turn implies that |x−x0| < |x| for all x ∈ E. Thus, |E−x0|w ≥ |E|w. Let s > 0
such that |Bs|w = |E − x0|w. Since |E − x0|w ≥ |E|w, we have that s≥ r and using that
E − x0 passes through the origin we find∫

∂E

H∂Ef(|x|) dH1 6
∫
∂(E−x0)

H∂Ef(|x|) dH1 6 2πf(s) 6 2πf(r).

�

We note that Proposition 1 remains true if we replace the convexity assumption on E
with the assumption that E is starshaped with respect to the origin. Next result shows
that when E is a convex set containing the origin, the inequality above can be given in
a stronger quantitative form. To this aim, given any sufficiently smooth set E ⊂ R2, we
introduce the following positive quantities

αf (E) = −
∫
∂E

(
|x| − 〈x, ν〉2

|x|

)
f ′(|x|) dH1 (2.4)

and

βf (E) =

∫
∂E

(
|x| − 〈x, ν〉2

|x|

)(
f(|x|)− |x|f ′(|x|)

|x|2

)
dH1. (2.5)

Theorem 1. Let E be a convex set of class C1,1 containing the origin such that |E|w =
|Br|w. Then

αf (E) 6
∫
∂Br

H∂Brf(|x|) dH1 −
∫
∂E

H∂Ef(|x|) dH1 6 βf (E). (2.6)

Proof. Denote by ρ : R → (0,∞) a C1,1 periodic function such that ∂E =
{ρ(θ)(sin θ, cos θ) : θ ∈ [0, 2π]}. To prove the first inequality we observe that

|x| − 〈x, ν〉2

|x|
6

|x|2 − 〈x, ν〉2

〈x, ν〉
=

ρ′2√
ρ2 + ρ′2

. (2.7)

Using that

t arctan t >
t2√
1 + t2
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for all t ∈ R, using (2.3) and arguing as in the proof of Proposition 1 we get

∫
∂E

H∂Ef(|x|) dH1 =

∫ 2π

0

ρ
ρ′

ρ
arctan

(
ρ′

ρ

)
f ′(ρ) dθ + 2πf(r)

6
∫ 2π

0

ρ′2√
ρ′2 + ρ2

f ′(ρ) dθ + 2πf(r)

6
∫
∂E

(
|x| − 〈x, ν〉2

|x|

)
f ′(|x|) dH1 +

∫
∂Br

H∂Brf(|x|) dH1,

where the last inequality follows from (2.7). To prove the second inequality, we first recall
that up to a constant u(x) = log |x| is the fundamental solution of the Laplacian in two
dimensions. As a consequence of this fact we claim that if E contains the origin and
|E|w = |Br|w ∫

∂E

1

|x|
f(|x|) dH1 >

∫
∂Br

1

|x|
f(|x|) dH1. (2.8)

Note that for ε> 0 such that Bε ⊂ E, using the divergence theorem we have∫
∂E

〈x, ν〉
|x|2

f(|x|) dH1 =

∫
∂(E\Bε)

〈x, ν〉
|x|2

f(|x|) dH1 + 2πf(ε)

=

∫
E\Bε

div

(
x

|x|2
f(|x|)

)
dx+ 2πf(ε)

=

∫
E\Bε

f ′(|x|)
|x|

dx+ 2πf(ε).

Therefore, letting ε→ + we have∫
∂E

〈x, ν〉
|x|2

f(|x|) dH1 =

∫
E

f ′(|x|)
|x|

dx+ 2πf(0).

Thus, using the assumption |E|w = |Br|w we obtain∫
∂E

1

|x|
f(|x|) dH1 >

∫
∂E

〈x, ν〉
|x|2

f(|x|) dH1

= 2πf(0) +

∫
E

f ′(|x|)
|x|

dx =

∫
∂Br

1

|x|
f(|x|) dH1.

(2.9)

Note that the above inequality is strict, unless E = Br and it can be actually written in a
quantitative form arguing, see, for instance, [14]. Note that in deriving inequality (2.9) we
have used that for n =2, up to a multiplicative constant, x/|x|2 is the gradient of the fun-
damental solution of Laplace equation, a fact which is no longer true in higher dimension.
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To prove the proposition, we now use (2.9) and the divergence theorem on a manifold.∫
∂E

H∂Ef(|x|) dH1 >
∫
∂E

H∂E

〈
x

|x|
, ν

〉
f(|x|) dH1

=

∫
∂E

divτ

(
x

|x|
f(|x|)

)
dH1

=

∫
∂E

1

|x|
f(|x|) dH1 +

∫
∂E

(
|x| − 〈x, ν〉2

|x|

)(
|x|f ′(|x|)− f(|x|)

|x|2

)
dH1

>
∫
∂Br

1

|x|
f(|x|) dH1 +

∫
∂E

(
|x| − 〈x, ν〉2

|x|

)(
|x|f ′(|x|)− f(|x|)

|x|2

)
dH1

=

∫
∂Br

H∂Brf(|x|) dH1 +

∫
∂E

(
|x| − 〈x, ν〉2

|x|

)(
|x|f ′(|x|)− f(|x|)

|x|2

)
dH1

thus proving the second inequality in (2.6). �

Remark 1. Observe that the above proof shows that inequality (2.8) holds for any
set E of finite perimeter containing the origin in the interior. Note, however, that this
latter assumption can not be weakened as it is shown by an example in [9].

Note that the above theorem essentially says that one may control the gap H (E)−
H (Br) with the oscillation of the normals to E and Br. To be more precise, let us
denote by π the projection of ∂E on ∂Br. Observe that

1

2
|x||ν∂E(x)− ν∂Br (π(x))|2 6 |x| − 〈x, ν〉2

|x|
6 |x||ν∂E(x)− ν∂Br (π(x))|2.

Then, it is clear that under the assumption of Theorem 1 and if E ⊂ BR for some R> 0,
then∣∣∣ ∫

∂E

H∂Ef(|x|) dH1 −
∫
∂Br

H∂Brf(|x|) dH1
∣∣∣ 6 C(f,R)‖ν∂E(x)− ν∂Br (π(x))‖2L2(∂E)

,

where the constant C(f, f ′, R) depends only on the function f and its derivative and R.

Note that the above Theorem applies in particular to the Gaussian weight γ(r) = e−
r2

2 .
As a consequence of this we get

Corollary 1. Let E ⊂ R2 convex and passing through the origin and r > 0 such that
γ(E) = γ(Br). Then it holds

αγ(E) 6
∫
∂Br

H∂Bre
−|x|2

2 dH1 −
∫
∂E

H∂Ee
−|x|2

2 dH1 6 βγ(E).

Remark 2. We note that inequalities (2.2) and (2.6) can be immediately extended to
any bounded convex set E contained in the plane with not empty interior. To see this,
we recall (see [17, § 4.2]) that for such E there exists a curvature measure µE supported
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on ∂E such that if Eh is a sequence of smooth convex sets converging in the Hausdorff
distance to E, then the measures H∂Eh

H1x∂Eh converge weakly∗ to µE. Using this
measure, for instance, (2.2) becomes∫

∂E

f(|x|) dµE 6
∫
∂Br

H∂Brf(|x|) dH1,

whenever E is such that |E|w = |Br|w. A similar extension also holds for (2.6) which
becomes

αf (E) 6
∫
∂Br

H∂Brf(|x|) dH1 −
∫
∂E

f(|x|) dµE 6 βf (E), (2.10)

where αf (E) and βf (E) are defined in (2.4) and (2.5).

We conclude this section by proving another consequence of Theorem 1. More precisely,
if Eh → Br in the Hausdorff distance, then the corresponding weighted curvature integrals
converge with a speed controlled by the distance of Eh from Br. To this aim, given two
closed sets E,F ⊂ R2, we denote by dH(E,F ) the Hausdorff distance between E and
F. We will also use the following lemma, which is the two-dimensional version of a more
general statement proved in [8] (see proof of Lemma 3.3).

Lemma 1. Let E ⊂ R2 be a convex body containing the origin and let ρ : [0, 2π] →
(0, 2) be such that ∂E = ρ(θ)(cos θ, sin θ). Then

‖ρ′‖L∞ 6 2
√
‖ρ− 1‖L∞

1 + ‖ρ− 1‖L∞

1− ‖ρ− 1‖L∞
.

Theorem 2. Let f : [0,∞) → (0,∞) a C 1 not increasing function and Eh ⊂ R2 a
sequence of convex sets converging to Br in the Hausdorff distance as h → ∞. Then,
there exists a constant depending only on r and f such that for h large∣∣∣∣∣

∫
∂Eh

f(|x|) dµEh
−
∫
∂Br

f(|x|)H∂Br dH1

∣∣∣∣∣ 6 C dH(Eh, Br).

Proof. Let w be the function defined as in (2.1) and for all h let rh be the unique
positive number such that |Brh

|w = |Eh|w. We have

∣∣∣ ∫
∂Br

f(|x|)H∂Br dH1−
∫
∂Eh

f(|x|) dµEh

∣∣∣
6

∣∣∣∣∣
∫
∂Br

f(|x|)H∂Br dH1 −
∫
∂Brh

f(|x|)H∂Br dH1

∣∣∣∣∣
+

∫
∂Brh

H∂Brh
f(|x|) dH1 −

∫
∂Eh

f(|x|) dµEh
.

(2.11)
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Setting dh = dH(Eh, Br), since for h large Br−dh
⊂ Eh ⊂ Br+dh

we have r − dh 6 rh 6
r+ dh, that is |r− rh| 6 dh. Hence, for h large we may estimate the first integral on the
right-hand side of (2.11) as follows.∣∣∣∣∣

∫
∂Br

f(|x|)H∂Br dH1 −
∫
∂Brh

f(|x|)H∂Br dH1

∣∣∣∣∣ 6 2π|f(rh)− f(r)|

6 2π max
[r/2,2r]

|f ′||rh − r| 6 Cdh.

To estimate the second integral, we denote by ρh the Lipschitz function such that ∂Eh =
ρh(θ)(cos θ, sin θ). Then, we use the second inequality in (2.10), (2.7) and Lemma 1
applied to 1

rEh to get for h large∫
∂Brh

H∂Brh
f(|x|) dH1−

∫
∂Eh

f(|x|) dµEh

6 max
ρ∈[r/2,2r]

(
f(ρ)− ρf ′(ρ)

ρ2

)∫
∂Eh

(
|x| −

〈x, ν∂Eh
〉2

|x|

)
dH1

6 C

∫ 2π

0

ρ′2h dθ 6 8πCr‖ρh − r‖∞
(
r + ‖ρh − r‖∞
r − ‖ρh − r‖∞

)2

6 C ′dh.

This last estimates concludes the proof. �

Observe that arguing as in final part of the above proof under the assumption of
Theorem 1 if dH(E,Br) < 1, we have∣∣∣∣∫

∂E

H∂Ef(|x|) dH1 −
∫
∂Br

H∂Brf(|x|) dH1

∣∣∣∣ 6 C(f)dH(E,Br)

for some constant depending only on f.

3. Higher dimension

The isoperimetric inequality proved in Proposition 1 is false in higher dimension as shown
by the following example.

Example 1. Let n =3, r > 0. If r is sufficiently small, there exists a C∞ convex body
E such that γ(E) = γ(Br) but

H (E) > H (Br).

Proof. Denote by C (t) the cylinder in

C(s) = {(x′, x3) ∈ R2 × R : |x′| 6 s}.
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For any r > 0, let s(r) the unique positive number such that γ(Cs(r)) = γ(Br). Note that

γ(Cs) =

∫ s

0

te−
t2

2 dt = 1− e−
s2

2 ,

while

(2π)
1
2 γ(Br) = 2

∫ r

0

t2e−
t2

2 dt = 2

(
−re−

r2

2 +

∫ r

0

e−
t2

2 dt

)
.

Since γ(Br) = γ(Cs) we get

e
−s2

2 = 1− 2

(2π)
1
2

(
−re−

r2

2 +

∫ r

0

e−
t2

2 dt

)
Moreover, we also have

H (Cs) = (2π)
3
2 e−

s2

2 , H (Br) = 8πre−
r2

2 .

Hence,

H (Cs) = (2π)
3
2 + 4π(re−

r2

2 −
∫ r

0

e−
t2

2 dt)

= H (Br) + (2π)
3
2 − 4π(re−

r2

2 +

∫ r

0

e−
t2

2 dt)

> H (Br) + 1,

provided r is sufficiently small. Let CT,s(r) the convex body obtained as the union of the
cylinder Cs(r)∩{|x3| < T} with the two half balls of radius s(r) placed on the upper and
lower basis of the cylinder. Since

γ(CT,s(r)) → γ(Cs(r))

as T → ∞, we conclude that H (CT,s(r)) > H (Br′) with r′ such that γ(CT,s(r)) =
γ(Br′), provided r is small and T is sufficiently large. The C∞ set E is obtained by
approximating CT,s(r) with a sequence of smooth convex sets as in Remark 2. �

Lemma 2. Let E be a bounded open set of class C 2 starshaped with respect to the
origin and let h : Sn−1 → (0,∞) a C 2 function such that

∂E = {y = xh(x), x ∈ Sn−1}.

Then,

H∂E(xh(x)) =
− 1

h∆Sn−1h+ n− 1√
|∇h|2 + h2

+
h1
2 〈∇|∇h|2,∇h〉+ h2|∇h|2

h2
√
(|∇h|2 + h2)3

. (3.1)
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Proof. First, we extend h to Rn \ {0} as a homogeneous function of degree 0 still
denoted by h. Note that with this definition for any x ∈ Sn−1 the tangential gradient
∇τh(x) of h at x coincides with the gradient of h at the same point. For x ∈ Rn \ 0, we
define the unitary vector

n(x) :=
xh(x)−∇h(x)√
h2(x) + |∇h(x)|2

. (3.2)

Observe that the exterior normal ν to ∂E at y = xh(x), where x ∈ Sn−1, is given by

ν(y) = n

(
y

h(x)

)
= n(x).

Recalling (1.2) we have

H∂E(y) = div ν(y) =
∂νi
∂yi

(y) =
∂ni

∂xj

(
y

h(y)

)
∂xj
∂yi

(y) =
∂ni

∂xj
(x)

∂xj
∂yi

(y),

where we have adopted the standard convention of summation over repeated indexes.
Since the derivatives of h are homogeneous of degree −1, we have

∂xj
∂yi

=
∂

∂yi

yj
h(y)

=
δij
h(y)

− yj
h2(y)

∂h

∂yi
(y)

=
δij
h(x)

− xj
h2(x)

∂h

∂xi
(x).

Hence,

H∂E(xh(x)) =
1

h(x)
div n(x)− ∂ni

∂xj
(x)

xj
h2(x)

∂h

∂xi
(x).

Denoting by divτ , the tangential divergence on Sn−1 we have

divτ n(x) = div n(x)− ∂ni(x)

∂xj
xixj .

Hence,

H∂E(xh(x)) =
1

h(x)
divτ n(x) +

1

h

∂ni

∂xj
xixj −

∂ni

∂xj

xj
h2

∂h

∂xi

=
1

h(x)
divτ n(x) +

1

h2
(h2 + |∇h|2)

1
2
∂ni

∂xj
nixj =

1

h(x)
divτ n(x),
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where in the last equality we used that ni∂xjni = 0 for every 1 6 j 6 n. Then, since

〈x,∇τh〉 = 0, recalling (3.2) we calculate

H∂E(xh(x)) =
1

h(x)
divτ

(
xh(x)−∇h(x)√
h2(x) + |∇h(x)|2

)

=
divτ (xh(x)−∇τh)

h(x)
√
h2 + |∇h|2

− 〈xh(x)−∇h(x),∇(h2 + |∇τh|2)〉

2h(x)(h(x)2 + |∇h|2)
3
2

=
(n− 1)h−∆Sn−1h

h(x)
√
h2 + |∇h|2

+
〈∇h(x),∇(h2 + |∇h|2)〉

2h(x)(h(x)2 + |∇h|2)
3
2

from which (3.1) immediately follows. �

We conclude by proving that in higher dimension if r >
√
n− 2 then the ball Br is

a local maximizer of the integral of the weighted mean curvature with respect to C 2

perturbations. Quite surprisingly, the ball Br is a local minimizer if r is small enough.

Theorem 3. For all r > 0 there exist ε0(r), C(r) > 0 with the property that if u ∈
W 2,∞(Sn−1), ‖u‖W2,∞ 6 ε < ε0 and E = {trx(1 + u(x)), x ∈ Sn−1, t ∈ (0, 1)} is such
that γ(E) = γ(Br) then

H (Br)− H (E) > rn−2e−
r2

2
(
r2 − n+ 2− Cε0

)
‖u‖W1,2(Sn−1). (3.3)

Moreover, if E = −E

H (Br)− H (E) 6 rn−2e−
r2

2

(
Cε+ r2 − (n− 2)

n− 1

2n

)
‖u‖W1,2(Sn−1). (3.4)

Proof. To prove our statement, we use (3.1) with h replaced by r(1+u), thus getting

H (E) =

∫
∂E

H∂E dHn−1

=

∫
Sn−1

[
(n− 1)−

(
∆u

1 + u

)]
rn−2e−

r2

2 (1+u)2

((1 + u))2−n
dHn−1

+

∫
Sn−1

(
〈∇2u∇u,∇u〉+ (1 + u)|∇u|2

(1 + u)(|∇u|2 + (1 + u)2)

)
rn−2e−

r2

2 (1+u)2

((1 + u))2−n
dHn−1.

=rn−2 [(n− 1)I − J +K] .
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By Taylor expansion and the smallness of u, we get

I =

∫
Sn−1

(1 + u)n−2e−
r2

2 (1+u)2 dHn−1

=e−
r2

2

(
nωn + ((n− 2)− r2)

∫
Sn−1

udHn−1

)
+ e−

r2

2

(
(n− 2)(n− 3)− (2n− 3)r2 + r4)

2

∫
Sn−1

u2 dHn−1

)
+ o(‖u‖2

L2(Sn−1)
)

and

e
r2

2

∫
Sn−1

(1 + u)n−3∆ue−
r2(1+u)2

2 dHn−1

=

∫
Sn−1

∆udHn−1 + (n− 3− r2)

∫
Sn−1

u∆udHn−1

+

∫
Sn−1

u2∆uG(u) dHn−1,

where G(u) contains the remainder in the Taylor expansion. Using that
∫
∆udHn−1 = 0

and integrating by parts the terms involving the Laplace–Beltrami operator we infer

J =

∫
Sn−1

(1 + u)n−3∆ue−
r2(1+u)2

2 = −e−
r2

2 (n− 3− r2)

∫
Sn−1

|∇u|2 dHn−1

+ o(‖u‖2
W1,2(Sn−1)

).

The last term is actually easier to treat since we are also assuming the smallness of the
Hessian of u. Thus, we have

K =

∫
Sn−1

〈∇2u,∇u,∇u〉+ (1 + u)|∇u|2

(1 + u)1−n((1 + u)2 + |∇u|2)
e−

r2

2 (1+u)2 dHn−1

=e−
r2

2 (1 + o(‖u‖2
W1,2(Sn−1)

))

∫
Sn−1

〈∇2u,∇u,∇u〉+ |∇u|2 dHn−1.

Collecting all the previous equalities, we then get

H (E)− H (Br) = rn−2e−
r2

2 (n− 1)

(
((n− 2)− r2)

∫
Sn−1

udHn−1

)
+ rn−2e−

r2

2 (n− 1)

(
(n− 2)(n− 3)− (2n− 3)r2 + r4)

2

∫
Sn−1

u2 dHn−1

)
+ rn−2e−

r2

2

(
(n− 2− r2)

∫
Sn−1

|∇u|2 dHn−1 +

∫
Sn−1

〈∇2u,∇u,∇u〉 dHn−1

)
+ o(‖u‖2

W1,2(Sn−1)
).

(3.5)
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To estimate the integral of u in the previous equation, we need to exploit the assumption
that the Gaussian measures of E and Br are equal. In fact, since

γ(Br) = γ(E) =
rn

(2π)n/2

∫
B

(1 + u(x))ne−
r2|x|2(1+u(x))2

2 dx, (3.6)

we can expand the integral via Taylor formula to find

∫ 1

0

tn−1 dt

∫
Sn−1

[
(1 + u)ne−

r2t2(1+u)2

2 − e−
r2t2

2

]
dHn−1 = 0.

Using again Taylor expansion, we then easily get

0 =

∫ 1

0

tn−1e−
r2t2

2 dt

∫
Sn−1

[
(1 + u)ne−r2t2(u+u2/2) − 1

]
dHn−1

=

∫ 1

0

tn−1e−
r2t2

2 dt

∫
Sn−1

[
(n− r2t2)u+

(n(n− 1)

2
− (2n+ 1)r2t2

2
+
r4t4

2

)
u2
]
dHn−1

+ o(‖u‖2
L2(Sn−1)

)

=

∫
Sn−1

[
(nan − r2bn)u+

(n(n− 1)an
2

− (2n+ 1)r2bn
2

+
r4cn
2

)
u2
]
dHn−1

+ o(‖u‖2
L2(Sn−1)

),

(3.7)

where we have set

an =

∫ 1

0

tn−1e−
r2t2

2 dt, bn =

∫ 1

0

tn+1e−
r2t2

2 dt, cn =

∫ 1

0

tn+3e−
r2t2

2 dt.

A simple integration by parts gives that

bn =
nan
r2

− e−
r2

2

r2
, cn =

n(n+ 2)an
r4

− (n+ 2)e−
r2

2

r4
− e−

r2

2

r2
.

Thus, inserting the above values of bn and cn into (3.7), we arrive at

∫
Sn−1

udHn−1 = −n− 1− r2

2

∫
Sn−1

u2 dHn−1 + o(‖u‖2
L2(Sn−1)

). (3.8)
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Hence, (3.5) combined with (3.8) gives

H (E)− H (Br) =− rn−2e−
r2

2 (n− 1)(n− 2)

∫
Sn−1

u2 dHn−1

+ (n− 2− r2)rn−2e−
r2

2

∫
Sn−1

|∇u|2 dHn−1

+ rn−2e−
r2

2

∫
Sn−1

〈∇2u∇u,∇u〉 dHn−1 + o(‖u‖2
W1,2(Sn−1)

).

(3.9)

From this equality, we immediately conclude the proof of (3.3).
To prove the second inequality for any integer k > 0, we denote by yk,i, i =

1, . . . , G(n, k) the spherical harmonics of order k, i.e., the restrictions to Sn−1 of the
homogeneous harmonic polynomials of degree k, normalized so that ||yk,i||L2(Sn−1) = 1.

The functions yk,i are eigenfunctions of the Laplace–Beltrami operator on Sn−1 and for
all k and i

−∆Sn−1yk,i = k(k + n− 2)yk,i .

Therefore, if we write

u =
∞∑
k=0

G(n,k)∑
i=1

ak,iyk,i, where ak,i =

∫
Sn−1

uyk,i dHn−1,

we have

||u||2
L2(Sn−1)

=
∞∑
k=0

G(n,k)∑
i=1

a2k,i, ||Dτu||2L2(Sn−1)
=

∞∑
k=1

k(k + n− 2)

G(n,k)∑
i=1

a2k,i . (3.10)

Note that (3.7) implies

|a0|2 =

∣∣∣∣∫
Sn−1

u dHn−1

∣∣∣∣2 = o(‖u‖L2(Sn−1)).

Since E = −E, we also have that u is an even function; hence, a2k+1,i = 0 for all k ∈ N
and i ∈ {1, . . . , G(2k + 1, n)}. Hence, we can write

‖∇u‖2 > 2n‖u‖L2(Sn−1) − o(‖u‖2
L2(Sn−1)

),

which finally gives∫
∂E

H∂Ee
−|x|2

2 dHn−1−
∫
∂Br

H∂Bre
−|x|2

2 dHn−1

> rn−2e−r2
(
(n− 2)

n+ 1

2n
− r2 − ε0

)
‖∇u‖L2(Sn−1).

�
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The next result is a local maximality results under weaker assumptions. To this aim,
we introduce the function

ψ(s) =
1√
2π

∫ s

−∞
e−

t2

2 dt,

which is the value of the Gaussian volume of the half space Hs = {x ∈ Rn : x1 6 s}.

Theorem 4. Let n > 3, M > 0 and m > max{ψ(2M), ψ(
√
n− 2)}. For any C 2 convex

set containing the origin with γ(E) = γ(Br) = m and ‖H∂E‖L∞ 6M it holds

H (E) 6 H (Br). (3.11)

Moreover, if m > ψ(
√
n− 2)

∫
∂E

〈x, ν〉
|x|

H∂Ee
−|x|2

2 6
∫
∂Br

〈x, ν〉
|x|

H∂Bre
−|x|2

2 (3.12)

for any convex set E containing the origin with H (E) <∞ and γ(E) = γ(Br) = m.

Proof. Let E as in the statement and let rE the radius of the largest ball centred at
the origin and contained in E, i.e.

rE = sup{r : Br ⊂ E}. (3.13)

Let x ∈ ∂BrE
∩ ∂E and let H be the halfspace containing the origin and such

that the hyperplane ∂H is tangent to E at x. Since by convexity E ⊂ H we have
ψ(rE) = γ(H) > m, hence rE > ψ−1(m). Therefore, our assumption on m implies
rE > max{2M,

√
2(n− 2)}. Now, using the divergence theorem on mainfolds, we infer

H (E) =

∫
∂E

H∂E
〈x, ν〉
|x|

e−
|x|2
2 dHn−1 +

∫
∂E

H∂E

(
1− 〈x, ν〉

|x|

)
e−

|x|2
2 dHn−1

=

∫
∂E

divτ

(
x

|x|
e−

|x|2
2

)
dHn−1 +

∫
∂E

H∂E

(
1− 〈x, ν〉

|x|

)
e−

|x|2
2 dHn−1.

We compute the tangential divergence to find

divτ

(
x

|x|
e−

|x|2
2

)
=
n− 1

|x|
e−

|x|2
2 −

(
1− 〈x, ν〉2

|x|2

)(
1

|x|
+ |x|

)
e−

|x|2
2 .
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This gives

H (E) =

∫
∂E

n− 1

|x|
e−

|x|2
2 dHn−1

+

∫
∂E

(
1− 〈x, ν〉

|x|

)(
H∂E −

(
1

|x|
+ |x|

)(
1 +

〈x, ν〉
|x|

))
e−

|x|2
2 dHn−1

=

∫
∂E

n− 1

|x|2
〈x, ν〉e−

|x|2
2 dHn−1

+

∫
∂E

(
1− 〈x, ν〉

|x|

)(
H∂E +

n− 1

|x|
−
(

1

|x|
+ |x|

)(
1 +

〈x, ν〉
|x|

))
e−

|x|2
2 dHn−1.

(3.14)

Note that, differently from the two-dimensional case, the integral quantity∫
∂E

n−1
|x|2 〈x, ν〉e

−|x|2
2 dHn−1 is maximized by the ball centred at the origin with the same

Gaussian volume of E. Indeed, using the divergence theorem∫
∂E

1

|x|2
〈x, ν〉e−

|x|2
2 dHn−1 =

∫
E

div

(
x

|x|2
e−

|x|2
2 dx

)

=

∫
E

n− 2

|x|2
e−

|x|2
2 dx− (2π)

n
2 γ(E)

6
∫
Br

n− 2

|x|2
e−

|x|2
2 dx− (2π)

n
2 γ(Br)

=

∫
∂Br

1

|x|
e−

|x|2
2 dHn−1 =

1

n− 1
H (Br).

(3.15)

Since E is a convex set containing the origin, we have that 〈x, ν〉 > 0 for all x ∈ ∂E.
This fact together with (3.14) and (3.15) leads to

H (E) 6 H (Br) +

∫
∂E

(
1− 〈x, ν〉

|x|

)(
H∂E +

n− 2

|x|
− |x|

)
e−

|x|2
2 dHn−1. (3.16)

Since H∂E(x) 6 M 6 rE/2, rE 6 |x| for all x ∈ ∂E the assumption rE > 2
√
n− 2

implies that the integrand on the right-hand side is negative, which, in turn, gives
(3.11). Inequality (3.12) is also a consequence of (3.16). Indeed, (3.16) implies that if
r > ψ(

√
n− 2)∫
∂E

〈x, ν〉
|x|

H∂Ee
−|x|2

2 dHn−1 6 H (Br) =

∫
∂Br

〈x, ν〉
|x|

H∂Bre
−|x|2

2 dHn−1.

�
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