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FURTHER THEOREMS OF THE ROGERS-RAMANUJAN 
TYPE THEOREMS* 

BY 

M. V. SUBBARAO** AND A. K. AGARWAL 

ABSTRACT. We give three new partition theorems of the classical 
Rogers-Ramanujan type which are very much in the style of 
MacMahon. These are a continuation of four theorems of the same 
kind given recently by the second author. One of these new 
theorems, very similar to one of the original Rogers-Ramanuj an -
MacMahon type theorems is as follows: Let C(n) denote the number 
of partitions of n into parts congruent to zb2, ± 3 , ± 4 , ± 5 , ± 6 , ± 7 
(mod 20). Let D(n) denote the number of partitions of n of the form 
n = bx + b2 + • • • + bt, where bt ^ 2, bt = bi + h and if 1 ^ i ^ 
[ ( / - 2)/2], bÉ - bi + x ^ 2. Then C(n) = D{n). 

1. Introduction, notations and the main results. In the theory of partitions we 
find a number of identities which state that for each positive integer n the 
partitions of n with parts restricted to certain residue classes are equinumerous 
with the partitions of n on which certain difference conditions are imposed. 
Among the most striking results of this type are the Rogers-Ramanuj an 
identities. These were stated combinatorially by P. A. MacMahon as follows 
(1, Theorems 364, 365, p. 291): 

1.1. The number of partitions ofn into parts with minimal difference 2 equals the 
number of partitions of n into parts which are congruent to ±1 (mod 5). 

1.2. The number of partitions of n with minimal part 2 and minimal difference 
2 equals the number of partitions of n into parts which are congruent to ±2 
(mod 5). 

Recently, Hirschhorn [2] using some of the Slater's identities [4] proved four 
theorems of the Rogers-Ramanujan type. Later, using the same identities of 
Slater, Subbarao [3] established entirely different combinatorial results. 
Subbarao's results bear striking resemblance with the Rogers-Ramanujan 
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identities. For instance, his Theorem 2.1. 

1.3. Let A(n) denote the number of partitions of n into parts congruent to ± 1 , 
dz2, ± 5 , ± 6 , :±8, ± 9 (mod 20). Let B(n) denote the number of partitions ofn of 
the form bx + b2 + . . . + bt, where bt ^ 6 / + 1 and, if 

u - n 
1 ^ / ^ > & , • - * / + ! ^ 2 . 

7%ew ^4(«) = i?(w) /or a// n. 

This is very much analogous in structure to (1.1). 

The object of this paper is to prove the following theorem: 

1.4. THEOREM. Let C(n) denote the number of partitions of n into parts 
congruent to ± 2 , ± 3 , ± 4 , ± 5 , ± 6 , ± 7 (mod 20). Let D(n) denote the number of 
partitions ofn of the form n = bx + b2 + . . . + bt, where bt = 2, bt ^ bt + x, and, 
if 

U ~ 21 
1 ë i 

Then C(n)= D(n) for all n. 

,bt-bi+x è 2 . 

It is worthwhile to remark here that (1.4) is an analogue to (1.2), in the same 
manner as (1.3) is to (1.1). 

We shall also prove two more identities stated below: 

1.5. THEOREM. Let Px(n) denote the number of partitions of n into parts 
congruent to ±1, ± 4 , d=6, ±1 (mod 16). Let P2(n) denote the number of 
partitions ofn of the form n = bx + b2 + • • . + ^is + i» wnere hi = ^/ + i> ^s + i — 
s, bs ¥= bs + x, and, if 1 â i ^ s - 1, bt - bi+x ^ 2. Then Px(n) = P2(n) 
for all n. 

1.6. THEOREM. The number of partitions of n into odd parts equals the number 
of partitions ofn into an odd number, say 2s -f 1, of parts, satisfying the conditions 
that the middle part is at least s and the first s parts have minimal difference 1. 

The rising ^-factorial is denoted by 

(a; q)„ = I I z+j--
,=0 (1 - atf ) 

If « is a positive integer, then obviously 

(a; <?)„ = (! - o X l ~aq)...(\ - aq"'1), 

and 

(a; q)^ = (1 - a)(l - ^ ) ( 1 - aq2) ... . 
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2. Proofs of the theorems. 

2.1. PROOF OF THEOREM 1.4. Let irt(n) be a partition enumerated by D(n). 
Then for some s ^ 1, t = 2s — 1 or / = 2s. First suppose that t = 2s. Then 

*2s(") = b\ + b2 + • • • + bis 
with 

bs ^ 2,ft,_i ^ 4 , . . . , ^ ^ 2s, and 

We subtract 2, 4, 6 , . . . , 2s from bs, bs__x,. . ., b2, bx respectively, and 2 from 
each of fey+j,..., fc2^. This produces a partition of 

n - [ (2 4- 4 + . . . 4- 2s) 4- 2s] = n - (s2 4 3s) 

into at most 2s parts. Thus the partitions of the type ^ O O are generated by 

s* + 3s 

j — — • is = 1, 2 , . . . ). 

Similarly, if f = 2^ — 1, then 

*2,-i(«) = J>i + *a + • • • + 62,-1 
with 

6,_, ^ 2 , Z>s_2 i = 4 , . . . , Z > , ^ 2 * - 2, 

A> > A> > AÏ > > Ai > 9 
D5 = Ds+\ = °s + 2 = • ' • = 0 2 Ï - 1 = Z* 

Subtracting 2, 4 , . . . , 2(.s — 1) from bs_{, bs_2,. . . , bl9 respectively, and 2 
from each of bs, bs+l,. . . , ft^-i w e a r e 1 ^ W l t r i a partition of 

n - 2(1 + 2 4 . . . (s - 1) ) - 2s = n - (s2 4- s) 

into at most 2s — 1 parts. This shows that the partitions of the type ^2s-\(n) a r e 

generated by 

qs2+s 

—H- • (* = 1, 2 , . . . ). 

Thus 
0 0 °° „s2+s 

4 , V tf 
«=o 5 = 1 (#; q)2s-\ s = \ (q; q)2s «=o (#; ^)2w 

Now an appeal to Slater's identity [4, (99), p. 162]. 
oo «(/i + l) 1 oo 

(2.1.D 2 —̂— - — v n (i - «•«•-•xi - 910"-9xi - s20--8) 
„=o w; ^)2„ (q; ?)oo «=i 

X (1 - ^2 0"-1 2)( l - qm), 

https://doi.org/10.4153/CMB-1988-032-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1988-032-3


1988] ROGERS-RAMANUJAN TYPE THEOREMS 213 

leads to Theorem (1.4). 

2.2. PROOF OF THEOREM 1.5. Let fl"2s + i(w) denote a partition enumerated by 
P2(n). Then 

7725 + l(") = b\ + b2 + • • • + bs + bs + \ + • • * + ^ + 1 

with 

fcJ+1 ^ s, bs ^ ^ H- 1, bs_x ^ s + 3 , . . . , 6, ^ 5 + (25 - 1), 

and 

* J + 2 ^ J + 3 ^ - ^ + 1 ^ 1 -

Subtract s, s + 1, s + 3 , . . . , s + (2s — 1) from Z>5+1, &5,. . . , bx respec­
tively and 1 from each of bs+2> ŝ+3> • • • > b2s+\- This produces a partition of 
n — 2s (s 4- 1) into at most 2s + 1 parts. This shows that the partitions of the 

type ^2s+\in) a r e generated by 

25(5 + 1) 
q - ( ^ = 1 , 2 , . . . ). 

to ?Wi 

The theorem follows immediately once we recall the following identity of Slater 
[4, (86), p. 161]: 

oo 2«(n + l) i oo 

(2.2.D s J - — = —L- n (i - ^"- 3xi - <?8"-5) 

x (i - ^16"-14)(i - ql6n-2)(\ - ?8"). 

2.3. PROOF OF THEOREM 1.6. Let //,(«) denote the number of partitions of n of 
the type described in the second part of the theorem. By the usual argument it 
can be shown that 

oo oo 2n2+n 

(2.3.1) 2 fatf = S J 

n=0 n=0 (q\ q)2n + \ 

The theorem follows immediately once we note that the right-hand side 
of (2.3.1) equals ( — q; q)^ in view of the following identity due to Slater 
[4, (9), p. 153]: 

oo «(2n + l) oo 

(2.3.2) 2 / , = I I (1 + ^ " ' X l + <74"_3)(1 - <74n)/0 - I2")-
«-0 (q; qhn+i «-1 
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